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Local adaptation in European populations
affected the genetics of psychiatric
disorders and behavioral traits
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Abstract

Background: Recent studies have used genome-wide data to investigate evolutionary mechanisms related to
behavioral phenotypes, identifying widespread signals of positive selection. Here, we conducted a genome-wide
investigation to study whether the molecular mechanisms involved in these traits were affected by local adaptation.

Methods: We performed a polygenic risk score analysis in a sample of 2455 individuals from 23 European populations
with respect to variables related to geo-climate diversity, pathogen diversity, and language phonological complexity.
The analysis was adjusted for the genetic diversity of European populations to ensure that the differences detected
would reflect differences in environmental exposures.

Results: The top finding was related to the association between winter minimum temperature and schizophrenia.
Additional significant geo-climate results were also observed with respect to bipolar disorder (sunny daylight),
depressive symptoms (precipitation rate), major depressive disorder (precipitation rate), and subjective well-being (relative
humidity). Beyond geo-climate variables, we also observed findings related to pathogen diversity and language
phonological complexity: openness to experience was associated with protozoan diversity; conscientiousness and
extraversion were associated with language consonants.

Conclusions: We report that common variation associated with psychiatric disorders and behavioral traits was affected
by processes related to local adaptation in European populations.
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Background
Recent studies have used genome-wide data to investigate
evolutionary mechanisms related to behavioral pheno-
types, identifying widespread signals of positive selection
(i.e., variants with beneficial effects on individual fitness
increase in population frequency) in the predisposition to
psychiatric disorder and behavioral traits [1–3]. Brain-
related phenotypes have undergone polygenic adaptation
(adaptation that occurs by simultaneous selection on
variants at many loci) during different phases of human
evolutionary history [4] including to the present day [5].
This is consistent with several other investigations that
found evidence of polygenic adaptation for predisposition to

a wide range of complex traits [6–9]. These genome-wide
signals of positive selection are the signatures of adaptation
processes that occurred in response to environmental pres-
sures. Single-variant analyses identified loci affected by local
adaption (i.e., adaptation in response to selective pressure re-
lated to the local environment) to diet, pathogens, and geo-
climate variables [10, 11]. Polygenic mechanisms have also
been observed in response to local environments. The ob-
served difference in height between northern and southern
Europeans appears to be related to a highly polygenic mech-
anism [12]. Polygenic risk scores (PRSs) for height, skin pig-
mentation, body mass index, type 2 diabetes, Crohn’s
disease, and ulcerative colitis were tested with respect to
geo-climate variables in worldwide populations, with the dis-
covery of putative signals of local adaptation [9]. However, a
recent analysis demonstrated that PRSs derived from
genome-wide association studies (GWASs) on populations
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of European descent generate biased results when applied to
non-European samples [13]. PRS analysis should thus be
limited to training and target datasets with the same ancestry
backgrounds; we were therefore able to investigate local
adaption only in European populations. To investigate
whether molecular mechanisms at the basis of psychiatric/
behavioral traits (Table 1) were affected by local-adaptation
processes that occurred during the colonization of Europe
[14], we conducted a PRS analysis based on GWASs of psy-
chiatric disorders and behavioral traits (Table 1) from the
Psychiatric Genomics Consortium [15–17], the Genetics of
Personality Consortium [18–20], and the Social Science
Genetic Association Consortium [21] in a sample of 2455 in-
dividuals from 23 European populations. Then, we con-
ducted a Gene Ontology (GO) enrichment analysis based on
PRS results to provide information regarding the specific
molecular mechanisms involved in the polygenic signatures
of local adaptation observed.

