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Abstract

Background: Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to
understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with
single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification,
cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of
previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of
sequencing depth and sampling effort towards single-cell variant detection.

Methods: Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to
25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a
total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations,
genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent
tools specifically designed for single-cell data.

Results: Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single
tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal
genotypes, or estimation of single-cell phylogenies.

Conclusions: We suggest that sequencing multiple individual tumor cells at a modest depth represents an
effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.

Keywords: Single-cell sequencing, Intratumor genetic heterogeneity, Variant calling, Clonal inference, Tumor
phylogenies

Background
Recent advances in next-generation sequencing (NGS)
technologies revealed that the large majority of cancer
genomes are heterogeneous despite their monoclonal
origin, with the continuous expansion of the tumor mass
contributing to the accumulation of somatic mutations
within malignant cells, hence promoting the prolifera-
tion of distinct genetic lineages (i.e., clones) through
time [1]. While quantifying this intratumor heterogen-
eity (ITH) remains a difficult task, as standard methods
in cancer genomics generally rely on population-level
analysis from bulk experiments, single-cell sequencing
(SC-Seq) approaches are now widely viewed as a promis-
ing alternative to explore tumor evolution [2]. Indeed, a

collection of recent studies have successfully applied SC-
Seq to determine the mutational load in individual tu-
mors [3], estimate the frequency of subclones [4], infer
evolutionary relationships [5], or explore the role of ITH
in metastatic dissemination [6].
Nevertheless, several technical challenges surrounding

current SC-Seq methodologies greatly limit our ability to
obtain reliable genomic information from single cells.
For instance, the multiple rounds of whole genome amp-
lification (WGA) usually required prior to SC-Seq are
known to introduce a high number of sequence artifacts
that can be confounded with genuine biological variation
(see [7] for a detailed review). Other technical errors,
such as insufficient physical coverage, uneven genome
amplification, and allelic dropout, may also generate
substantial artificial variability in cancer genomes, com-
promising the ability to detect real somatic heterogeneity
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from SC-Seq data [8]. As a consequence, alternative
strategies are needed in order to eliminate the noise
generated during WGA while effectively allowing the
quantification of ITH from single cells.
Zhang et al. [9] started addressing some of these issues

and demonstrated the efficiency of a census-based strat-
egy for accurate variant detection in single cells. By
using multiple cells and trusting only variants detected
in at least two single-cell libraries, they detected up to
80% of germline SNPs in the human chromosome 5 with
59 cells sequenced at 0.3× or 22 cells at 1×. Their results
suggest that for detecting clonal and subclonal variants
in single cells, and given a fixed sequencing effort, it is
best to sequence multiple cells (in their case a minimum
of 20) at a modest depth (~ 1×).
Here, we further explore the sensitivity of SC-seq to se-

quencing depth using five publicly available single-cell
whole-genome (scWGS) and whole-exome (scWXS) cancer
datasets. We expand not only on the scale of the datasets,
but also on the scope of the inferences, including copy-
number variant detection, clonal inference, and phylogen-
etic estimation. Altogether, our results suggest that even
though sequencing depth does indeed contribute to a better
refinement of somatic variant characterization from tumor
single cells, sample size plays a more determinant role for a
reliable assessment of the general patterns of somatic vari-
ation in cancer genomes. For relatively large sample sizes (e.
g., ≧ 25 samples), sequencing single cells at modest depths
(i.e., 5×) enables a similar description of somatic variation,
clonal composition, and evolutionary history compared to
sequencing depths one order of magnitude higher.

