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Abstract

Background: There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). NSCLC has many subtypes, but the two most common are lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC). These subtypes are mainly classified by physiological and pathological characteristics, although
there is increasing evidence of genetic and molecular differences as well. Although some work has been done at the
somatic level to explore the genetic and biological differences among subtypes, little work has been done that
interrogates these differences at the germline level to characterize the unique and shared susceptibility genes for
each subtype.

Methods: We used single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) of
European samples to interrogate the similarity of the subtypes at the SNP, gene, pathway, and regulatory levels.
We expanded these genotyped SNPs to include all SNPs in linkage disequilibrium (LD) using data from the 1000
Genomes Project. We mapped these SNPs to several lung tissue expression quantitative trait loci (eQTL) and
enhancer datasets to identify regulatory SNPs and their target genes. We used these genes to perform a biological
pathway analysis for each subtype.

Results: We identified 8295, 8734, and 8361 SNPs with moderate association signals for LUAD, LUSC, and SCLC,
respectively. Those SNPs had p < 1 x 10~ 3in the original GWAS or were within LD > 08, Europeans) to the
genotyped SNPs. We identified 215, 320, and 172 disease-associated genes for LUAD, LUSC, and SCLC, respectively.
Only five genes (CHRNA5, IDH3A, PSMA4, RP11-650 L12.2, and TBC1D2B) overlapped all subtypes. Furthermore, we
observed only two pathways from the Kyoto Encyclopedia of Genes and Genomes shared by all subtypes. At the
regulatory level, only three eQTL target genes and two enhancer target genes overlapped between all subtypes.

Conclusions: Our results suggest that the three lung cancer subtypes do not share much genetic signal at the SNP,
gene, pathway, or regulatory level, which differs from the common subtype classification based upon histology.
However, three (CHRNAS, IDH3A, and PSMA4) of the five genes shared between the subtypes are well-known lung
cancer genes that may act as general lung cancer genes regardless of subtype.
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Background

Lung cancer is the second most commonly occurring
cancer in the United States and is responsible for the
most cancer-related deaths for both men and women,
excluding data from skin cancer [1]. Although environ-
mental risk factors such as smoking have major contri-
butions to lung cancer development [2], there is also a
genetic component, and heritability estimates of genetic
risk for lung cancer range from 8% to 14% [3, 4]. Small
cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC) are the two main histological types of lung
cancer [5]. The two main subtypes of NSCLC are lung
adenocarcinoma (LUAD) and lung squamous cell carcin-
oma (LUSC). LUAD and LUSC comprise the vast major-
ity of newly reported lung cancer cases, while SCLC
comprises only a small subset (~15%) [6]. These
subtypes differ in their location within the lung as well
as the cell type of origin [7] and, therefore, may have dif-
ferent underlying disease etiologies. LUAD is the most
researched lung cancer subtype, and studies have identi-
fied genomic alterations and actionable mutations [8—
11]. Additionally, genomic alterations have been discov-
ered in LUSC [12-14] and SCLC [15, 16]. Although it
was discovered from these studies that few somatically
mutated genes overlap all three subtypes, most of these
studies focused on somatic mutations. Few studies have
expanded the analysis to the germline genome.

In 2014, Hoadley et al. performed an integrative ana-
lysis to cluster cancers using 12 different cancer types
from The Cancer Genome Atlas (TCGA) project [17].
They discovered that LUAD is a separate cluster and is
distinct from LUSC, which clusters with the other
squamous-like cancer types. In 2016, Campbell et al.
compared somatic genomic alterations of LUAD and
LUSC using over 1000 combined somatic tumor tissue
samples [18]. They found that only six mutated genes
overlapped both subtypes and that each subtype shared
only about 25% of copy number alterations. Their work
supports the conclusion that both subtypes are very
distinct diseases. Common germline variation associated
with lung cancer has also been studied for more than
one subtype using genome-wide association studies
(GWASs) [19-22].

Several GWASs have discovered common genetic
variation associated with lung cancer risk [19-32].
However, few studies used data for all three subtypes [19,
20, 23, 26, 28, 30, 31]. Additionally, most of these findings
did not reach the stringent genome-wide significance for a
GWAS (p <5 x 10~ ®), and most of the genome-level sig-
nificant single-nucleotide polymorphisms (SNPs) were
located within non-coding regions of the genome, making
it difficult to infer the underlying mechanism of the sig-
nificant variants that could cause disease. Recent studies
have shown that these marginally significant SNPs found
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from GWASs within non-coding regions of the genome
may function in regulatory roles [33, 34]. Therefore, these
results can be used to obtain a set of regulated genes to in-
vestigate and compare the similarity of the three lung
cancer subtypes at the germline gene level and at the
regulation level.