Methods
Study population
The cohort used in the present study was previously in-
vestigated to analyze the genetic structure of European
populations [22]. The sample included individuals from 23
different sampling sites located in one of 20 different
European countries (Additional file 1: Table S1). The
GeneChip Human Mapping 500K Array Set (Affymetrix)
was used to genotype 500,568 single nucleotide polymor-
phisms (SNPs) according to the instructions provided by
the manufacturer as reported previously [22]. The analysis
of identity-by-state values permitted us to exclude the
possibility of the presence of related individuals (i.e., indi-
viduals who were genetically more similar than expected
to another member of the same subpopulation) and
outliers (i.e., individuals who were far less genetically
similar than expected to the rest of the subpopulation).
We used this genotype information for imputation to

maximize a consistent SNP panel between this cohort and
the GWAS summary statistics used for the PRS analysis.
Pre-imputation quality control criteria were minor allele
frequency ≥ 1%, missingness per marker ≤ 5%, missingness
per individual ≤ 5%, and Hardy-Weinberg equilibrium p >
10−4. We used SHAPEIT [23] for pre-phasing, IMPUTE2
[24] for imputation, and the 1000 Genomes Project refer-
ence panel [25]. We retained imputed SNPs with high
imputation quality (genotype call probability ≥ 0.8), minor
allele frequency ≥ 1%, missingness per marker ≤ 5%, and
missingness per individual ≤ 5%. After applying the post-
imputation quality control criteria, we retained informa-
tion regarding 3,416,230 variants in a final sample of 2455
individuals. Principal component analysis of the final
sample was conducted using PLINK 1.9 [26] after linkage
disequilibrium (LD) pruning (R2 < 0.2) of the genotyped
data. Principal components derived from genetic informa-
tion were included in the regression model to adjust the
analysis for population genetic background, which reflects
the demographic history of European populations [27]. In
line with previous PRS analyses [28–32], the initial
analysis was conducted including the top 10 principal
components. To verify whether residual population
stratification affected our analysis, the top 20 principal
components were included as covariates to confirm the
reliability of the significant findings.

Local-adaptation variables
We extracted information regarding local adaptation by
considering the location of the 23 sampling sites used to
recruit the cohort investigated. Specifically, we considered
three different types of variables: geo-climate (geograph-
ical coordinates, temperature, daylight, precipitation rate,
and humidity), pathogen diversity (bacteria, protozoa, and
virus), and language phonological complexity (consonants,
segments, and vowels) (Table 2). Geo-climate information
was extracted from ClimaTemps (available at http://

Table 1 GWASs of psychiatric disorders and behavioral traits used to generate polygenic risk scores

Consortium Trait Abbreviation Sample size Publication year Link

Psychiatric Genomics
Consortium

Autism spectrum disorder ASD 5305 cases 2015 https://www.med.unc.edu/pgc/results-and-
downloads

Bipolar disorder BD 7481 cases 2011

Major depressive disorder MDD 9240 cases 2013

Schizophrenia SCZ 36,989 cases 2014

Genetics of Personality
Consortium

Neuroticism gpcNEURO 63,661 2015 http://www.tweelingenregister.org/GPC/

Extraversion EXTRA 63,030 2016

Openness to experience OPEN 17,375 2012

Agreeableness AGREE 17,375 2012

Conscientiousness CONS 17,375 2012

Social Science Genetic
Association Consortium

Subjective well-being SWB 298,420 2016 https://www.thessgac.org/data

Depressive symptoms DS 161,460 2016

Neuroticism ssgacNEURO 170,911 2016
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www.climatemps.com/), which contains more than 12.5
million climate comparison reports providing information
for more than 4000 locations worldwide. Data regarding
pathogen diversity were extracted from the GIDEON (Glo-
bal Infectious Diseases and Epidemiology Online Network)
database (available at https://www.gideononline.com/). This
includes information regarding 350 infectious diseases and
1700 microbial taxa in 231 countries. Information about
the phonological complexity of European languages was ex-
tracted from PHOIBLE Online (available at http://phoible.-
org/), which is a repository of cross-linguistic phonological
inventory data including 2155 inventories that contain 2160
segment types found in 1672 distinct languages [33]. Corre-
lations among local-adaptation variables were estimated
using Spearman’s correlation test.

