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Background: Although large-scale, next-generation sequencing (NGS) studies of cancers hold promise for enabling
precision oncology, challenges remain in integrating NGS with clinically validated biomarkers.

Methods: To overcome such challenges, we utilized the Database of Evidence for Precision Oncology (DEPO) to
link druggability to genomic, transcriptomic, and proteomic biomarkers. Using a pan-cancer cohort of 6570 tumors,
we identified tumors with potentially druggable biomarkers consisting of drug-associated mutations, mRNA
expression outliers, and protein/phosphoprotein expression outliers identified by DEPO.

Results: Within the pan-cancer cohort of 6570 tumors, we found that 3% are druggable based on FDA-approved
drug-mutation interactions in specific cancer types. However, mRNA/phosphoprotein/protein expression outliers
and drug repurposing across cancer types suggest potential druggability in up to 16% of tumors. The percentage
of potential drug-associated tumors can increase to 48% if we consider preclinical evidence. Further, our analyses
showed co-occurring potentially druggable multi-omics alterations in 32% of tumors, indicating a role for individualized
combinational therapy, with evidence supporting mTOR/PI3K/ESR1 co-inhibition and BRAF/AKT co-inhibition in
1.6 and 0.8% of tumors, respectively. We experimentally validated a subset of putative druggable mutations in
BRAF identified by a protein structure-based computational tool. Finally, analysis of a large-scale drug screening dataset
lent further evidence supporting repurposing of drugs across cancer types and the use of expression outliers
for inferring druggability.

Conclusions: Our results suggest that an integrated analysis platform can nominate multi-omics alterations as

biomarkers of druggability and aid ongoing efforts to bring precision oncology to patients.
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Background

With the development of novel therapeutics and
next-generation sequencing (NGS), medicine is entering
an era in which cancer treatment can be tailored to the
tumor molecular profile of the individual patient. While
an increasing number of FDA-approved cancer drugs
are paired with a companion diagnostic for mutational
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[1-3] or protein expression abnormalities [4], a given
drug is often only considered for the cancer type (breast
carcinoma, etc.) for which it was approved. Pan-cancer
analyses have identified significantly mutated genes shared
across cancer type subsets [5-7], suggesting the potential
for treating patients based on the genetic profile of their
tumor, regardless of cancer type. Efforts are underway to
implement NGS in the clinical setting [8—11], and several
studies have examined practical aspects of NGS imple-
mentation, such as use of FFPE tumor samples [12-14],
concordance between NGS and other diagnostic platforms
[15, 16], and quality assurance of variant calls [12—16]
(Additional file 1). However, using tumor molecular
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profiles from NGS and other platforms to infer druggabil-
ity is an ongoing challenge [12, 17, 18]. In particular, no
systematic pan-cancer analysis has yet been conducted to
explore the potential impact of comprehensive multi-omics
for informing cancer therapy.

The Cancer Genome Atlas (TCGA), the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) [19],
and other large-scale sequencing data sets represent an
opportunity to identify “druggable” variants, i.e., variants
that render a cancer type susceptible to a drug. A recent
study quantified the percentages and types of cancers
that may benefit from therapies traditionally used for
other indications [17]. Although the general approach is
promising and has important implications for clinical
practice [20, 21], these efforts primarily use gene/drug
interactions rather than mutation/drug interactions to
infer druggability [12, 15, 17, 22]. None leverage tran-
scriptomic and proteomic data in tandem with genomic
profiles generated through TCGA. Moreover, none lever-
age the compendium of known mutation/drug interac-
tions to either discover or validate putative mutation/
drug interactions.