Methods
Five publicly available sequencing datasets from four
single-cell studies were retrieved from the Sequence
Read Archive (SRA) in FASTQ format, including four
single-cell genomes from a breast cancer patient [5]
(we will call this dataset “W4” to indicate the authors
and the number of cells), eight single-cell exomes
from circulating tumor cells from one lung adenocar-
cinoma patient [10] (“N8” dataset), 25 single-cell
exomes derived from a kidney tumor patient [11]
(“X25” dataset), 55 single-cell exomes from a breast
cancer patient [5] (“W55” dataset), and 65 single-cell
exomes from a single JAK-2 negative neoplasm myelo-
proliferative patient [12] (“H65” dataset). Normal and
tumor bulk WGS/WXS data from the same patients
were also retrieved. Normal single cells were only
available for the three largest datasets. A list of the
individual samples and corresponding accession codes
is available in Additional file 1: Table S1.
All the analyses enumerated below are described in

detail in the accompanying Additional file 1: Note, in-
cluding command lines. Both single-cell and bulk reads

were aligned to human reference GRCh37 using the
MEM algorithm in the BWA software [13]. Following a
standardized best-practices pipeline [14], mapped reads
from all datasets were independently processed by filtering
reads displaying low mapping-quality, performing local re-
alignment around indels, and removing PCR duplicates.
Raw single-nucleotide variant (SNV) calls for the bulk
datasets were obtained using the paired-sample variant-
calling approach implemented in the VarDict software
[15]. For the N8 dataset, since samples from both primary
tumor and metastasis were available, VarDict was run
twice, independently for both samples, and the resulting
SNVs subsequently merged using the CombineVariants
tool from the Genome Analysis Toolkit (GATK) [16].
Low-quality SNV calls were removed using the SelectVar-
iants tool from GATK. The remaining SNVs were further
subdivided into two distinct categories: “germline” SNVs if
present in both tumor and normal bulk samples, and
“somatic” SNVs if found solely in the tumor bulk
samples. Small indels and other complex structural
rearrangements were ignored in order to generate a
final list of “gold-standard” bulk SNVs. All analyses
presented here were based on this set of variants.
The single-cell BAM files were independently down-

scaled to 25, 10, 5, and 1× sequencing depth using Pic-
ard [17]. For each depth level, ten technical replicates
were generated for statistical validation, resulting in a
total of 6280 BAM files. Single-cell SNV calls were ob-
tained from the original and down-sampled single-cell
BAM files using Monovar [18], a variant caller specific-
ally designed for single-cell data, under default settings.
Single-cell variant-calling performance was evaluated by
estimating the proportion of “gold-standard” germline
and somatic bulk SNVs identified in the down-sampled
single-cell datasets (germline and somatic recall, respect-
ively). To further characterize the effect of sequencing
depth on single-cell variant calling, we determined the
fraction of somatic SNVs found in the down-sampled
single-cell replicates that were also identified in the ori-
ginal single-cell datasets (“somatic precision”). In addition,
we repeated the recall analysis focusing only on the som-
atic SNVs already described in the Catalogue Of Somatic
Mutations In Cancer (COSMIC) database [19] and
on the non-synonymous SNVs previously detected
(Additional file 1: Table S2).
Single-cell copy-number variants (CNVs) were identified

with Ginkgo [20] using variable-length bins of around
500 kb. After binning, data for each cell was normalized
and segmented using default parameters. Sensitivity was
evaluated by assessing the recall of the CNVs and segment
breakpoints at the different sequencing depths.
Clonal genotypes were estimated from the somatic

SNVs using the Single-Cell Genotyper (SCG) [21]
(Additional file 1: Note), and their recall across
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sequencing depth was measured with the adjusted
Rand Index [22], a version of the Rand Index cor-
rected for chance [23]. The Rand-Index is a popular
statistical measure of the similarity between two data
clusterings (corresponding here to groups of muta-
tions, or clones). In addition, clonal trees were also
inferred from the somatic SNVs with OncoNEM [24].
Using a similar approach to Ross and Markowetz [24],
the pairwise cell shortest-path distance was used to meas-
ure the consistency in tree reconstruction across the
different sequencing depths. Furthermore, maximum-
likelihood single-cell phylogenies were estimated from the
SNVs using SiFit [25]. In this case, phylogenetic recall
across sequencing depth was measured using the standard
Robinson-Foulds tree distance [26]. In addition, we also
calculated the homoplasy index (HI), a measure of the

amount of homoplasy on a tree, using the phangorn R
package [27]. The HI is one minus the ratio between the
minimum number of changes required and the actual
number observed [28].
Statistical significance for the differences in recall or HI

for the experiments described above were assessed using
Tukey’s HSD test with a family-wise error rate of 0.05 in R.
See the Additional file 1: Note for a detailed description.