Polygenic risk score analysis
We conducted a PRS analysis using PRSice software [34]
(available at http://prsice.info/). For polygenic profile scor-
ing, we used summary statistics generated from multiple
large-scale GWASs of psychiatric disorders and behavioral
traits (Table 1) conducted by the Psychiatric Genomics
Consortium [15–17], the Genetics of Personality Consor-
tium [18–20], and the Social Science Genetic Association
Consortium [21]. None of the GWASs used in the present
study showed evidence of inflation due to population
stratification or other possible confounders. Since none of
the samples included in our target dataset was used in the
GWAS considered to generate the PRS, no systematic
overlap is expected between training and target datasets.

We considered multiple association p-value thresholds
(PT = 5 × 10−8, 10−7, 10−6, 10−5, 10−4, 0.001, 0.01, 0.05,
0.1, 0.3, 0.5, 1) for SNP inclusion and calculated multiple
PRSs for each trait investigated. The PRSs were calculated
after using p-value-informed clumping with an LD cutoff
of R2 = 0.3 within a 500-kb window, and excluding the
major histocompatibility complex region of the genome
because of its complex LD structure. The PRSs that were
generated were fitted in regression models with adjust-
ments for the top 10 ancestry principal components.
Before being entered into the analysis, local-adaptation
variables were normalized using appropriate Box-Cox
power transformations to avoid biases due to the distribu-
tion of the phenotypes tested. We applied a false discovery
rate (FDR) correction (q < 0.05) to correct for the multiple
testing for the psychiatric/behavioral PRS × local-
adaptation variables tested [35]. To verify that no
systematic bias inflated our analyses, we also conducted a
permutation analysis. Specifically, considering the signifi-
cant datasets, we performed 10,000 permutations of the
PRSs with respect to their associated variables and verified
whether the observed differences were significantly differ-
ent from the null distribution of the permuted results. To
estimate the genetic correlation among psychiatric disor-
ders and behavioral traits, we considered the information
provided by LD Hub v1.3.1 [36] (available at http://
ldsc.broadinstitute.org/ldhub/) and used the LD score re-
gression method [37] for the missing pair-wise compari-
sons. Heritability statistics of the GWAS considered are
reported in Additional file 2: Table S2.

Table 2 Variables related to local adaptation tested

Category Variable Abbreviation Source Link

Geo-climate Latitude LAT ClimaTemps http://www.climatemps.com/

Longitude LON

Altitude ALT

Summer temperature
(Max-Min)

SumMaxTemp
SumMinTemp

Winter temperature (Max-Min) WinMaxTemp
WinMinTemp

Precipitation rate (Max-Min) MaxPrecipRate
MinPrecipRate

Relative humidity (Max-Min) MaxRelHumidity
MinRelHumidity

Sunny daylight (Max-Min) MaxSunnyDaylight
MinSunnyDaylight

Pathogen diversity Virus VirusDiversity GIDEON https://www.gideononline.com/

Bacteria BacteriaDiversity

Protozoa ProtozoaDiversity

Language phonological complexity Segments Segments PHOIBLE http://phoible.org/

Vowels Vowels

Consonants Consonants
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Gene Ontology enrichment analysis
To provide information regarding the molecular mecha-
nisms involved in the signatures of local adaptation in
psychiatric and behavioral traits, a GO enrichment ana-
lysis was conducted based on the PRS results; the vari-
ants included in the significant PRS and with nominally
significant concordant direction with PRS direction were
considered in the enrichment analysis. A description of
the GO analysis based on PRS results was reported in
previous studies [28–30]. Variants were then entered in
the enrichment analysis performed using eSNPO [38].
This method permits one to conduct enrichment ana-
lysis based on information related to expression quanti-
tative trait loci (eQTLs) rather than physical positions of
SNPs and genes, integrating the eQTL data and GO,
constructing associations between SNPs and GO terms,
and then performing functional enrichment analysis. An
FDR correction was applied to the enrichment results
for multiple testing (q < 0.05). To validate the results
further, we conducted a permutation analysis based on
the variants obtained from the major depressive disorder
(MDD)-altitude result (the one that gave the highest
number of significant GO enrichments). Based on this
SNP set, we generated 100 SNP sets using SNPsnap
(available at https://data.broadinstitute.org/mpg/snpsnap
/match_snps.html) [39] and the following matching
criteria: minor allele frequency ± 5%, gene density ±
50%, distance to nearest gene ± 50%, LD independence
(R2 = 0.3) ± 50%. The SNP sets generated were entered
in the eSNPO analysis and the distribution of their re-
sults compared with those obtained from the SNP sets
from the PRS analyses.