In this study, we first selected a set of SNPs with mod-
erate association signals (p < 1 x 10~ ) from the sum-
mary results of a prior GWAS that covered three lung
cancer subtypes (LUAD, LUSC, and SCLC). Then, we
identified and compared regulatory variants associated
with the three subtypes of lung cancer, as well as their
target genes. We used these results to investigate the
similarity of the subtypes at the SNP, gene, regulatory,
and pathway levels. We first remapped these SNPs to an
updated human genome reference (hgl9) and expanded
them using linkage disequilibrium (LD) patterns from a
European population. We used this final set of SNPs to
examine several lung tissue expression quantitative trait
loci (eQTL) and enhancer datasets for evidence of a
regulatory function for each SNP and identified their
target genes. We compared the target genes of these
regulatory SNPs and observed that only five genes over-
lapped all three subtypes. We also observed a weak over-
lap among all three subtypes across all comparisons.
Through this analysis, we identified many genes that
might have an important association with lung cancer
for each specific subtype. Follow-up studies on these
genes may lead to a better understanding not only of the
genes themselves, but also the underlying biology that
differentiates these subtypes of lung cancer. Our results
provide insights into the distinct genetic components
among the three lung cancer subtypes.

Methods

GWAS dataset

We previously performed a multi-site GWAS for lung
cancer in a European population and analyzed each
sample by lung cancer subtype for the National Cancer In-
stitute’s GWAS for lung cancer (more details are available
in the original publication [20]). Briefly, this GWAS for
lung cancer used cases and controls from four different
studies: Environment and Genetics in Lung Cancer
Etiology (EAGLE), Alpha-Tocopherol, Beta-Carotene
Cancer Prevention (ATBC), Prostate, Lung, Colon, Ovary
(PLCO) screening trial, and Cancer Prevention Study II
(CPS-II). After the quality control of the genotyping re-
sults, there remained 5739 cases and 5848 controls of
European ancestry and 515,922 SNPs. The analysis was
stratified by lung cancer subtype with 1730 LUAD cases,
1400 LUSC cases, 678 SCLC cases, and 5848 shared con-
trols. It used unconditional logistic regression. We used
the full set of significant lung cancer SNPs (p < 1 x 10™ %)
separated by subtype for this analysis.
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Genomic annotation of SNPs

The online web tool SNP Nexus [35] (http://snp-nexus.org/)
was used to annotate the genomic location of the sig-
nificant SNPs by lung cancer subtype based on the
NCBI36/hgl8 genome assembly. We used the UCSC
hgl8 gene definitions for the genomic annotation of
each region.

Conversion of hg18 SNPs to hg19 SNPs

The results from the lung cancer GWAS were originally
generated using coordinates from the hgl8 reference of
the human genome. We converted these SNPs to hgl9
coordinates using the online tool Remap from the
National Center for Biotechnology Information (NCBI)
with default settings (http://www.ncbi.nlm.nih.gov/geno
me/tools/remap). This conversion allowed us to map the
SNPs to the regulatory annotation information, which
were based on hgl9 coordinates.

We used these updated hgl9 coordinates for the SNPs
to obtain the updated SNP rsID numbers using dbSNP
data (build 142) from NCBI to account for any SNPs
that may have been merged between assemblies.

Identification of SNPs in LD with the genotyped SNPs

For each SNP, we retrieved all other SNPs in a 1-Mb re-
gion both upstream and downstream from the SNP site
using Tabix [36] (version 0.2.5). We obtained the SNP data
from the European super population group from the 1000
Genomes Phase III data (v5.20120502). Vcftools [37]
(version 0.1.12b) was used to convert the Tabix vcf files to
the plink-tped file format. Then we used the 1000
Genomes data for each SNP and applied PLINK [38]
(version 1.07) to identify the final set of SNPs that were in
the same LD with the tagging SNPs using r* > 0.8 with 1
Mb upstream and downstream of the SNP. The LD results
from PLINK were combined for every SNP and any SNPs
in LD that were duplicated across all SNP sets were
removed.

Randomization for overlapping SNPs

All LD-based pruning of SNPs was performed using the
PLINK formatted 1000 Genomes Phase III European data-
set. To identify a set of more independent SNPs (more
independent and not purely independent) in each subtype,
SNPs with p < 1 x 10” ? from the GWAS summary results
were extracted for LUAD, LUSC, and SCLC, and PLINK
was used to prune out a set of SNPs with no strong link-
age using the indep-pairwise function. The r* used
for all LD trimming was 0.5. These results were used to
identify the new overlap of SNPs between LUAD, LUSC,
and SCLC. To trim the background set of SNPs for the
randomization, the entire set of SNPs genotyped and
reported for each subtype was imported into PLINK with
the same function and options.
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The same number of SNPs for each subtype were
randomly selected 10,000 times from the background
pool of SNPs without strong linkage from the genotype
chip in R. For each random selection, we determined the
number of overlapping SNPs to identify the level of
overlap that may occur by chance.