Here, we present an analysis of the full spectrum of puta-
tively druggable alterations in 6570 TCGA tumors based
on integrative omics approaches. We utilized known vari-
ant/drug interactions from several data sources with each
variant associated with sensitivity or resistance to a drug in
preclinical or clinical studies [20, 23-25] (Sun et al. [26], in
revision, http://dinglab.wustl.edu/depo). We identified tu-
mors with drug-associated mutations and found consider-
able opportunity for repurposing of drugs across cancer
types. We used a structure-based computational tool [27-
29] to identify putative druggable mutations based on prox-
imity to known druggable mutations and experimentally
validated a subset of putative druggable mutations in BRAF.
We then analyzed druggability based on mRNA, protein,
and phosphosite expression levels. To identify opportunities
for combinational therapy, we examined co-occurring po-
tentially druggable alterations across multiple data types in
tumors. Finally, we used a large-scale drug screen to valid-
ate our approach for inferring druggability across human
cancers. By applying and validating novel approaches for in-
ferring druggability, this report shows that more tumors
than previously thought may be susceptible to targeted
therapy and provides a concrete path for using integrative
omics analyses to guide precision cancer therapy.

Methods

Construction of Database of Evidence for Precision
Oncology (DEPO)

DEPO (Sun et al. [26], in revision, http://dinglab.wustl.
edu/depo) was created as an information knowledgebase
to facilitate downstream analyses in our study. Drug-
gable variants in DEPO were filtered such that each

Page 2 of 20

variant corresponded to one of several categories: single
nucleotide polymorphisms or SNPs (missense, frame-
shift, and nonsense mutations), in-frame insertions and
deletions (indels), copy number variations (CNVs), or
expression changes. The vast majority of SNPs and
in-frame indels in DEPO are unambiguous, e.g., BRAF
V600E. To accommodate looser categories of genomic
events, DEPO allows missense mutations for which the
substituted base is not specified (e.g., BRAF V600). Simi-
larly, for SNPs and in-frame indels in a given exon (e.g.,
EGFR exon 19 in-frame deletion), we used Ensembl to
convert to a codon-mapped nomenclature (e.g., EGFR
p.729-761 in-frame deletion) [30].

Each variant/drug entry in DEPO was paired with sev-
eral annotations of potential interest to oncologists.
These annotations were generally derived from DEPO’s
source databases, then standardized to the nomenclature
discussed here. Tumor type is included for each variant/
drug entry because, with infrequent exception, a variant’s
effect on a tumor’s response to a given drug has only
been rigorously studied in one or only a few cancer
type(s). For a variant/drug entry based on preclinical
data, tumor type was either inferred from the xenograft
or cell line, or left unspecified. As indicated previously,
variant can be annotated in several ways for SNPs and
indels. It could be either a specific mutation, a specific
amino acid position with no specified amino acid
change, or a range of amino acid/genomic positions.
Copy number amplifications (CNA) and losses (CNL),
high expression outliers in oncogenes, low expression
outliers in tumor suppressors, and fusions that may lead
to druggability are also included. Effect describes
whether a variant correlates with increased sensitivity of
a tumor to a drug or increased resistance of a tumor to
a drug. Level of evidence describes the quality of data
supporting a given variant/drug entry: preclinical, case
reports, clinical trials, and FDA approved. Some of this
information was mined from clinicaltrials.gov. Drug class
was determined using a look-up table that was generated
manually from DrugBank/NIHClasses (Additional file 2:
Table S1). A given drug entry in DEPO could be associ-
ated with multiple drug families to allow for the possibil-
ity of combining therapies (e.g., dabrafenib [B-Raf
inhibitor] and trametinib [MEK inhibitor] for BRAF
V600E/K-mutant melanoma) and multi-targeted tyrosine
kinase inhibitors (e.g., afatinib as a dual HER2 and EGFR
inhibitor). Finally, each entry in DEPO is linked to a
PubMed ID, which was used to manually curate any
missing annotations.

If two variant/drug entries had identical annotations
for tumor type and effect, the entry with the highest
level of evidence was used in DEPO. Otherwise, if two
variant/drug entries had non-identical annotations, both
were included. DEPO is available as a web portal (http://
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dinglab.wustl.edu/depo), through which users can search
for variant entries to obtain therapeutic information. The
version used for this analysis was from February 2017.

