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Abstract

We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method
accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers
of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing,
and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we
showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus
enabling the multiplexed testing of diverse donor cells en masse.

More information is available at https.//pgpresearch.med.harvard.edu/poolseq/
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Background

The screening of many cell lines for specific phenotypes
is commonly performed to discover factors that confer
donor cell specific effects. For example, several studies
have employed the screening of multiple cancer cell lines
for identifying cell type specific essential genes [1-3].
Other studies have also used primary cells from different
donors to identify genetic variants associated with vari-
ous cellular phenotypes. In one study, the authors re-
ported six loci associated with immune response to
pathogens by measuring cytokine production in periph-
eral blood mononuclear cells from hundreds of different
donors [4]. Other groups measured the transcriptional
response to pathogenic stimulus in primary monocytes
obtained from many African and European individuals
[5, 6]. In these studies, the experiments were performed
on cells from each individual donor separately. However,
with increasing numbers of donors, generating data from
cells from more donors would require more research
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effort and time. As such, it would be advantageous to
multiplex these assays by performing a single experiment
on a pool of all donor cells and simultaneously retrieve
phenotypic data from each donor.

To achieve this, one would require a method to accur-
ately estimate the individual proportion of each donor
from a pool of cells containing multiple donors. With
such a method, one can perform a selection assay or
perform fluorescence-activated cell sorting (FACS) to
sort the pool of cells based on criteria of interest (e.g. re-
sponse to pathogen, drug resistance, protein expression)
and identify the proportion of every individual donor
within this new pool (case group). A similar experiment
can be performed for the control group, to identify the
donor proportion either at baseline or from cells sorted
with different criteria. The phenotype for an individual
donor is then measured by comparing the difference in
proportion between case and control groups (Fig. 1). A
recent study aimed at discovering genotype-specific
effects in a mixture of cancer cells reported a method
(PRISM) that achieved this [7]. Briefly, PRISM uses a
unique 24-nt barcode that was integrated into each
donor cell line by lentiviral delivery before pooling. To
obtain individual donor proportions, the barcodes were
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Fig. 1 Workflow of how our method is used for testing cells from multiple donors en masse. Using FACS or selection, one can obtain the case
and control group of cells. The individual donor proportions for the case and control group can be obtained using our method and thus each
individual donor can be assigned a phenotype value. The method does not require artificial barcodes or amplification of a specific locus
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amplified using polymerase chain reaction (PCR) and se-
quenced by next-generation sequencing. Each individual
donor proportion is then estimated by calculating the
proportion of their corresponding barcodes from the se-
quenced reads. However, the PRISM method requires
the barcoding of individual donor cells using lentiviral
delivery, which is a tedious process because each lenti-
viral barcode has to be generated, applied to the donor
cells, and selected for separately. Furthermore, primary
cells, non-dividing cells, and cells with limited ability to
be passaged in vitro cannot be effectively barcoded in
this manner. Here, we describe a method that can accur-
ately estimate each donor proportion in a mixed pool
without the use of exogenous barcodes or amplification
of a specific locus using PCR.

Our method harnesses the presence of millions of
common single nucleotide polymorphisms (SNPs)
within the human genome. These SNPs, which are usu-
ally bi-allelic, can be exploited as a natural barcode and
are distributed throughout the entire genome. These
SNPs are spaced relatively far apart, with approximately
one common SNP for every 1000 base pairs in the hu-
man genome [8]. The genotypes of these SNPs for each
donor are pre-determined before executing the method.
These SNP genotypes can be easily acquired using
whole-genome genotyping arrays or by performing
whole-genome sequencing for each donor. While each
individual SNP is not unique, the combination of SNPs
throughout the genome is unique to each donor. How-
ever, PCR amplification and sequencing of any genomic
locus is not adequate enough to cover enough SNPs to
uniquely identify an individual donor. As such, our
method overcomes this problem by using all the SNPs
distributed throughout the host genome. Using the
standard process of sequencing a human genome from
a library of short DNA fragments, many of the short se-
quencing reads (200-300 bp) generated will cover a
SNP in the human population [9]. Our method works

by first extracting genomic DNA from the mixed pool
of cells and sequencing it. The method then employs
an expectation—maximization (EM) algorithm that
takes the genotypes for all the donors as well as the se-
quencing reads from the mixed pool as input to calcu-
late the individual donor proportion. Using an iterative
process, the algorithm determines the donor proportion
that best matches the expected allelic fraction with the
observed allelic fraction for all the SNPs analyzed.