Genotype-Tissue Expression eQTLs

The full set of significant human-tissue-specific eQTLs
version 6 (V6) was downloaded from the Genotype-
Tissue Expression (GTEx) website (https://www.gtexport
al.org) on 22 February 2016. The eQTLs were identified
using linear regression with the tool Matrix eQTL [39]
with a +1-Mb region around the transcription start site
in each individual tissue that had >70 samples. The
significance of the eQTLs was determined by empirical
p values using permutations followed by a Storey false
discovery rate. The eQTLs with a g value <5% were con-
sidered significant.

We also downloaded the full set of all multi-tissue
eQTLs for nine different tissue types for the pilot phase
of the GTEx Project on 11 June 2015. This file contained
eQTLs discovered using two different methods, the
University of Chicago model [40] and the University of
North Carolina model [41], which are fully explained in
the respective publications. Additionally, a file was in-
cluded that contained the average between both
methods including calculated posterior probabilities for
every gene—SNP pair titled res_ final amean -
com_genes_com_snps_all.txt. The whole SNP
set (including LD SNPs) was used to detect eQTLs in
this dataset. We plotted the distribution of posterior
probabilities of all the eQTLs found using the SNPs and
defined an eQTL as significant if its posterior probability
was >80% (Additional file 1: Figure S1). We removed all
duplicated genes in each subtype to obtain the final GTEx
set of genes.

Lung tissue eQTLs from the Hao et al. study

Hao et al. [42] investigated how genetic variation affects
gene expression levels in human lung tissues. They used
this dataset to interrogate SNPs associated with asthma.
The authors used lung tissue and blood from more than
1000 patients across three cohorts to identify a set of
eQTLs in lung tissue. We downloaded the entire set of
cis-eQTLs identified from this study with the false
discovery rate at 10%. We removed the target genes with-
out annotated gene names. We also merged duplicate
probes that specified the same genes into a single gene.

FANTOMS5 transcribed enhancers

The FANTOM consortium aims to identify and assign
regulatory function to the mammalian genome. Part of
this comprehensive project is to identify all transcribed
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enhancers and promoters in multiple human cell lines
and tissue types. The entire set of permissive enhancers
found in the FANTOMS5 data was downloaded in bed
file format from http://enhancer.binf.ku.dk/presets/perm
issive_enhancers.bed on 26 August 2015. The gene-report
function was used in PLINK to search for any SNPs that
were located within permissive enhancer regions. SNPs
that were located within each enhancer region were then
matched with the set of correlated expressed pro-
moters for FANTOMS5 enhancer transcription start
sites downloaded from http://enhancer.binf.ku.dk/pre-
sets/enhancer_tss_associations.bed on 25 August 2015.

IM-PET predicted enhancers

He et al. [43] developed a novel approach for identifying
the target genes of histone-derived enhancers using a
random forest classifier. The authors used this tool,
Integrated Methods for Predicting Enhancer Targets
(IM-PET), to define a set of enhancer target genes for 12
different cell types. We used the results for two lung cell
types, IMR90 and NHLF, for our analysis. We used bed-
tools [44] version 2.17.0 to identify lung cancer SNPs
within the enhancer regions that had an associated tar-
get gene. To remove non-expressed genes, we filtered
the results to remove target genes with reads per kilo-
base per million mapped reads of 0. The enhancer tar-
gets were originally formatted as Ensembl-defined
transcripts, so we converted them to gene symbols using
the BioMart tool from Ensembl using the archived site
pertaining to genome assembly GRCh37.p13 [45].

Identification of independent loci for the identified
germline genes

biomaRt [46] was used to annotate the genomic locations
for the germline-regulated genes discovered from each
dataset for each subtype using gene start and stop coordi-
nates from Ensembl gene definitions using genome build
GRCh37.3. Genomic locations that were not defined from
Ensembl were manually annotated using NCBI's Gene
online web resource https://www.ncbi.nlm.nih.gov/gene.
The function cluster from bedtools [44] was used to
cluster the genes into independent 1-Mb regions.

Pathway enrichment analysis

The final set of germline-regulated genes was uploaded
to the WebGestalt online resource [47]. The hypergeo-
metric test was used for enrichment with specific path-
ways followed by Benjamini and Hochberg multiple test
correction [48].

GWAS Catalog SNPs

We downloaded all SNPs from the GWAS Catalog using
the search term “lung cancer” on 13 January 2016. We re-
moved SNPs where the initial or replication population
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was other than European. We also removed SNPs that
were reported in the original lung cancer report [20]
because they were used in our analyses.