Results
Genome coverage
Genome coverage (percentage of the reference genome
covered by ≥ 1 read) for the single-cell down-sampled
datasets decreased non-linearly with lower sequencing
depths, in particular when moving from 5× to 1× (Fig. 1).

Fig. 1 Genome coverage and sequencing depth in the down-sampled single-cell datasets. Each panel depicts a single-cell dataset
(e.g., W4) where the number in the header indicates its original sequencing depth (e.g., 47×). Solid lines represent the average genome
coverage (proportion of bases covered by at least one read, measured per nucleotide) obtained for the different replicates at the different
down-sampled depths. Dots correspond to single cells. Shaded areas indicate the standard deviation from the mean
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Single-nucleotide variants
SNV detection
The observed decline in genome coverage was logically
reflected in the proportion of bulk germline and somatic
SNVs found in the single-cell down-sampled datasets
(“germline and somatic recall”), which decreased signifi-
cantly (Tukey HSD p value < 0.05) at lower sequencing
depths (Fig. 2). The germline recall decrease was much
less pronounced when the number of cells was large
(≥25). Thus, for the X25, W55, and H65 datasets the
germline recall was at 1× as high as 70–80%, and at 5×
close to 100% (Fig. 2a). On the other hand, when only
four or eight cells were available (W4, N8 datasets), the
germline recall at 1× decreased dramatically to 5–13%.
The somatic recall rate was, as expected, much more
modest than for the germline variants (Fig. 2b). The ef-
fect of sequencing depth was significant in practically
every case. Notably, the fraction of SNVs found in the
down-sampled replicates that were also identified in the
original single-cell datasets (“somatic precision”; Fig. 2c)
was much less affected by sequencing depth, with many
non-significant variations between “contiguous” levels of
coverage (i.e., 1–5, 5–10, 10–25×).
Interestingly, a significant amount of somatic variants

was detected exclusively in the single-cells (i.e., absent in
the bulk), particularly at higher sequencing depths
(Additional file 1: Figure S1A). However, the overall vari-
ant quality scores for these calls were much lower than
for those shared with the bulk dataset (Additional file 1:
Figure S1B), suggesting that most might be untrustworthy.

COSMIC and non-synonymous SNV detection
Moreover, the somatic recall specific for COSMIC
somatic variants (Fig. 3a, b) decreased very rapidly

and significantly (p value < 0.05) with lower sequencing
depths for the smallest datasets (W4 and N8), but not as
abruptly for the larger ones, in particular for the X25 and
W55 datasets. For example, for the latter the recall was
already around 70% at only 5×. A statistically significant
trend was also observed for non-synonymous SNVs, which
were very difficult to detect at 5× or 1× only for the smaller
datasets (Fig. 3c, d). For larger sample sizes, the non-
synonymous SNV recall rate was already above 70% at 1×.

SNV genotyping
The recall for single-cell SNV genotyping also dropped
significantly at lower sequencing depth for all datasets
(Fig. 4). Nevertheless, at 5×, 60–90% of the genotypes
identified in the original single-cell datasets were already
recovered without error. Importantly, discordant SNV
genotype calls were relatively infrequent, and differences
between depth levels and datasets were usually due to
different amounts of missing calls.

Copy-number variants
Single-cell copy-number profiles were remarkably con-
sistent across sequencing depth (Fig. 5). Breakpoint de-
tection was slightly better for higher sequencing depths,
but always quite accurate. For example, more than 70%
of the CNV breakpoints inferred from the original data-
set were already detected at 1× in all datasets. Moreover,
CNV genotype calls were not affected by sequencing
depth. Indeed, at 1× the CNV genotype recall was
already > 99% for all datasets.