Pan-cancer cohort and cancer types

We conducted analyses of druggability across a pan-cancer
cohort of 6570 TCGA tumor samples from 22 cancer types
[31]. These cancer types consisted of adrenocortical carcin-
oma (ACC), bladder urothelial carcinoma (BLCA), breast
adenocarcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), colon and rectal
carcinoma (COADREAD), glioblastoma multiforme (GBM),
head and neck squamous cell carcinoma (HNSC), kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), acute
myeloid leukemia (AML/LAML), low-grade glioma (LGQ),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian
serous carcinoma (OV), prostate adenocarcinoma (PRAD),
skin cutaneous melanoma (SKCM), stomach adenocarcin-
oma (STAD), thyroid carcinoma (THCA), uterine corpus
endometrial carcinoma (UCEC), and uterine carcinosar-
coma (UCS).

Collection of mutations in pan-cancer cohort

Variant calls were obtained from the TCGA Genome Data
Analysis Centers (GDAC), Data Coordinating Center
(DCC), and previously published TCGA marker papers
until the end of 2014 (https://cancergenome.nih.gov/publi-
cations). Variant calls were excluded if metastases or recur-
rent samples were present for samples that already had a
primary tumor in the mutation annotation file (MAF).
When necessary, we used UCSC’s liftOver with an Ensem-
ble chain file to convert variants from NCBI36 to GRCh37.
Annotation was done by VEP v77 on Gencode Basic v19
transcripts, using vcf2maf  (https://github.com/mskec/
vcf2maf) to a single canonical isoform per gene. We
followed strict quality control processes and excluded vari-
ants without both nucleotide changes and genomic posi-
tions and variants whose MAF genotypes did not match
VCEF genotypes after accounting for matched strand. We fil-
tered large indels (> 100 bp) and complex indels, which are
not supported by the MAF specification. To remove dupli-
cate samples, we excluded samples with > 60% variant con-
cordance with another sample, unless both samples had
five or fewer total variants. Furthermore, we filtered com-
mon variants, defined as minor allele frequency > 0.05% in
the Exome Variant Server or 1000G [32, 33] cohort that
were not pathogenic or deleterious/damaging according to
Clinvar [34] and SIFT/Polyphen [35, 36].

Drug-associated mutations in pan-cancer cohort
We identified tumors in our pan-cancer cohort that har-
bored one or more drug-associated SNP or indel.
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Iterating through a mutation annotation format (MAF)
file containing all variants in our pan-cancer cohort, we
performed two actions for each entry in the MAF. First,
we queried a hash table containing all druggable, unam-
biguous mutations in DEPO (e.g., BRAF V600E) and a
separate hash table containing all druggable, ambiguous,
single-residue mutations in DEPO (e.g.,, BRAF V600).
Second, we queried several classes of mutations that
occur in a specific exon or segment of a gene (EGFR
exon 19 in-frame deletion). All mutation entries in the
MAEF (Synapse ID, syn12618789) that map onto an entry
in DEPO are stored, along with the corresponding
TCGA tumor ID and tumor type (Additional file 2:
Table S2).

In some cases, DEPO contains multiple entries per
gene/mutation pair to reflect possible druggability of a
gene/mutation pair in more than one tumor type, or that
it may confer an effect (e.g., sensitivity or resistance) that
depends on tumor type or other therapeutic context.
Multiple DEPO entries per variant were used to generate
visualizations of druggability. For example, when visual-
izing “drug repurposing” across tumor types, a given
mutation could be associated with > 1 “cancer-type-spe-
cific” tumor type, if a given gene/mutation pair had
druggability information in DEPO in multiple tumor
types at the same level of evidence. For each unique
gene/mutation pair, the cancer types that had the highest
levels of evidence for a drug were considered cancer type
specific. All other cancer types are considered non-specific
for a gene/mutation pair. For example, DEPO indicates that
BRAF V600E-mutated THCA is sensitive to BRAF inhibi-
tor; however, because a higher level of evidence exists for
BRAF V600E druggability in SKCM, THCA is “off-label” or
“cancer type non-specific” When considering potential
druggable events in the cancer-type-non-specific setting,
the drug with the highest level of evidence found across all
tumor types was used for a specific variant (Additional file 2:
Table S3). For downstream analyses (i.e.,, protein
structure-based clustering, co-occurring mutation ana-
lysis, and integration analysis), variant/drug interac-
tions were considered in this cancer-type-non-specific
setting. If any sensitive interaction for a variant was
found regardless of the tumor type and level, it was
considered a “druggable” event for these analyses.
Additionally, if there was evidence for both resistant
and sensitive drug interactions for a specific variant,
the sensitive interaction was utilized.