Principal component analysis of TCGA germline
genotyped SNPs

TCGA germline genotype level 2 data for six cancer
types (LUAD, LUSC, head and neck squamous cell car-
cinoma, bladder urothelial carcinoma, glioblastoma
multiforme, and lower grade glioma) were downloaded
from the legacy archive of the data portal of the National
Cancer Institute’s Genomic Data Commons using its
data transfer tool after obtaining permission from
the database of Genotypes and Phenotypes (dbGaP). The
normal blood samples were extracted from these sets to
use in the analyses. These normal blood samples were
then filtered to exclude non-white and white Hispanic
samples as defined by the clinical data from TCGA.
These birdseed genotype formatted files were then al-
tered for use in PLINK as follows. First, all low-
confidence calls (confidence > 0.1) were initially recoded
as -9 in place of the 0,1,2 allele birdseed conventions.
Second, each sample was merged together for each can-
cer type to obtain a matrix of the number of genotyped
SNPs (906,600) times the number of samples. Third, the
hg19/b37 Affymetrix mapping file was downloaded from
the Affymetrix website and merged with the probe IDs
in the birdseed matrices. Fourth, the Affymetrix annota-
tion file was used to generate a PLINK format map file.
Fifth, the alleles in the birdseed files were recoded to
their appropriate bases according to the Affymetrix an-
notation file. After converting the files to PLINK format,
all samples across all cancer types were merged together
into one matrix using PLINK’s merge-list function. Tri-
allelic SNPs were further removed to obtain the final
merged genotype matrix.

To run the principal component analysis (PCA) func-
tion in PLINK, the SNPs were first filtered by LD r* 0.5
using 1000 Genomes Phase III European only data down-
loaded from the VEGAS2 website. After an LD trim, the
PCA function was run on all samples. After visualization
of the top two principal components, we determined a set
of outliers from multiple cancer types and ran the PCA
function again after removing these outliers.

Analysis of the overlap of SNPs and gene sets
The R package UpSetR [49] was used to make the plots
of the overlapping SNPs and gene sets.

Results

Description of data

We obtained SNPs (p < 1 x 10™ ?) for three lung cancer
subtypes, LUAD, LUSC, and SCLC, from the results of the
National Cancer Institute’s GWAS for lung cancer [20].
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This GWAS utilized cases and controls from four smaller
studies: Environment and Genetics in Lung Cancer
Etiology (EAGLE), Alpha-Tocopherol, Beta-Carotene
Cancer Prevention (ATBC), Prostate, Lung, Colon, Ovary
(PLCO) screening trial, and Cancer Prevention Study II
(CPS-II) nutrition cohort. Table 1 shows the total number
of cases genotyped for each subtype, the total number of
SNPs discovered by selection criterion (p < 1 x 10™ ®), and
the distribution of their locations within the genome. We
also show the overlap of SNPs per subtype in Additional
file 1: Figure S2A. We found that, like many GWASs for
various disease types, only 2—-3% of variants were located
within coding regions of the genome.

Weak sharing of genetic association signals

A direct comparison using genotyped SNPs revealed that
ten SNPs at p < 1x 10~ ® overlapped among all three
subtypes (Additional file 1: Figures S2A and S3). To de-
termine if this overlap of SNPs was different from what
would be expected by chance, we conducted a
randomization test through random resampling of the
genotyped SNPs on the GWAS chip, which did not re-
quire individual genotyping data (see “Methods”). To
avoid a randomization analysis that could be biased due
to SNPs in strong LD, we pruned the original 515,922
SNPs as genotyped on the chip (Illumina HumanHap
550) that passed a quality check to obtain a set of SNPs
that are assumed unrelated or weakly related at * = 0.5
(see “Methods”). These SNPs (234,859 after LD pruning)
served as the pool for our randomization test. We pro-
vide the details of this SNP selection in Additional file 1:
Figure S3. After LD pruning of these SNPs, we discov-
ered that only one SNP, compared to ten SNPs from the
original list, overlapped across all three lung cancer sub-
types (Additional file 1: Figure S2C). This one SNP was
rs578776, on chromosome 15 in the 3' untranslated
region of CHRNA3, in the chr.15q25 locus known to be
associated with different histology subtypes of lung can-
cer [50]. For the randomization test, we randomly chose
the same number of SNPs for each subtype after LD
pruning 10,000 times. Each time, we compared the three
randomly selected size-matched sets of SNPs represent-
ing three subtypes and recorded the overlapping SNPs.
After the 10,000 randomization trials, we observed ten

Table 1 Summary of data from lung cancer genome-wide
association studies
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times that one SNP overlapped among the three random
sets of SNPs (10/10,000), while in the remaining 9990
sets, no overlap was observed (Additional file 1: Table
S1). We observed no instances of an overlap greater
than one SNP. Given the large number of SNPs in the
pool, it was expected that there would not be many
overlapping SNPs. Thus, the discovery of one overlap-
ping SNP among the three lung cancer subtypes is likely
within random expectation with a chance of 0.001
according to our randomization test. Therefore, we con-
clude that there is no strong evidence that the one
overlapping SNP we observed is higher than randomly
expected.