Natural and Orthogonal InterAction (NOIA) model
The NOIA model [40] was applied to validate the results
related to single-locus and oligogenic signals identified
by our PRS analysis. NOIA is able to estimate the inter-
action between genes (or epistasis), which is a key
process in determining the effect of genomic variants in
complex diseases and the adaptation and evolution of
natural populations [41]. We performed NOIA analysis
testing the genotypes of the variants included in the sig-
nificant PRSs with respect to local-adaptation variables
identified. The NOIA analysis was conducted using the
R package noia (available at https://cran.r-project.org/
web/packages/noia/index.html).

Data sources
Data supporting the findings of this study are available
within this article and its additional files. GWAS sum-
mary association data used to calculate PRSs in this
study were obtained from the Psychiatric Genomics
Consortium (available at https://www.med.unc.edu/pgc/
results-and-downloads/), the Genetics of Personality

Consortium (available at http://www.tweelingenregister.-
org/GPC/), and the Social Science Genetic Association
Consortium (available at https://www.thessgac.org/data).

Results
As expected, the set of variables related to the local
environment were strongly intercorrelated (Fig. 1;
Additional file 3: Table S3). Similarly, psychiatric disor-
ders and behavioral traits showed strong genetic correla-
tions (Fig. 2; Additional file 4: Table S4). We considered
multiple GWAS significance thresholds to test PRSs
[34], investigating both oligogenic and polygenic mecha-
nisms (i.e., local-adaptation processes affecting few and
many loci, respectively). To adjust our analysis for
population genetic background, which reflects the demo-
graphic history of European populations [27], we included
the top 10 principal components reflecting population an-
cestry variation as covariates in the regression models.
This approach was considered on the basis of the experi-
ence of many GWAS and PRS analyses conducted on
samples containing populations of different European de-
scents. The use of 10 principal components is generally
considered a standard approach to adjust within ancestry
population stratification. However, to demonstrate that
our findings are not due to the genetic relationships
among European populations, we recalculated the signifi-
cant PRS results (Table 3) considering 20 principal
components in the regression models, and then tested for
differences with respect to the original model: we did not
observe significant differences between the two models
(Additional file 5: Table S5).
Considering the results that survived FDR multiple

testing correction (q < 0.05; Additional file 6: Table S6),
we observed 13 variables related to local adaptation: 11
geo-climate variables, one related to pathogen diversity,
and one related to language phonological complexity.
Table 3 reports the top associations that survived FDR
multiple testing correction for each of these 13 local-
adaptation variables. Figure 3 reports full visualization
of the results for all comparisons (psychiatric/behav-
ioral PRS × local-adaptation variables). We confirmed
the reliability of the significant results empirically by
generating a null distribution from 10,000 permuta-
tions of the original datasets and comparing the
permuted results with the observed ones (Additional
file 7: Figure S1). Since polygenic signatures of local
adaptation have previously been reported in height
genetics of European populations [12], we used this
trait as a positive control for our approach. With this
analysis, we replicated the presence of adaptation sig-
nals in the genetics of this trait (p < 0.05; Additional
file 8: Table S7).
The strongest result was observed between the schizo-