Clonal genotypes
Clonal inference recall by SCG [21], as measured by the
adjusted Rand Index, was not affected by sequencing depth

a b c

Fig. 2 SNV recall and precision in single-cells. a Barplots illustrating the proportion of bulk germline variants called in the single-cell down-
sampled datasets (germline recall). b Proportion of bulk somatic variants identified in the single-cell down-sampled datasets (somatic recall).
c Proportion of somatic variants called in the down-sampled datasets that were also identified in the original single-cell dataset (somatic
precision). Error bars indicate 95% confidence intervals. Numbers above bars indicate number of calls (for b and c these numbers are the same)
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in the smallest and largest datasets (W4, N8, and H65)
where the number of inferred clones was always one (data
not shown), but decreased to a different extent at lower
depths in the X25 and W55 datasets (Fig. 6a, b). Indeed,
despite the improvements observed at sequencing depths
beyond 5× for the X25 dataset, the distinct clonal clusters
of the W55 dataset were only distinguishable at 25×.

Clonal trees
In contrast to the smallest datasets, the recall of the
clonal trees inferred by OncoNEM [24] (Fig. 7a, b) was
maintained or decreased slightly—not significantly in
multiple occasions—at lower sequencing depths for the

larger datasets (X25, N55, and H65) where the number
of potential phylogenetic solutions is much bigger.

Single-cell phylogenies
SiFit [25] single-cell phylogenies were also very stable at
sequencing depths equal to or larger than 5× (Fig. 8a, b).
In most instances the differences due to depth were not
statistically significant. At 1×, in some cases the inferred
phylogeny displayed healthy cells intermixed with tumor
cells, likely due to poor resolution. Nevertheless, this ef-
fect disappeared at 5× and beyond, when all tumor cells
always clustered together in a single clade, as expected.
Despite the observed stability in tree topology, variants
present in all cells in the original single-cell datasets

Fig. 3 COSMIC and non-synonymous somatic SNV recall in single cells. a Barplots indicate the proportion of bulk COSMIC somatic variants
detected in the single-cell datasets (COSMIC recall). Error bars indicate 95% confidence intervals. Numbers above bars indicate number of variants
called. b Presence–absence profile of COSMIC SNVs across cells for replicate 1 of the W55 dataset. Colors illustrate mutation status: mutated allele,
green; reference allele, grey; missing data, white. c Barplots indicate the proportion of bulk non-synonymous somatic variants detected in the
single-cell datasets (non-synonymous recall). d Presence–absence profile of non-synonymous SNVs across cells for replicate 1 of the W55 dataset.
Colors illustrate mutation status: mutated allele, green; reference allele, grey; missing data, white
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increasingly became subclonal at lower depths (Additional
file 1: Figure S2). The amount of homoplasy was, however,
generally constant across sequencing depths with the ex-
ception of 1×, where for the larger datasets (X25, W55,
H65) there was a significant decrease of the HI scores
(Additional file 1: Figure S3).

Discussion
In this study we aimed to characterize the impact of se-
quencing depth in single-cell cancer genomics studies.
Undeniably, here we have used five datasets with specific
characteristics like number of mutations, number of
clones, tissue of origin, genomic target, sequencing
depth, or amplification bias. In consequence, although
some general patterns seem to be more or less clear, care
must be taken in generalizing our findings as particular
trends may vary for other cancer datasets.
With this caveat in mind, our downsampling experi-

ments suggest that, overall, larger sequencing depths for
small numbers of cells (eight or less) might lead to
relevant improvements. In contrast, for relatively large
datasets (25 or more cells), our results indicate that se-
quencing single cells at moderate depths (i.e., 5×) should
represent a reasonable approach to characterize the gen-
omic diversity and evolution of tumors, including the
identification of putative driver alterations. This is in line
with the results of Zhang et al. [9], who showed that for