SNP expansion

To obtain a comprehensive annotation of the SNPs, we
expanded our SNP list to include those that are in strong
LD with SNPs from the GWAS results at p < 1x 10~ >,
We mapped all SNPs from genome build hgl8 to genome
build hgl9 using the NCBI tool Remap (http://www.ncbi.
nlm.nih.gov/genome/tools/remap) and obtained updated
SNP rsID numbers using data from dbSNP build 142. We
expanded the initial set of genotyped SNPs to include all
SNPs in LD within 1 Mb of the genotyped SNP based on
data from the European population super group from
Phase III of the 1000 Genomes Project [51]. Table 2
outlines the results of this SNP expansion for each sub-
type. After we removed duplicated SNPs within each sub-
type, we found 8295 SNPs associated with LUAD, 8734
with LUSC, and 8361 with SCLC, among which 167 SNPs
overlapped between all three subtypes (Additional file 1:
Figure S2B). We next used the final subtype-specific sets
of SNPs from our LD expansion (Table 2) for the subse-
quent interrogation of regulatory function (Fig. 1).

Lung tissue eQTLs

We first utilized three lung eQTL datasets to annotate
the SNPs. The first lung eQTL dataset was retrieved
from the GTEx project [52]. Using this dataset, we found
1297 SNPs for LUAD, 1429 for LUSC, and 1171 for
SCLC (Fig. 2a) that acted as eQTLs using a set of pre-
compiled significant lung-tissue-specific eQTLs from
GTEx. To explore all eQTLs for the lung, including
non-tissue-specific eQTLs, we used a second set of
eQTLs identified using a multi-tissue model from GTEx
(Additional file 1: Figure S1). We combined the single

Subtype  Sample  SNPs(p < 1x 107 ) Table 2 Summary of SNP results and LD expansion

size Total SNPs ~ Coding  Intron  UTR  Intergenic LUAD  LUSC  SCLC
LUAD 1730 544 13 28 7 2% Number of SNPs (GWAS, p < 10 3) 544 598 558
LUSC 1400 598 18 299 16 265 Number of SNPs (LD, 7 08, within 1 Mb) 14,312 16021 13,104
SCLC 678 558 14 247 10 287 Number of final SNPs 8295 8734 836

LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, SCLC small
cell lung cancer, SNP single-nucleotide polymorphism, UTR untranslated region

LD linkage disequilibrium, LUAD lung adenocarcinoma, LUSC lung squamous cell
carcinoma, SCLC small cell lung cancer, SNP single-nucleotide polymorphism
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Fig. 1 Pipeline to identify germline-regulated genes from the SNPs of the genome-wide association study. The start of our pipeline utilizes moderately
associated SNPs (p < 1 x 10~ 3) from the genome-wide association study for three lung cancer subtypes. The outcome is a set of germline-regulated genes
in each lung cancer subtype. eQTL expression quantitative trait loci, GTEx Genotype-Tissue Expression project, LD linkage disequilibrium, SNP

and multi-tissue eQTLs represented by the SNPs to
form the final set of GTEx eQTLs. Many of these eQTL
SNPs were within strong LD of each other and con-
trolled the expression of the same target gene, so we
collapsed all eQTLs to the specific genes they control.
As illustrated in Fig. 2b, we found a total of 71 genes for
LUAD, 108 for LUSC, and 67 for SCLC. Three genes
overlapped from one unique locus in all three subtypes
(CHRNAS, PSMA4, and RP11-650 L12.2). CHRNAS is in
the nicotinic acetylcholine region that has well-known
associations with lung cancer [19, 24, 25] and smoking
[53, 54], while PSMA4 is also associated with lung
cancer [55, 56].

We examined a third set of lung tissue eQTLs gener-
ated from a meta-analysis that used lung tissue samples
from three different recruitment sites (not including
GTEx data) [42]. We refer to this eQTL dataset as the
Hao et al. eQTLs. We found 25 SNPs for LUAD, 34 for
LUSC, and 16 for SCLC that acted as eQTLs (Fig. 2c).
We reduced the number of eQTLs to unique target
genes (see “Methods”) and found no genes that over-
lapped all three subtypes, no genes that overlapped
LUAD and SCLC, two genes that overlapped LUSC and
SCLC in one genomic region (MYL4 and RPRML), and
one gene ([REB2) that overlapped the two NSCLC
subtypes (Fig. 2d). IREB2 has been previously reported

to be associated with both chronic obstructive pulmon-
ary disease and lung cancer, and a recent study suggests
a stronger association for lung cancer than chronic ob-
structive pulmonary disease [57].