phrenia (SCZ) PRS and winter minimum temperature
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(WinMinTemp): higher WinMinTemp correlates with
increased SCZ genetic risk (SNP N = 104,106, Nagelk-
erke’s R2 = 0.40%, Z = 3.84, p = 1.28 × 10−4, q = 0.029).
Higher WinMinTemp was also associated with increased
MDD PRS (SNP N = 8160, Nagelkerke’s R2 = 0.30%, Z =
3.34, p = 8.46 × 10−4, q = 0.029) and increased extraver-
sion PRS (SNP N = 7, Nagelkerke’s R2 = 0.26%, Z = 3.14,
p = 1.75 × 10−3, q = 0.037). While the MDD result is
concordant with the SCZ-MDD genetic correlation, the

extraversion finding seems to be independent of the
SCZ and MDD results. The SCZ PRS was also associ-
ated with winter maximum temperature (WinMaxTemp)
and longitude; the three environmental variables are
highly correlated, and the results are driven by the same
mechanism related to winter temperature. Covarying
these three local-adaptation variables, WinMaxTemp ap-
pears to be the driving signal among the correlated re-
sults (p < 0.05; Additional file 9: Table S8).

Fig. 1 Correlations (Spearman’s rho) among variables related to local adaptation (left). Abbreviations are reported in Table 1 and Table 2.
Additional file 3: Table S3 reports details of the correlation analysis. Asterisks (*) indicate correlations surviving Bonferroni multiple testing
correction. Yellow, purple, and cyan colors indicate variables related to geo-climate, pathogen diversity, and language phonological complexity,
respectively. Hierarchical clustering based on Spearman’s rho was generated considering absolute correlation distances
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To understand better the molecular processes involved
in this association, we conducted a GO enrichment ana-
lysis based on the PRS result. We observed 16 GOs that
survived FDR multiple testing correction (q < 0.05; Add-
itional file 10: Table S9). Among the other significant
PRS associations, we observed significant GO enrich-
ments (N = 54; Additional file 11: Table S10) in the
negative association between altitude and MDD PRS
(SNP N = 97,481, Nagelkerke’s R2 = 0.31%, Z = −3.13, p

= 1.79 × 10−3, q = 0.037) only. Five GO enrichments are
significant in both SCZ and MDD analyses
(GO:0008285~negative regulation of cell proliferation,
GO:0017147~Wnt-protein binding, GO:2000041~nega-
tive regulation of planar cell polarity pathway involved
in axis elongation, GO:0071481~cellular response to X-
ray, and GO:0090244~Wnt signaling pathway involved
in somitogenesis); two of these are related to the Wnt
signaling pathway. To confirm empirically that these

Fig. 2 Genetic correlation (linkage disequilibrium score regression rg) among psychiatric disorders and behavioral traits (right). Additional file 4:
Table S4 reports details of the correlation analysis. Abbreviations are reported in Table 1 and Table 2. Asterisks (*) indicate correlations surviving
Bonferroni multiple testing correction. Green and orange colors indicate psychiatric disorders and behavioral traits, respectively. Hierarchical
clustering based on genetic correlation was generated considering absolute correlation distances
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enrichment results are not false positives, we conducted a
permutation analysis: we generated 100 random sets of
LD-independent variants derived from the SNPs included
in the MDD analysis (which was the one that gave the
highest number of GO enrichments), considering minor
allele frequency, gene density, distance to nearest gene,
and LD independence as matching criteria. There was no
permuted set with more than two significant GO enrich-
ments (i.e., the empirical probability to observe a random
set with more than two significant GO enrichments is p <
0.01; Additional file 12: Figure S2); the overall probability
to observe a significant GO enrichment from a permuted
set is p = 6.69*10−5 (Additional file 13: Figure S3); and
none of the four GOs shared by SCZ and MDD results re-
sulted in significance in the permuted sets (q > 0.18).
Among the psychiatric disorders investigated, MDD and