In this study, we demonstrated the feasibility of our
approach by designing simulation experiments to de-
termine how well our method can accurately predict
donor proportion. From simulation experiments, we
tested a number of scenarios by varying the number
of donors, number of SNPs as well as the sequencing
read-depth per SNP. We found that in most cases,
our method accurately predicts the donor proportion
even at the lowest possible read-depth (1X) as long as
a sufficient number of SNPs were analyzed (> 500,000
SNPs). Finally, we empirically tested our method by
sequencing a mixed pool of human donor cells and
demonstrate that our approach can accurately predict
donor proportion within the mixed population.

Methods

EM algorithm for estimating proportion of individual
donors within the pool

We first define 0 as the probability or proportion of any
individual donor, which is the probability that we are
trying to estimate, i.e.

6 = (Py,P,,Ps,...,Pyn)
0, =P,

where P, is the probability or proportion of donor #

within the pool of N donors, the sum of which is 1.
Next, we assume that we only analyze sequenced

reads from autosomes and only at SNP positions that
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are known to be bi-allelic, i.e. having only two alleles,
Reference (R) or Alternate (A), although the algo-
rithm can be amended to consider X and/or Y chro-
mosomes as well as also incorporating multiallelic
polymorphisms. Given this, we define Reads as the
number of sequence reads (read-depth) for each allele
for each SNPD, i.e.

Reads,, x = No.of observed reads with allele R at SNP position m
Reads,, » = No.of observed reads with allele A at SNP position m

where m is the index defining the SNP at that position.

Next, we assume that the genotypes for all bi-allelic
SNPs analyzed for every donor is accurately known.
As such, the genotype for each donor for each SNP
can only be one of the following states: RR, RA, or
AA, ie.

SNP,,, ,,= genotype of donor n at SNP m (RR, RA, or AA).

To estimate 6, we employ an EM algorithm and initial-
ized the values of 0 so that each donor has the same
starting proportion or probability [10], i.e.

92:1/1\[

where 62 is the proportion or probability estimate of in-
dividual # at iteration 0.

Next, we calculate the Total function for each SNP
given 0, which is the expected number of R and A alleles
given the current estimate of 0, i.e.

N s if SNP,,,, = RR
Totalyr=» { 05%6,  if NPy, =RA
= 0 if SNP,,,, = AA

N[ O if SNP,,,, = RR

Totalya =Y 4 0.5%6, if SNP,,, = RA
n=1 02 lfSNPmn =AA

where m is the index for each SNP, R and A repre-
sent the respective alleles, and 6 represents the
current estimate of 0 for individual # at the current
iteration ¢.

Next, we calculate the likelihood function L for each
individual given the current estimate of 0 by going
through all the SNPs (M being the total number of
SNPs), i.e.

t

—"___ & Reads
Totalmk R

M
Ly=Y"
m=1

Total,,
14

—" % Reads
Total,, o mA
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Finally, we re-estimate 0 for each donor for the next it-
eration, i.e.

Ly
A
> L
n=1
This procedure is repeated until 0 converges to a
stable estimate, ¢ =2000. The final value of ¢ can be
adjusted depending on the number of donors and SNPs
analyzed. For a sample size of ten donors, we used
t =500 as the last iteration. To help explain the algo-
rithm, we provide a working example of estimating
the proportion of a mixed pool of five donors
(Additional file 1: Note S1). We also included a short
description of how our method would be used in a
real experimental setting by comparing our method
against the lentiviral barcoding method (PRISM) used
in Yu et al. [7] (Additional file 1: Note S2).

Simulating individual donors in a mixed pool and
estimating their proportions using the EM algorithm
Individuals were simulated by first defining the value of
several variables, namely,

1) N, the total number of individual donors;
2) M, the total number of SNPs;
3) X, the read-depth (coverage) for every SNP.

First, a total of M SNPs were simulated by randomly
assigning a minor allele frequency (MAF) by drawing
from a uniform distribution in the range of 5-50%.

MAF,, = random number between 5%and 50%

Next, genotypes for each SNP were randomly assigned
according to their MAF to each of the N donors, i.e. for
any donor at any SNP with a MAF of f, the probability
of having a genotype of RR, RA, and AA is f°, 2f(1-f),
and (1-f)?, respectively.