Proximity-based clustering of drug-associated mutations
with pan-cancer cohort

HotSpot3D [27] was used to spatially cluster “known”
drug-associated mutations in DEPO with putative drug-
gable mutations in our pan-cancer cohort. In brief, pair-
wise distances between all amino acids are calculated to
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give a background distribution. We assigned a P value to
the pairwise distance and defined it as the proportion of
all pairwise amino acid 3D distances that are less than
or equal to the distance between the pair of amino acids
in question. After this, we only performed clustering on sig-
nificant pairs having p < 0.05 and distance less than 5 A.

Single-link agglomerative clustering forms initial clus-
ters from the significant proximal pairs by iteratively
adding new mutations to a cluster if they are signifi-
cantly paired with a mutation already in the cluster. To
prevent a cluster with unbounded size, we applied a
limit to the physical extent of the clusters. If the initial
cluster is modeled as an undirected graph G=(V, E),
where V is the set of all mutations in the initial cluster
and E is the set of 3D distances of all proximal pairs in
V, we can calculate the shortest path from each vertex to
all other vertices. We identify a centroid of the cluster to
be the mutation that is found more frequently in patient
samples as well as the one found in close proximity to
highly recurrent mutations. The clusters are then fo-
cused according to a specified graph radius limit from
the centroid.

The original clustering approach for HotSpot3D was
improved upon in this analysis by using recursive clus-
tering. Briefly, setting a maximum radius limit could lead
to potentially functional regions being ignored. To by-
pass this problem, instead of discarding mutations out-
side of the radius limit, we performed clustering on the
remaining mutations in the initial cluster. We continued
to do this until no more clusters could be found. For this
analysis, a radius limit of 5 A was used in order to limit
clusters to a relatively conservative size. We did not use
a linear distance limit in order to detect all mutations
that cluster closely to drug-associated mutations, regard-
less of position on amino acid sequence.

Druggable expression outliers in pan-cancer cohort

RNA expression data (TCGA level 3, normalized) were
downloaded from firehose (October 17, 2014). We log,--
transformed the RNA-seq by expectation-maximization
(RSEM) values of RNA expression data for outlier analysis.
RPPA data (level 4, normalized) were downloaded from
The Cancer Protein Atlas (TCPA) and were normalized
across batches using replicates-based normalization (RBN)
as previously described [37].

To discover expression outliers, we utilized a strategy
incorporating multiple steps. First, we limited our search
to genes in DEPO whose overexpression or copy num-
ber amplification is associated with drug sensitivity;
these tended to be proto-oncogenes. We then narrowed
down the list to genes that are observed in at least 10
tumor samples in the dataset under investigation. Add-
itionally, we did not include AML in our expression ana-
lysis. Outlier expressions were defined as values that are
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greater than 1.5 interquartile ranges (IQRs) above the
third quartile (Q3), or below the first quartile (Q1)
across the pan-cancer cohort. To rank order outlier ex-
pression for each gene, we calculated an outlier score
defined as:

Outlier score = (x — Q3)/IQR
or
Outlier score = (Q1 — x)/IQR

By definition, genes with outlier score greater than 1.5
are considered as expression outliers. Outlier score for
each gene were ranked within each tumor sample to se-
lect the most promising “druggable” targets.