variant detection it is better to have multiple cells se-
quenced at low depth, given a fixed sequencing effort.
Unsurprisingly, all recalls (SNVs, CNVs, clones, phylog-

enies) showed some kind of decrease at smaller sequen-
cing depths. In many cases the drop was statistically
significant despite being of small magnitude. Notably, for
the larger datasets (and by large here we mean—only—
dozens of cells), the impact of sequencing depth was
much smaller, with the exception of the H65 dataset. This
particular dataset, albeit being the largest, displays a very
heterogeneous genome coverage for the single cells
sampled which may have mislead some of the analyses. In-
deed, genome coverage bias has been shown to contribute
to a lower sensitivity to detect variants [9], hence poten-
tially explaining some of the somewhat discordant results
of the H65 dataset.
In any case, bulk germline SNVs were relatively easy

to identify for the three largest datasets even at low se-
quencing depth. This was indeed expected since germ-
line variants should be present in the vast majority, if
not all, of tumor cells. Nevertheless, when the number
of single cells was small, the effect of sequencing depth
on germline SNV recall was much more pronounced
and reached a limit of ~ 75% at the highest sequencing
depth (i.e., 47×) reinforcing the idea that, due to the in-
herent bias in single-cell genome amplification, broader
sampling effort should be favored over increased se-
quencing depth in variant detection analysis [9].

Fig. 4 SNV genotype recall in single cells. Horizontal bars represent the proportion of concordant (dark blue), discordant (dark gray), and missing
(light gray) SNV genotype calls (homozygous for the reference allele, heterozygous or homozygous for the alternative allele) for the
down-sampled datasets
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While somatic SNVs were much more difficult to de-
tect, it should be highlighted that the number of somatic
mutations detected at 5× were usually at the same order
of magnitude as the number of mutations detected at
higher sequencing depths, except for the smaller data-
sets. Still, for the smallest dataset analyzed (W4), the
high number of somatic SNVs detected at 5× (7406)
seem plenty enough to conduct many subsequent ana-
lyses, like clonal inference or phylogeny reconstruction.
In relation to this, it is important to highlight that,

aside from sample size and sequencing depth, somatic
variant detection can additionally be affected by the
choice of thresholds during variant calling. Indeed, con-
servative thresholds may prevent the discovery of true
mutations due to excessive filtering, whereas relaxed
thresholds may cause an increase of false-positive calls.
Determining the best parameters for filtering variants is,
therefore, difficult. Most studies analyzing SC-Seq data
have relied on “hard” filtering thresholds for a minimum
depth of coverage (e.g., > 10 reads; e.g., [5]). Here, a
similar filtering strategy would prove too stringent for

most down-sampled datasets. To allow proper compari-
sons among the different depth levels we decided not to
use a minimum depth threshold. Instead, we required
each variant to be detected in at least two single cells.
Such a consensus strategy has already been shown to be
quite efficient [9, 18].
Remarkably, the somatic single-cell SNV precision

was, in general, very robust to sequencing depth, sug-
gesting that lower depths do not result in new calls that
would not have been made at higher depths. Intuitively,
this observation makes perfect sense since at lower
sequencing depths the variants detected tend to be the
clonal ones (i.e., variants shared by the majority of the
single cells sampled) whereas the detection of low-
frequency mutations required higher read depths
(data not shown).
One might be worried, however, about missing puta-

tive driver mutations, but our results suggest that, as far
as the number of single cells is reasonably large (here 25
or more), most COSMIC somatic variants can be de-
tected at modest sequencing depths (here 5× or more).