Finding transcribed enhancers and their target genes

We next examined SNPs located within enhancer
regions of the genome that had associated target
genes. We used data from the Functional Annotation
of the Mammalian Genome (FANTOM) collaborative
project [58] that identified transcribed enhancer
regions of the genome known as eRNAs using the
Cap Analysis of Gene Expression (CAGE) technology
[59]. We used this permissive set of enhancers and
their corresponding transcribed target genes from the
Promoter Enhancer Slider Selector Tool (PrESSTo)
website [58, 60]. We found that the number of genes
that were targeted by the enhancers was 45 for
LUAD, 104 for LUSC, and 43 for SCLC (Fig. 3a). We
removed duplicated genes in each subtype and found
no overlap for these enhancer target genes among all
three subtypes (Fig. 3b). We also observed no overlap
among LUAD and SCLC or SCLC and LUSC. How-
ever, we did find five target genes from two genomic
loci that overlapped LUAD and LUSC (EPB49, LGI3,
LPCATI1, NPM2, and PHYHIP).
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Fig. 2 Lung tissue eQTLs in three lung cancer subtypes. a Total number of significant eQTLs found in each lung cancer subtype using lung-tissue-
specific data (g value <5%) and multi-tissue data (posterior probability >0.8) from GTEx. b UpSetR plot shows the overlap of genes discovered from
the GTEx eQTLs. For each lung cancer subtype, we obtained the final gene set by collapsing all SNPs from (a) into genes. ¢ Total number of eQTLs
(false discovery rate < 10%) found in the lung-tissue-specific dataset from Hao et al. [42]. d UpSetR plot shows the overlap of genes based on Hao et
al. eQTLs. Duplicate genes were removed from ¢ for this comparison. eQTL expression quantitative trait loci, GTEx Genotype-Tissue Expression project,

LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, SCLC small cell lung cancer

Finding epigenetically defined enhancers and their
predicted target genes

To find SNPs located within epigenetically defined en-
hancers, we used a dataset that defined enhancers using
histone modifications such as H3K4mel [61] and
H3K27ac [62]. Specifically, we used the results from a
newly developed software tool, IM-PET, that uses spe-
cific histone marks to identify enhancers and other data
types to predict their targets using a sophisticated
random forest classifier [43]. We found more than 100
enhancer targets in all subtypes across two lung-related
cell lines (IMR90 and NHLF) (Fig. 3c). These enhancer
targets are mRNA transcripts. Therefore, for a compari-
son similar to that used for the previous datasets, we
collapsed all transcripts into single genes (see
“Methods”). We merged genes found across both cell
lines and removed duplicated genes within subtypes. Only
two genes from one unique locus overlapped all subtypes
(ID3HA and TBC1D2B) (Fig. 3d). IDH3A encodes an en-
zyme in the metabolic tricarboxylic acid (TCA) cycle that
is frequently altered in cancer cells [63].

Final set of germline-regulated genes and comparison to
original study

We collected all the genes identified by all of the above
methods, removed duplicated genes within subtypes,
and referred to this final collection of genes as germli-
ne-regulated genes (Additional file 1: Tables S2—S4). Only
five genes were shared by all of the subtypes: CHRNAS,
IDH3A, PSMA4, RP11-650 L12.2, and TBCID2B (Fig. 4a).
Although we found five unique genes, these genes are all
located together in one unique genomic region on 15q25
and probably represent only one unique signal. We also
compared the genes found across all of the different
methods per subtype. Interestingly, we found very little
overlap in the target genes identified between the different
methods in each subtype. This trend is consistent across all
three subtypes (Fig. 5).

A common approach used to report genes that may be
associated with SNPs found from a GWAS is to report
genes that are the closest in proximity upstream or
downstream of the genotyped SNP. Therefore, we next
verified that our approach to determine target genes
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from GWAS SNPs identified a different set of genes
than the genes originally reported using the closest gene
approach in the original study [20]. For this comparison,
we ran the same analysis described above and used the
same set of SNPs reported in the original paper’s supple-
mental tables. We found that only ~25% of the
germline-regulated genes that we found using our
approach were reported in the original GWAS publica-
tion (Additional file 1: Figure S4A).

We further applied our approach to analyze the data
from the GWAS Catalog and obtained a set of SNPs for
a matched European population type from the GWAS
Catalog [64] using the search term “lung cancer” (see
“Methods”). After removing the SNPs from our original
study, we identified 17 SNPs to run through our pipe-
line. Additional file 1: Table S5 shows the results from
this analysis. We ran the SNPs through the pipeline and
identified six germline-regulated genes from the GWAS
Catalog SNPs: CHRNAS, CLPTM1L, PSMA4, RP11-650
Li12.2, TP63, and ZSCAN29. We examined the overlap
between these genes and our germline-regulated genes
by lung cancer subtype in the above subsections. There

was a strong overlap (67%) between the genes in at least
one subtype from our analysis and the target genes
associated with lung cancer from the GWAS Catalog
(Additional file 1: Figure S4B).