Next, each individual was randomly assigned a copy-
number count (Donor,,) by drawing from a uniform dis-
tribution in the range of 1-10,000 to represent the true
number of copies of that donor.

if SNP,,,,, = RR

o o
0.5 =——=— * Reads,, g + ——— * Reads,, | if SNP,,, = RA
< * Reads,, r + Totalys * Reads ,A> if _

if SNP,,.,, = AA
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Donor,, = random number between 1 and 10,000

The true proportion for each donor (8,) was then cal-
culated by taking their copy-number count divided by
the sum of all the copy-number for all donors.

Donor,
=
Z Donor,
n=1

The sequencing-reads were then simulated by ran-
domly drawing X number of alleles from a binomial dis-
tribution where the probability of drawing the R allele
for that SNP (P,,z) is the sum of the true proportion
multiplied by the likelihood for drawing the R allele
given the genotype for that individual, i.e.

O

N 6, if SNP,,,, = RR
Pur=> 0.5% 0, if SNP,,, = RA
= 0 if SNP,,,,, = AA

The simulation can also be done with regards to the A
allele by changing the above equation or subtracting
from 1 the probability of drawing the R allele.

Pm,A = 1_Pm,R

Nonetheless, if the random draw for the read fails to
draw the R allele, it will be assigned the A allele and vice
versa. The simulated alleles and SNP genotypes for all N
individuals are then used as inputs to the EM algorithm
to estimate the individual donor proportion. The
estimated proportion is then compared to the true pro-
portion and the accuracy of the prediction is evaluated
using the Pearson correlation coefficient (represented as
R).

Pooling B-lymphocytes from Personal Genome Project
samples

B-lymphocytes from the Harvard Personal Genome Pro-
ject (PGP) were obtained from the NIGMS Human Gen-
etic Cell Repository at the Coriell Institute for Medical
Research (https://www.coriell.org). To create the initial
pool of donor cells, we used five distinct pools of B-
lymphocytes previously mixed together at approximately
equal numbers (Invitrogen Countess) and kept cryopre-
served in liquid nitrogen. The five pools of frozen cells
were resuscitated and grown overnight separately in up-
right T25 flasks in a standard incubator at 37 °C with
15 mL of growth media upright (Thermofisher, RPMI
1640 Medium, GlutaMAX™ Supplement, HEPES + 10%
fetal bovine serum +1% Penicillin-Streptomycin
[10,000 U/mL]). The pools of cells were counted (Invi-
trogen Countess) and cells were taken from Pool 1, Pool
2, Pool 3, Pool 4, and Pool 5 at increments of 100,000
cells, i.e. 100,000 cells were taken from Pool 1, 200,000
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cells were taken from Pool 2, ... and 500,000 cells were
taken from Pool 5. The cells were mixed together to
form the final pool. To create the subsequent (more
accurate) pool of donor cells, a different set of 50 donor
cells were resuscitated and cultured for five days separ-
ately in 24-well plates in a standard incubator at 37 °C
with 0.5 mL of growth media (Thermofisher, RPMI 1640
Medium, GlutaMAX™ Supplement, HEPES + 10% fetal
bovine serum + 1% Penicillin-Streptomycin [10,000 U/
mL]). On the day of cell sorting, each donor cell was
collected in 1.5-mL micro-centrifuge tubes and re-
suspended in 0.5 mL of Dulbecco’s Phosphate Buff-
ered Saline (DPBS) solution. The donor cells were
then sorted into a single 15-mL conical centrifuge
tube containing 5 mL of DPBS (Sony SH800S Cell
Sorter). Ten different donors were selected for each
of the five pools and 10,000, 20,000, 30,000, 40,000,
and 50,000 events were used to sort donors repre-
senting pools 1, 2, 3, 4, and 5, respectively.

DNA extraction, library preparation, and sequencing

Genomic DNA of the initial pool was extracted using
the QIAamp DNA FFPE Tissue Kit (QIAGEN). Gen-
omic DNA of the subsequent pool was extracted using
the AccuPrep Genomic DNA extraction kit (BioNEER).
The extracted genomic DNA of both pools were submit-
ted to Biopolymers facility at Harvard Medical School
(https://genome.med.harvard.edu/) for genomic DNA li-
brary preparation (Genomic-Seq Wafergen) and subse-
quent next-generation sequencing using Illumina MiSeq.
The DNA from the initial pool resulted in 5,112,179
paired sequencing reads while the DNA from the subse-
quent pool resulted in 13,111,543 paired sequencing
reads that mapped to the human genome. The reads
were aligned to the human genome reference sequence
(GRCh37/hg19) using bwa (version 0.7.8-r566) [11].