Only RNA-seq and RPPA data was utilized for all subse-
quent analysis and calculating potential druggable targets
for transcriptomic and proteomic expression outliers.

Fusion analysis

Fusions were obtained from a prior publication [31] that
identified fusion transcripts in 4366 tumors. We re-
stricted our analysis to the intersection between the
4366 tumors in Yoshihara et al. and the 6570 tumors
assessed in the present study. Only fusion transcripts
corresponding to a druggable fusion gene in DEPO were
considered in constructing Additional file 3: Figure SI.
To correlate fusion transcripts and expression, we iden-
tified RNA and phosphoprotein expression levels (outlier
scores) for druggable fusion genes (Additional file 3:
Figure S1).

Proteomic analysis with CPTAC mass spectrometry data
The 251 Clinical Proteome Tumor Analysis Consortium
(CPTAC) tumors used in our analysis included 77 breast
cancer tumors [38], 90 colorectal cancer tumors [39],
and 84 ovarian cancer tumors (from PNNL only) [40].
Proteomic data were processed using the Common Data
Analysis Pipeline [41]. Analysis was conducted with this
data to reveal potential druggable proteomic outliers in
the three cancer types (Additional file 1, Additional file 3:
Figure S2); however, these numbers were not included in
our subsequent analyses or our summative assessment
of pan-cancer druggability.

Cell line-based validation

Cell line data was downloaded from the Genomics of
Drug Sensitivity in Cancer (GDSC) database (http://
www.cancerrxgene.org/downloads). Specifically, the data
of interest were the screened compounds (Additional file 2:
Table S4), log(IC50) and AUC values, the expression array
data for cell lines, and the WES data for cell lines. The
first step was to convert DEPO drug names into the drug
IDs provided in the screened compounds. We were inclu-
sive in terms of matching drugs from the cell line data to
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DEPO, so that we would have enough statistical power
and data points to study trends. The drug ID for the
screened compound was included for a DEPO drug if one
of the following were satisfied: (1) drug name in DEPO
matched exactly the drug name or synonym in screened
compounds from the cell line data and (2) the gene target
of the drug class/drug in DEPO matches the gene target
of the drug in screened compounds. Additionally, the list
was refined through manual manipulation.

For mutation analysis, cell lines that contained muta-
tions in DEPO were analyzed for their LN(IC50) values.
These mutations were separated into cancer-type-specific
and non-specific if the cancer type of the cell line did not
have the highest level of evidence in DEPO for a specific
mutation (Additional file 2: Table S5). Similar to our
mutation analysis of TCGA data, the drug with the highest
level of evidence for a particular mutation was used
(Additional file 2: Table S3). The distribution of LN(IC50)
values of cell lines with DEPO mutations (both sensitive
and resistant) for both the cancer-type-specific and
non-specific settings were compared to a background dis-
tribution using the Mann-Whitney U test. The back-
ground distribution consists of all LN(IC50) values from
every drug-cell line combination whether they have a
DEPO mutation or not. In addition to comparing overall
distributions, we also compared distributions of LN(IC50)
for cell lines with a specific sensitive mutation to the dis-
tribution of LN(IC50) values across all cell lines for the
particular drug in question (Additional file 2: Table S6).
This was done in both the cancer-type-specific and
non-specific settings. We required that there be at least
five cell lines that contain the specific sensitive mutation
A tested against drug B in order to deem significance of
the drug-mutation combination.