Pathway enrichment analysis of germline-regulated genes
To gain a deeper understanding into the biology driven by
these germline-regulated genes, we performed biological
pathway enrichment analysis of the genes in each subtype.
We used the web-based tool, WEB-based Gene Set
Analysis Toolkit (WebGestalt) [47], to identify significantly
enriched pathways with the set of germline-regulated genes
for each subtype using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database. The pathways
enriched in each subtype are listed in Additional file 1:
Tables S6-S8. We found that all three subtypes had genes
enriched in the metabolic pathways and proteasome
pathways (Fig. 4c). We note that many of the pathways
found for LUSC represent only one genomic locus (HLA
region, chromosome 6p21), which contains the same sets
of genes (Additional file 1: Table S7).
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Identification of overlapping genes with independent signals
Our approach to identify germline-regulated genes in-
cluded LD expansion of the preliminary set of GWAS
SNPs. Therefore, there were genes that were identified
in the same regions of the genome that potentially share
the same genetic signal. To determine the number of in-
dependent signals we identified in our analysis, we clus-
tered the genes within 1 Mb of each other on each
chromosome into a single unique signal. We performed
this clustering of genes for all the comparisons that were
done at the gene level. We have listed these results for
each data source as independent genomic loci in
Additional file 1: Tables S9-S15. These results supported
the same conclusion from our main analyses.

Principal component analysis of TCGA germline
genotyped SNPs

We also expanded our analysis beyond the GWAS
SNPs to determine the degree of genetic sharing
using data from TCGA. Importantly, TCGA did not

study SCLC, so we were limited to data generated for
LUAD and LUSC. We obtained all germline genotyp-
ing data from normal blood samples for six cancer
types (LUAD, LUSC, head and neck squamous cell
carcinoma, bladder urothelial carcinoma, glioblastoma
multiforme, and brain lower grade glioma) from
TCGA’s data portal (https://portal.gdc.cancer.gov/legac
y-archive/search/f). To avoid any genetic influence
that may occur due to population differences, we lim-
ited our samples to TCGA’s defined white population
for our analysis. We ran a PCA on these six cancer
types to identify the degree of similarity at the
germline genetic level (Additional file 1: Figure S5).
Our results indicated that the samples for LUAD and
LUSC are no closer to each other spatially than other
cancer types. Additionally, several of the samples for
LUAD and LUSC are in locations of the plot with
other cancer types. These results agree with our regu-
latory analysis and suggest that LUAD and LUSC do
not share much in common with each other at the
germline genetic level.
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Discussion

Understanding the genetic risk factors for any cancer
type is important in uncovering the underlying biology
of the disease. For example, if a SNP is unique to one
subtype and acts as an eQTL for a gene involved in a
cancer-related pathway, somatic alterations in that gene
or other genes in the same pathway can be investigated
to understand the development of that subtype. It is also
possible that somatic mutations can act in concert with
expression-altering SNPs in driving the tumor and
would not have the same effect on growth advantage in
the absence of the SNP.

Additionally, a specific understanding of the regulatory
roles that common genetic variants play in the develop-
ment of lung cancer subtypes is an important research
question because the majority of common variants that
increase cancer risk are located within non-coding
regions and most likely act as regulators of gene expres-
sion. An improved understanding of the carcinogenesis
process may provide indications for biomarkers for risk
prediction and therapeutic strategies. This is particularly
important for SCLC, which is typically diagnosed at a
late stage and for which there are not many therapeutic

options. To address these questions, we performed a de-
tailed analysis of common genetic variants (SNPs)
associated with three subtypes of lung cancer (LUAD,
LUSC, and SCLCQ).

We used marginally significant GWAS results (p < 1 x
10~ 3) to search for regulatory roles for common variants
associated with LUAD, LUSC, and SCLC. We expanded
this set of results to include all SNPs in LD with the
genotyped SNPs using data from the 1000 Genomes Phase
III project. This expansion resulted in ~15,000 more SNPs
to test per subtype that may be acting as the actual causal
variant [65]. We used a diverse set of regulatory data to
identify SNPs that were within regulatory regions of the
genome that had an identified target gene. Overall, we
found a very small overlap between all three subtypes at
the SNP, gene, pathway, and regulatory levels. Of note, we
found a similar lack of overlap between all subtypes on all
levels when we used SNPs with p < 1 x 10~ %,

It is worth highlighting that three (CHRNAS, IDH3A,
and PSMA4) out of the five genes shared in all three
subtypes of lung cancer have been previously reported to
be associated with lung cancer. CHRNAS has strong impli-
cations in its association with lung cancer [19, 24, 25].
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CHRNAS5 encodes a nicotinic acetylcholine receptor
(nAChR). nAChRs are a class of ligand-gated ion channels
that are activated by the neurotransmitter acetylcholine to
allow the flow of ions across a cell membrane [66]. There
is still an ongoing debate about CHRNAS5’s role in lung
cancer risk versus its risk for lung cancer through nicotine
addiction [67], but finding this gene in all three subtypes of
lung cancer, which have biological and environmental dif-
ferences, suggests it may play a direct role in lung cancer
risk. IDH3A encodes an isocitrate dehydrogenase (IDH).
IDHs are important enzymes in the regulation of the TCA
cycle [68]. Additionally, IDH3A promotes tumor growth by
activating hypoxia-inducible factor 1 (HIF-1) and promotes
the stability of HIF-1 in participating in angiogenesis and is
also associated with poor survival in lung cancer [69].
IDH3A also acts in the conversion of metabolism that oc-
curs with cancer fibroblasts [70]. PSMA4 encodes a sub-
unit of the proteasome. Experimental studies have shown
that PSMA4 mRNA is increased in lung tumor versus nor-
mal samples and plays major roles in cell proliferation
using data from lung carcinoma cell lines [71]. Another
gene, RP11-650 L12.2, is a non-coding antisense RNA that
has not been well characterized. However, one recent study
by Jin et al. [72] found a variant in the promoter region of
RP11-650 L12.2 that is associated with risk of colorectal
cancer. This finding, in addition to its association with all
three subtypes of lung cancer, warrants future experimental
studies of this gene. The final gene shared by all subtypes,
TBC1D2B, is a protein-coding gene that may have GTPase
activity and may have a role in autophagy [73].