SNP identification

Whole-genome sequencing information was available for
all 102 PGP samples (Complete Genomics) and the geno-
types of all bi-allelic SNPs within the autosomes were re-
corded. We compared the sequencing reads with the
recorded SNPs to determine the allele for each SNP se-
quenced. The final alignment of the sequencing reads for
the initial pool resulted in the sequencing of 1,425,723
SNPs at 1.16X coverage while the subsequent pool re-
sulted in the sequencing of 1,988,295 SNPs at 1.23X
coverage.

Results

An algorithm that accurately predicts the proportion of
individuals within a simulated mixed pool

To test the efficacy of our algorithm, we designed and im-
plemented a simulation program to generate simulated
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data for testing the robustness of the prediction given the
number of donors, number of SNPs as well as sequencing
read-depth. Taking these parameters as input, the pro-
gram first randomly simulates the true proportion for
each donor within the mixed pool. Next, it generates ge-
notypes for all SNPs and donors by simulating SNPs with
MATF randomly selected in the range of 5-50%. Finally,
for each SNBP, it stochastically samples the number of each
of the alleles under a probabilistic model that reflects the
true donor proportion according to the assigned read-
depth. The program then applies our algorithm on the
simulated data to determine how accurately it can predict
the individual donor proportion (see “Methods”).

Using our program, we first simulated two sets of ten
diploid individuals with similar proportions, the first (set
A) having genotypes from 500 SNPs with sequencing
read-depth (coverage) of 1000X while the second (set B)
having genotypes from 500,000 SNPs but with sequen-
cing read-depth of only 1X (Additional file 2: Table S1).
We ran the algorithm to estimate the individual propor-
tions given the simulated sequencing reads and geno-
types of the individuals for both sets and found that the
prediction converges to a fixed estimate (Fig. 2a, b) and
accurately predicted the real simulated proportion for
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both set A and set B (Fig. 2c, Additional file 2: Table
S2). This result shows that the algorithm is as effective
on high coverage sequencing data across a small number
of SNPs compared with low-coverage sequencing data
across a much larger number of SNPs.

Testing the algorithm on simulated mixed pools by
varying the sample size, number of SNPs, and sequencing
read-depth

To test how the number of SNPs and read-depth (cover-
age) would scale with increased sample size, we perform
simulations on pools of 100, 500, and 1000 different do-
nors, using 500,000 SNPs with 1X, 10X, and 30X cover-
age. For a pool of 100 donors, we obtained Pearson
correlation coefficients of 0.956, 0.994, and 0.998 for 1X,
10X, and 30X coverage respectively, demonstrating that
under these circumstances, low-coverage sequencing
data would be sufficient to accurately predict individual
donor proportion (Fig. 3a—c, Additional file 2: Table S3).
With a pool of 500 donors, the algorithm produced
Pearson correlation coefficients of 0.511, 0.877, and 0.
947 for 1X, 10X, and 30X coverage, respectively, indicat-
ing a drop in prediction accuracy with increased sample
size (Fig. 3d—f). Finally, when the number of donors was
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Fig. 2 Estimating the proportions of ten simulated donor individuals. Showing the results of simulating (a) deep-coverage sequencing (1000X) on
a small number (500) of SNPs and (b) low-coverage sequencing (1X) on many (500,000) SNPs. Both graph shows the estimated proportion (y-axis)
by the algorithm at every iteration (x-axis). ¢ Bar plot comparing the estimated proportion against the true proportion for both set A and set B
after 500 iterations. The black bars represent the true proportion for each simulated donor, while the red and blue bars represent the estimated
proportion of set A and set B, respectively
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increased to 1000, the accuracy further declined for 1X,
10X, and 30X coverage (R =0.25, 0.665, and 0.838, re-
spectively) (Fig. 3g—i). These results show that by analyz-
ing 500,000 SNPs positions, the algorithm can accurately
estimate pools of 100 different donors at any read-depth
but higher read-depths would be required to accurately
estimate donor proportion for pools with substantially
more donors.