depressive symptoms (DS) showed a very strong genetic
correlation (rg = 1, p = 1.77 × 10−36). In accordance with
this genetic overlap, we observed a convergence in the
local-adaptation findings that survived multiple testing cor-
rection. The MDD and DS PRS showed concordant nega-
tive associations with precipitation rate (PR): maximum PR
(SNP N = 39,390, Nagelkerke’s R2 = 0.31%, Z = −3.21, p =
1.33 × 10−3, q = 0.034) and minimum PR (SNP N = 12,832,
Nagelkerke’s R2 = 0.27%, Z = −3.29, p = 1.03 × 10−3, q =
0.029), respectively. The same DS PRS also nominally repli-
cated the negative association with maximum PR (SNP N =
12,832, Nagelkerke’s R2 = 0.16%, Z = −2.28, p = 0.022).
An additional polygenic signature of local adaptation

was observed between bipolar disorder (BD) and
maximum sunny daylight, where increased daylight is
associated with reduced BD genetic risk (SNP N =
2833, Nagelkerke’s R2 = 0.09%, Z = −2.93, p = 3.42 ×
10−3, q = 0.043).

The results discussed above are related to highly poly-
genic local-adaptation mechanisms (i.e., thousands of
variants involved). However, we also observed some in-
stances of local adaptation involving few loci. Among
them, the strongest signal was the positive association
between protozoa diversity and openness-to-experience
(OPEN) score including the top two associated variants
(rs1477268 and rs10932966; SNP N = 2, Nagelkerke’s R2

= 0.18%, Z = 3.56, p = 3.82 × 10−4, q = 0.029). An OPEN
score including only rs1477268 showed a positive associ-
ation with summer minimum temperature (SNP N = 1,
Nagelkerke’s R2 = 0.18%, Z = 2.7, p = 3.02 × 10−3, q =
0.043). Another single-locus result was observed be-
tween rs6992714, which is associated with DS risk, and
latitude (SNP N = 1, Nagelkerke’s R2 = 0.09%, Z = 3.47,
p = 5.38 × 10−4, q = 0.029) and summer maximum
temperature (SNP N = 1, Nagelkerke’s R2 = 0.12%, Z =
−3.40, p = 6.91 × 10−4, q = 0.029). According to GTEx
data [42], rs6992714 is associated with GGH (gamma-
glutamyl hydrolase) gene expression (beta = −0.13, p =
3.3 × 10−5; Additional file 14: Figure S4). NOIA analysis
confirmed the presence of additive effects in the
models based on the single-locus and oligogenic
PRS with respect to the local-adaptation variables
identified as significant (p < 0.05; Additional file 15:
Table S11).
Finally, we observed a genetic association with respect

to language phonological complexity: the number of
consonants in European languages is positively associ-
ated with genome-wide PRS of conscientiousness (SNP
N = 60,620, Nagelkerke’s R2 = 0.28%, Z = −2.97, p = 2.98
× 10−3, q = 0.043) and extraversion (SNP N = 3261,
Nagelkerke’s R2 = 0.26%, Z = 2.87, p = 4.13 × 10−3, q =
0.049).

Table 3 Top significant associations of psychiatric and behavioral polygenic risk scores (PRSs) with the 13 local-adaptation variables
identified. Abbreviations are reported in Table 1 and Table 2