In addition to the five overlapping genes above, our
pathway enrichment analysis revealed two biological
pathways shared in the three subtypes. Among them, all
three subtypes shared metabolic pathways and the prote-
asome pathways. Metabolic pathways are frequently
modified in cancer to provide the over-proliferating cells
with the required nutrients [74, 75]. The proteasome
pathway has several links to cell growth in several cancer
types [76]. Although these two pathways have a strong
relevance to cancer, they are also associated with other
disease types due to their components acting in many
biological processes. We also observed that the oxidative
phosphorylation pathway was significantly enriched in
LUSC (Benjamini—Hochberg adjusted p = 0.0317). It is
interesting to find this pathway dysregulated in the
germline genome, because it has strong associations in
the transition from oxidative phosphorylation to the less
efficient aerobic glycolysis, known as the Warburg effect,
which occurs in cancer cell proliferation [77]. Although
the Warburg effect may be attributable to glycolysis
inhibiting a still active oxidative phosphorylation path-
way, this result suggests that commonly occurring vari-
ants in LUSC may lead to some disruption in the
oxidative phosphorylation pathway that makes this
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process easier to arrest or inhibit and enhance cell
proliferation after some somatic disruption in somatic
lung tissue. We also found several cancer-related path-
ways in LUSC such as pathways in cancer and prostate
cancer, and many signaling pathways associated with
cancer. We discovered that the focal adhesion pathway
was significantly enriched with genes from SCLC
(Benjamini—-Hochberg adjusted p = 0.0275). This is an
intriguing finding because this process is involved in the
epithelial-mesenchymal transition, which is important
in cancer metastasis [78, 79]. In summary, this pathway-
based evidence suggests both shared subtype and unique
subtype associations.

There are several limitations to this study. First, we
utilized a set of marginally significant SNPs. Although
previous studies [80, 81] have shown that this is a prac-
tical approach, this may have resulted in some false
positive SNPs in our study. Second, we did not impute
the GWAS data to obtain a larger set of SNPs for the
analysis. This would have resulted in more SNPs that
could have been tested for significance. We will integrate
such SNPs in future analyses. Third, we used the g value
cutoff identified by GTEx for eQTL significance or non-
significance. However, it is possible that there are subtle
changes to gene expression from SNPs in the genome
and therefore, we may be unintentionally adding or re-
moving SNPs that subtly act in this manner by using a
strict predefined cutoff value. Fourth, to validate our re-
sults, we were limited to a small set of SNPs reported in
the GWAS Catalog because we focused only on SNPs
specifically found in one population. While we observed
a strong overlap (67%), it would have been better to in-
clude a larger set of SNPs for better power of confirming
our pipeline. Another limitation of our study is that we
may have discovered several different genes that may
represent only one unique signal because we used SNPs
in LD for our analysis. For example, if we found five
genes that were shared by all subtypes, but these genes
were clustered in one genomic location, these fives genes
may represent only a single unique signal. To account
for this potential bias, we separated the genes into
unique signals to give a better understanding of the
overlap of the subtypes while still including all discov-
ered germline-regulated genes.

Conclusions

In summary, we used common genetic variants found in
three lung cancer subtypes to interrogate the similarity
between them at four biological levels (SNP, gene, regu-
latory, and pathway levels). We found very little overlap
between the three subtypes at these levels. At the most
basic level (SNPs), we observed less than 1% overlap be-
tween the subtypes. Similarly, we found only five genes
(from one independent genomic locus) that overlap in
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all three subtypes, representing <1% of the genes we ex-
amined. Three of these five genes (CHRNAS, IDH3A,
and PSMA4) are well-known lung cancer genes. We ob-
served the same trend at the pathway level and found
only two KEGG pathways overlapped the subtypes. At
the regulatory level, we discovered that many of the en-
hancer target genes and eQTL target genes are unique
to each subtype. Not much work has been done compar-
ing all three subtypes at the somatic level, but recent
work interrogating the differences between LUAD and
LUSC concluded similarly that there was little overlap
between these two subtypes at the molecular level in
somatic tumor tissue [18]. Overall, this study provides
some important insight into the genetic architecture of
three subtypes of lung cancer.
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