To determine if the accuracy of the algorithm in-
creases with the use of more SNPs in the analysis, we re-
peated the simulation experiments using 1,000,000
SNPs. Indeed, when we doubled the number of SNPs,
the accuracy for all the simulation experiments increased
when compared to their previous counterpart (Fig. 4,
Additional file 2: Table S4). This suggests that even for a
pool of >100 donors, sequencing more SNPs in general
increases the accuracy of the prediction. Based on these
results, we tabulated the minimal read-depth required to
obtain an accurate prediction with Pearson correlation
coefficient > 0.9 (Table 1).

The method accurately predicts the donor proportions of
a mixed pool of actual human donor cells

To test if our method can accurately estimate the pro-
portions of actual human donor samples, we set up a
system using a pool of immortalized B-lymphocytes
from the Harvard PGP [12-14]. We combined five pools
of PGP B-lymphocytes with ten individuals per pool at
1X, 2X, 3X, 4X, and 5X concentration, respectively (see
“Methods”). We extracted genomic DNA from the pool
of B-lymphocytes and subjected the DNA to low-
coverage whole-genome sequencing which resulted in
the sequencing of 1,425,723 SNPs at 1.16X coverage.
Using our method, we estimated the individual propor-
tion of donors within the pool of 102 PGP individuals,
including 52 donors that were not part of the combined
pool and acted as negative controls. We found that the
method predicted the proportion of the individuals
within the pool (Fig. 5, Additional file 2: Table S5). The
results showed that pool 0, which consists of the 52 indi-
viduals not part of the combined pool, had very low
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estimated proportions, with a mean proportion of 0.07%
and none of the 52 samples had proportions > 0.18%. In
contrast, pools 1-5 gave mean estimated proportions of
0.57%, 1.08%, 1.87%, 2.8%, and 3.35%, respectively, which
accurately reflected the expected proportions (expected
proportions being 0.67%, 1.33%, 2%, 2.67%, and 3.33%,
respectively).

The initial pools had undergone a few rounds of passa-
ging and they were created using a relatively inaccurate
method for counting cells (Invitrogen Countess).

Table 1 Minimal read-depth required for accurate prediction of
donor proportion

500,000 SNPs 1,000,000 SNPs
100 donors X 1X
500 donors 30X 10X
1000 donors >30X 30X

The read-depth necessary to obtain an accurate prediction of donor proportion
with Pearson correlation coefficient > 0.9 for a mix pool of 100, 500, and 1000
unique donors when 500,000 and 1,000,000 SNPs are analyzed with our method

Because of this, it is expected that the predicted individ-
ual proportions within each pool will vary greatly. We
decided to repeat the experiment but with a more accur-
ate way of determining the actual donor proportion be-
fore sequencing. Instead of using the pre-pooled cells,
we chose a different set of 50 different donor cell lines
to culture individually. We then sorted each donor cells
using a cell sorter by assigning the number of live cell
events (either 10,000, 20,000, 30,000, 40,000, or 50,000)
for each donor to create the new pools (pools 1-5) (see
“Methods”). Although there was a single outlier in pool
4 (hu52F345), we found that our method accurately pre-
dicted the proportion of the individuals within the pool
(Fig. 6, Additional file 2: Table S6). The ranges of
proportions for the different pools are as follows: pool 0
(0.00-0.16%); pool 1 (0.41-1%); pool 2 (1.11-1.4%); pool
3 (1.75-2.19%); pool 4 (2.41-3.99%); pool 5 (2.87-3.
26%) (Additional file 2: Table S6). We observed that
pools 0—5 gave mean estimated proportions of 0.03%, 0.
6%, 1.29%, 1.99%, 2.84%, and 3.08%, respectively, which
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Pool No.

accurately reflected their actual proportions (expected
proportions being 0%, 0.67%, 1.33%, 2%, 2.67%, and 3.
33%). Taken together, our results demonstrate that our
method can accurately predict the proportions of real
samples where the donor genotypes are known through
whole-genome sequencing or otherwise.