Local-adaptation variable PRS PT SNP N R2 Z score p value q value

MaxSunnyDaylight BD 0.01 2833 0.09% −2.93 3.42 × 10−3 0.043

Consonants CONS 0.5 60,620 0.28% −2.97 2.98 × 10−3 0.043

Latitude DS 10−7 1 0.09% 3.47 5.38 × 10−4 0.029

SumMaxTemp 0.12% −3.40 6.91 × 10−4 0.029

MinPrecipRate 0.05 12,832 0.27% −3.29 1.03 × 10−3 0.029

MaxPrecipRate MDD 0.3 39,390 0.31% −3.21 1.33 × 10−3 0.034

Altitude 1 97,481 0.31% −3.13 1.79 × 10−3 0.037

ProtozoaDiversity OPEN 10−6 2 0.18% 3.56 3.82 × 10−4 0.029

SumMinTemp 5 × 10−8 1 0.18% 2.7 3.02 × 10−3 0.043

WinMinTemp SCZ 0.5 104,106 0.40% 3.84 1.28 × 10−4 0.029

Longitude 0.13% −3.29 1.01 × 10−3 0.029

WinMaxTemp 0.12% 2.96 3.09 × 10−3 0.043

MinRelHumidity SWB 10−6 4 0.21% −2.95 3.22 × 10−3 0.043
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Discussion
There are many datasets available with information regard-
ing positive selection signatures in reference European pop-
ulations [43, 44]. We previously used these available data,
observing a significant enrichment for positive selection in
the genetics of psychiatric disorders [1]. Comparable
results have been observed by independent groups
using different approaches [2, 3]. Our current analysis
provides novel data with respect to local-adaptation
differences among European populations. Indeed,

considering positive selection signals in a reference
European population, the signatures of positive selec-
tion are those shared by European populations and
those specific for that particular population. With
local-adaptation analysis, we are investigating the dif-
ferences in selective pressures among a set of distinct
European populations. Thus, the signals detected in
the reference population may not overlap with those
related to the local-adaptation mechanisms. To be
able to use tests for positive selection (e.g., haplotype-

Fig. 3 PRS results (Z scores) for psychiatric/behavioral traits × local-adaptation variables. Positive and negative associations are indicated in blue
and red, respectively (bright shade q < 0.05, light shade p < 0.05). White cells indicate associations with p > 0.05. Color schemes for local-
adaptation variables and psychiatric/behavioral traits are reported in the legends of Fig. 1 and Fig. 2, respectively. Abbreviations are reported in
Table 1 and Table 2. Additional file 6: Table S6 reports the summary statistics of the PRS analysis
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based methods), we would need a larger sample in
each of the populations considered.
Our PRS analysis identified 20 associations that sur-

vived FDR multiple testing correction (Additional file 5:
Table S5). The specific characteristics of the sample in-
vestigated may generate false positive results due to
several factors (e.g., different sample sizes at the different
populations and non-random spatial sampling). How-
ever, our permutation analysis of the significant PRS re-
sults (i.e., we permuted the genetic scores with respect
to the environmental variables) indicated that there is
little possibility of bias due to the composition of the
sample investigated.
Our findings appear to indicate that psychiatric and be-

havioral traits are not necessarily the outcomes selected
by evolutionary pressures; some of the molecular path-
ways involved in their predisposition were affected by
local adaptation. We observed some convergence between
our local-adaptation findings and known epidemiological
evidence. However, our findings should be related to
evolutionary forces that acted on a population level, while
epidemiological evidence should be due to mechanisms
that acted on an individual level. We hypothesize that evo-
lutionary forces shaped the genetic diversity of European
populations, while individual-level changes should be due
to post-genetic changes (e.g., epigenetic modifications) or
the interaction of social-psychological risk factors on loci
affected by local adaptation.
The strongest result observed between the SCZ PRS

and WinMinTemp is in line with previous epidemiological
studies. Season of birth is a widely recognized SCZ risk
factor, where there is significantly increased risk associated
with winter birth [45]. Our current finding may justify a
molecular hypothesis: loci associated with increased SCZ
risk may have undergone local adaptation related to win-
ter conditions. The same environmental pressure may be
responsible for the winter-birth risk through epigenetic
mechanisms in line with the convergence between re-
gional DNA methylation changes and signals of local
adaptation reported for other loci [46]. Our GO enrich-
ment analysis highlighted Wnt signaling as one of the mo-
lecular processes affected by this local-adaptation
mechanism. This biological pathway is well studied in re-
lation to both psychiatric disorders and human evolution;
synaptic Wnt signaling is implicated as a possible con-
tributor to several major psychiatric disorders due its in-
volvement in neural differentiation processes [47].
Signatures of positive selection were reported in relation
to the Wnt signaling pathway in multiple species [48].
Our present findings indicate that risk loci for psychiatric
disorders involved in this molecular pathway could have
been under local adaptation in European populations.
Another result in line with a known epidemiological as-