For expression analysis, Affymetrix Human Genome
U219 array data from ArrayExpress (E-MTAB-3610)
were used. The expression data were in the form of an
Affymetrix CEL Data File, which required conversion to
a gene expression matrix in order to run through the ex-
pression outlier analysis pipeline. This was done using
Bioconductor in R and the “affy” Library. The file was
then annotated with genes using an annotation package
(hgu219.db) through Bioconductor. The resulting matrix
was run through the outlier expression pipeline detailed
above. Genes that were known to confer drug sensitivity
through expression based on DEPO were analyzed. Each
gene could have multiple probes, and all probes were
included in downstream analysis. To test whether gene
expression is correlated with drug sensitivity, we con-
ducted linear regressions on all probe-drug combina-
tions in the form of y;=Bx;+a, where x; is the gene
expression outlier score for a specific gene probe in cell
line i and y; is the LN(IC50) value for a drug associ-
ated with the gene in cell line i There were 496
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probe-drug combinations with sufficient sample size,
at least five samples, to conduct regression analysis
(Additional file 2: Table S7). Probe-drug combinations
that had P<0.05 and B <0 were considered to have a
significant correlation between gene expression and
drug sensitivity.

In reporting potential druggability across the TCGA
cohort, we considered all tumors with mutational evi-
dence; however, we only considered tumors with mRNA
and protein/phosphoprotein outliers for genes that could
be validated against GDSC data regardless of level of ap-
proval. A gene was considered to be “validated” if at
least one of its probes had a significant P value for the
regression between gene outlier score and LN(IC50) and
these two variables were negatively correlated.

Experimental validation

HEK293T cells were authenticated by DNA finger print-
ing targeting short tandem repeat (STR) profiles through
Genetica Cell Line Testing. They are negative for myco-
plasma as determined by the absence of extranuclear sig-
nals in DAPI staining. Cells were cultured in DMEM
(Corning) supplemented with 5% fetal bovine serum
(FBS) (Thermo Fisher). Constructions expressing BRAF
variants were generated from a plasmid expressing a
wild-type BRAF (Addgene, #40775) with an N-terminal
Flag tag using Q5 site-directed mutagenesis (New Eng-
land BioLabs). All constructs were confirmed by sequen-
cing. Cells were transiently transfected with wild-type or
mutant BRAF constructs using Lipofectamine 2000 re-
agent (Life Technologies) in six-well plates. Twenty-four
hours after transfection, cells were switched to medium
containing 0.5% FBS for 24 h before the initiation of 6 h
of treatment with Dabrafenib (0—1 uM). Cells were lysed
in buffer containing 20 mM Tris-HCI (pH 7.5), 150 mM
NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% so-
dium deoxycholate, 2.5 mM sodium pyrophosphate,
1 mM B-glycerophosphate, 1 mM sodium orthovana-
date, and 1 pg/ml leupeptin (Cell Signaling Technology).
Protease and phosphatase inhibitors (Roche) were added
immediately before use. Samples (15 pg/lane) were
boiled in standard commercial SDS-gel loading buffer
and run on SDS 10% polyacrylamide gels. Immunoblot-
ting was performed on Immobilon-P PVDF membrane
(Millipore). The following antibodies were used for im-
munoblotting: rabbit polyclonal anti-phosphor-MEK1/2
(Ser217/221) antibodies (Cell Signaling #9121, at 1:1000
dilution), mouse monoclonal anti-MEK1/2 antibodies
(Santa Cruz, sc-81504, at 1:500 dilution), mouse monoclo-
nal anti-Flag antibodies (Sigma-Aldrich F1804, 1:1000),
and rabbit polyclonal anti-GAPDH antibodies (Cell Sig-
naling, #5174, at 1:1000 dilution). Appropriate secondary
antibodies with infrared dyes (LI-COR) were used. Protein
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bands were visualized using the Odyssey Infrared Imaging
System (LI-COR) and further quantified by Image].