Discussion

Various ways of pooling and sequencing DNA from mul-
tiple individuals in an effort to save costs in identifying
genetic variants associated with disease status have been
extensively investigated in genome-wide association
studies [15]. Here, we propose a radically different use of
whole-genome sequencing of pools of individuals: to en-
able the accurate prediction of individual donor

proportion of a mixed pool of human tissue samples or
cell lines. Human tissue samples and cell lines are the
bedrock of biomedical research and their uses have been
vital for many scientific discoveries. More recently, the
development of induced pluripotent stem cells (iPSCs)
derived from human tissue have allowed researchers to
model a variety of cell types from any given patient [16—18].
Hence, technologies that improve our capability to perform
high-throughput assays for phenotypes from cell lines will
be increasingly more important, especially in the age of per-
sonalized medicine.

We described a method, which can accurately predict
the individual donor proportion of a mixed pool of sam-
ples from many different donors without the need for
artificial barcodes or amplification of a specific locus.
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Depending on the host and cell type, introducing artifi-
cial barcodes to every donor cell may not be practical or
feasible to perform for large numbers of different do-
nors. Also, PCR amplification of exogenous barcodes
may potentially bias the results, as demonstrated by pre-
vious experiments when performed on mixtures of tem-
plate DNA [19-22]. The use our method avoids the
need to barcode every donor cell or PCR amplification
of a specific locus.

As our method effectively uses many SNPs present in
the host genome as input to identify donor proportion, it
is not suitable for applications where such SNPs are not
present. For example, previous research reported the use
of 20-nt barcodes to simultaneously create and tag a

library of yeast deletion mutants using mitotic recombin-
ation for high-throughput multiplex assays [23, 24]. The
library of deletion mutants was created from cells from a
single donor and our method would not be able to differ-
entiate between different deletion mutants as their
genome-wide SNP profile are identical. On the other
hand, when multiple donor cells are used like the study
that interrogated multiple cancer cell lines from different
donors [7], our method would be highly effective for iden-
tifying the proportion of different donor cells without the
need for DNA barcodes. Our method can also be adjusted
for parallel model organism screens, i.e. pooling of cells
from different organisms to be interrogated together. If
the genomes of the organisms are different enough, the
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problem becomes trivial, as it is possible to determine the
origin of each of the sequencing reads by alignment to the
right host genome. However, if the genomes of the various
model organisms were similar, the main genetic difference
between them may not be SNPs but other polymorphisms
such as insertion-deletion polymorphisms. We can in-
corporate these polymorphisms or other types of genetic
variants into our method for such use.

Experimentally, all that is required is genomic DNA ex-
traction and whole-genome sequencing of the extracted
DNA. The prediction of individual donor proportion is
then determined computationally. Our described method
enables the multiplexing of phenotypic assays on multiple
different donor samples in a single experiment, which sig-
nificantly reduces effort and time and facilitate discoveries.
Our method can be used for high-throughput measure-
ments of various cellular phenotypes for the purpose of dis-
covering genetic alleles associated with cellular phenotypes,
similar to those performed on human traits and diseases
obtained from medical record data [25—-30]. While there
are substantially fewer such studies of cellular phenotypes,
we predict that our method would greatly accelerate such
discoveries of cellular phenotypes by facilitating and enab-
ling researchers to perform multiplexed testing of diverse
donor cells en masse. Whether the cells are sorted via FACS
or selected for via different growth conditions, the resulting
proportion for each donor within the sorted or selected
pool can be accurately estimated using our method, result-
ing in the simultaneous testing of numerous different donor
cells in a single experiment (Fig. 1). Current work in our la-
boratory is focused on utilizing this method to perform
multiple phenotype characterization on thousands of cell
lines from PGP and other cohorts to uncover genetic alleles
associated with these phenotypes. We have also made the
software for estimating donor proportion as well as per-
forming the simulation experiments freely available (see
“Availability of data and material”) so that other groups can
harness our method for their research experiments as well

Conclusions

In summary, we have developed a method to accurately
predict the individual proportion from a mixed pool of
cells from different donors without artificial barcodes or
amplification of a specific locus. The method enables the
simultaneous testing of cells from a pool of different do-
nors and is transformative for scaling up the number of
donor samples used. Instead of performing lentiviral bar-
coding manually for each donor sample, our method re-
lies on having whole-genome genotype information for
each donor, which is now readily available for many
samples. Our method lowers the costs and associated re-
sources for performing such experiments and would
help facilitate multiplexed experimentation on large co-
horts of donor cells.
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Additional file 1: Note S1-2. working example of the method and
comparison of the method against PRISM. (PDF 278 kb)

Additional file 2 Table S1-6. all supplementary tables. (XLSX 638 kb)
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