sociation is the negative association between maximum

sunny daylight period and BD (bipolar disorder) PRS. Sea-
sonality of BD symptoms is common and, in particular,
light exposure during early life may have important conse-
quences for those who are susceptible to bipolar disorder
[49]. More generally, lack of daylight is implicated in
mood change in seasonal affective disorder [50]. Our find-
ing indicates that daylight may have acted as a local select-
ive pressure with respect to molecular pathways involved
in BD pathogenesis.
As mentioned above, we also observed some instances

of local adaptation involving oligogenic and single-locus
signals. Although top results from GWASs of psychiatric
and behavioral traits do not explain a large percentage
of the variance, loci surviving stringent significance cut-
offs usually show larger effect sizes, suggesting that they
may be involved in key mechanisms involved in the
pathogenesis of the traits investigated. Among the oligo-
genic signals, the strongest finding is the association of
OPEN PRS, including the top two associated variants
(rs1477268 and rs10932966), with protozoa diversity and
summer minimum temperature. These two results
appear concordant with the strong positive correlation
between summer minimum temperature and protozoa
diversity (Spearman’s rho = 0.75, p = 4.51 × 10−5), which
is consistent with the relationship between temperature
and pathogen diversity [51]. rs1477268 is located near
RAS1, which was implicated by previous studies as being
involved in pathogen response [52]. From GTEx data [42],
rs10932966 is significantly associated with RP11-16P6.1
gene expression in multiple human tissues (Additional file
16: Table S12), but no information regarding its function
is available. We hypothesize that these loci have been
under local selective adaption in response to pathogen-
related selective pressure. This is in line with the consist-
ent literature regarding the role of selective pressures
induced by pathogen diversity in shaping human genome
diversity [6].
Another single-locus result was observed between

rs6992714, which is associated with DS risk, with lati-
tude and summer maximum temperature. This genetic
variant is associated with GGH gene expression, which
was previously implicated as involved in the pathogen-
esis of tropical sprue, a malabsorption syndrome com-
monly found in tropical regions [53]. According to our
data, GGH may have been under local adaptation in
relation to selective pressures induced by summer tem-
peratures. The associations discussed appear to be re-
lated to the effect of selective pressures induced by geo-
climate and pathogen-related variables on the human
genome.
The relationship between genetic and language diver-

sities has been investigated from several perspectives
[54], and genetic associations with language phono-
logical complexity require careful consideration. Our
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data indicate that there is at least a partial relationship
between genetic variation and language diversity that is
not driven by their shared association with human
demographic history (which should be reflected by the
genetic diversity accounted for by the adjustment for
principal components derived from genetic data). This
supports two possible converse scenarios: (1) genetic
variation may have contributed to shape European
language diversity; (2) European language diversity may
have been a local selective pressure that shaped the
genetics of behavioral traits. Although it is not possible
to establish causality or a mechanism based on our
current data, phonological working memory appears to
be associated with extraversion and conscientiousness
[55], in agreement with the relationship highlighted by
our results.

Conclusions
We report the first evidence regarding the role of local
adaptation in shaping the genetic architecture of psychi-
atric disorders and behavioral traits. We hypothesize that
most of our findings are due to the effects of local
selective pressure on molecular pathways involved in the
predisposition to these complex traits. Due to the
presence of pervasive pleiotropy among them, some of
the “evolutionary selected” pathways (e.g., the Wnt sig-
naling pathway identified in the present study) are
shared by multiple traits. Although our analysis was ad-
justed for human demographic history through principal
components, we cannot exclude that genes involved in
behavioral traits may have had a role in population mi-
grations. Further analyses will be needed to explore this
hypothesis. The main limitation of our current investiga-
tion is the impossibility of investigating local-adaptation
mechanisms in non-European populations due to the
general lack of large GWASs in individuals of African,
Middle Eastern, Central Asian, East Asian, Native
American, and Oceanic descents. Additionally, larger
target cohorts with more individuals per population and
more populations may permit one to detect further sig-
nals of local adaptation in the genetics of psychiatric and
behavioral traits.
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