a

c

b

Fig. 5 CNV recall in single cells. a Barplots indicate the proportion of CNV breakpoints detected in the down-sampled datasets that were also called in
the original single-cell dataset (recall). Numbers above bars indicate number of breakpoints detected. Error bars indicate 95% confidence intervals. b
Horizontal bars represent the proportion of concordant (dark blue), discordant (dark gray), and missing (light gray) CNV genotype calls. c Copy-number
profiles at different depths for replicate 1 of the W55 dataset. Distinct colors represent the CN configuration: CN gain, red; CN loss, blue
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Similar results were also observed for the somatic non-
synonymous variants, suggesting that, in principle, many
relevant variants in single-cell genomes are likely to be
detected at modest sequencing depths.
Obviously, assigning particular genotypes to the indi-

vidual cells is a much more involved task than just
detecting variants. Importantly, for SNV genotyping,
reducing sequencing depth generally resulted in an
increased amount of missing data in the single-cell geno-
type matrix, rather than different genotype calls.
Moreover, and in agreement with previous studies

[20, 29], CNV characterization from single cells was
also very robust to sequencing depth, with all down-
sampled datasets showing remarkable preservation of
CNV breakpoints. Furthermore, CNV genotype assign-
ment was insensitive to the variation in the sequencing
depths explored. In general, the copy-number analysis
of single-cell libraries can be confounded by amplifica-
tion bias. However, previous studies suggest that ampli-
fication biases are randomly distributed and sufficiently
separated throughout the genome [30] as to not affect
CNV calling at the level of resolution chosen here (500-kb
bins). Popular single-cell amplification methods like mul-
tiple displacement amplification (MDA) and multiple an-
nealing and looping-based amplification cycles (MALBAC)
usually generate amplicons of around 10–100 kb and
1–5 kb, respectively; therefore, we do not expect many
false positive CNV calls [31]. Yet, we acknowledge that

our choice of bin size may have prevented the identifi-
cation of small CNVs [20].
It is relatively well established that an accurate identifi-

cation of clonal genotypes can be very important to
understand tumor dynamics and genomic architecture
[32–34]. For the datasets analyzed here, our results sug-
gest that SC-Seq depth does not affect the identification
of tumor clones when the genomic variability between
malignant cells is small (i.e., displaying limited clonal
population genetic diversification). However, the same
was not true for tumors comprising a larger number of
subclones, where the different clonal genotypes were
only distinguishable at higher sequencing depths. While
these results are not necessarily surprising, as clonal
identification remains a complex problem even for bulk
sequencing data [35, 36], they seem to suggest that
higher sequencing coverage is ultimately required to re-
solve fine-scale clonal structure in more heterogeneous
tumors.
Finally, in our evolutionary analyses, we observed a

moderate impact of sequencing depth with respect to
the estimated phylogenetic relationships of the inferred
clones and single cells. Perhaps due to the uncertainty
stemming from significant amounts of missing data,
datasets down-sampled to 1× resulted in phylogenetic
trees with healthy cells intermingled with tumor cells,
which can be safely considered as artifacts. While the
amount of homoplasy was lower at 1×, this was likely an
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effect of the smaller amount of variant calls per cell at
such a low depth. Otherwise, tree topologies at 5×
seemed quite similar to those inferred at higher depths,
suggesting that relatively few clonal variants might be
enough to resolve the topology of the single-cell trees.
Note that the topology does not include branch lengths,
whose accurate estimation might require higher sequen-
cing depths.

Conclusions
Single-cell DNA sequencing is expected to be key to obtain
accurate inferences of the clonal architecture of tumor
samples, which shall ultimately prove crucial to compare
models of cancer evolution, trace cell lineages, measure
mutation rates, and decipher cell clones responsible for
metastatic dissemination and drug resistance [2, 37, 38].
While recent experimental and analytical improvements
have improved the quality of single-cell DNA sequencing
data [9, 18, 20, 21, 25, 39–41], the costs associated with se-
quencing multiple single-cell genomes or exomes at high
depths are still largely prohibitive. Our results support the
idea that sequencing multiple individual tumor cells at a
modest depth, such as 5×, may help circumvent this limita-
tion at least for the type of analyses implemented here.
Finally, the results obtained here might be extrapolatable
to some extent to non-tumor single-cell genomes.
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