Integrative omics analysis of druggability

To analyze and visualize druggability based on
multi-omics information, we first identified tumors whose
druggability is implicated by two or more variant types
(genomic, transcriptomic, proteomic). Drug-associated
genomic variants include both known mutations in DEPO
and putative mutations identified using protein
structure-based clustering. Transcriptomic and proteomic
variants include mRNAs and phosphoproteins/proteins
with expression outliers based on RNA-seq and RPPA
data, respectively. For each tumor, we mapped its “drug-
gable” variants against one or more drugs, which were
then mapped to one or more drug classes (Additional file 2:
Table S8). For each variant, we used the drug that had the
highest level of evidence in DEPO regardless of cancer
type (Additional file 2: Table S3). For the purposes of
visualization, we only considered ten FDA-approved drug
classes (Additional file 2: Table S9) mapping to the largest
number of variants across our pan-cancer cohort
(Additional file 2: Table S10).

Druggability and demographics

We assessed differences in druggability as a function of
demographics (sex, race) (Additional file 1, Additional file 2:
Table S11, Additional file 3: Figure S4). We limited our ana-
lyses to cancer types for which at least 20 tumors are repre-
sented for each demographic category (e.g., =20 Caucasians
with BRCA, =20 Asians with BRCA). For the sex analysis,
this excluded certain cancer types (BRCA, CESC, PRAD,
OV, UCEC, and UCS). Next, we determined the most com-
monly druggable genes at the mutational, RNA, and
phosphoprotein levels; to merit inclusion, a druggable gene
must be observed in >40 tumors and > 150 tumors for the
race and sex analyses, respectively. A matrix was then gener-
ated of cancer types and druggable genes, with each matrix
value corresponding to the log-odds ratio between druggabil-
ity and traits:

druggable trait A patients/trait A patients
2\ druggable trait B patients/trait B patients

for a specific cancer type (e.g., BRCA) and a specific
druggable gene (e.g., elevated ERBB2 phosphoprotein ex-
pression). If fewer than 10 tumors contain a specific
druggable gene in a specific cancer type, no matrix value
was calculated. For the purposes of graphical
visualization, matrix values of +c and —co are set to + 3
and - 3, respectively.

To determine whether a specific druggable gene is
statistically more prevalent in a given demographic
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group, Fisher exact tests were performed. FDR correc-
tion to p values was applied with a cutoff of 0.05.

Results

Database of Evidence for Precision Oncology

We utilized a repository of known variant/drug interac-
tions, which we refer to as “Database of Evidence for
Precision Oncology” or DEPO (Sun et al.[26], in revi-
sion), containing data from publically available datasets
and papers [20, 23-25] (Fig. 1a).

In aggregate, 609 unique variants with known drug in-
teractions currently reside in DEPO, and account for a
total of ~ 800 unique variant/drug interactions (Fig. 1b).
Approximately 70% of known variant/drug interactions
result in increased sensitivity to therapy. Further, a sub-
stantial number (~25%) of sensitive variant/drug inter-
actions are approved by the FDA for a particular cancer
type or are based on late-stage clinical studies. Several
genes account for a large proportion of variant/drug in-
teractions (e.g., EGFR, KIT, ERBB2, BRCAI, PDGFRA),
reflecting interest in therapeutically exploiting a rela-
tively limited number of cancer driver genes [5] (Fig. 1c).
Altogether, 168 genes are represented in the current ver-
sion of DEPO.

Drug-associated mutations in pan-cancer cohort

We leveraged the genomic sequence data of 6570 tumor
samples from TCGA representing 22 adult cancer types
(Synapse ID, syn12618789). Mutations associated with
drug sensitivity in DEPO were matched against the
TCGA cohort. Our analysis reveals 2364 mutations
across 2114 tumors that are associated with sensitivity to
one or more drugs (mean = 1.12/tumor) (Additional file 2:
Table S2). Three hundred sixty-two distinct mutations are
represented across 40 genes. The low fraction of
drug-associated mutations likely reflects the large number
of passengers in cancer [42, 43]. Thirty-two percent of tu-
mors had at least one drug-associated mutation, a per-
centage that is consistent with the 28% of screened
patients that could be matched with a targeted therapy or
trial [44].

Initially, we analyzed the percentage of potentially
druggable tumors in a cancer-type-specific setting
(Fig. 2), that is, tumors with mutations associated with a
known drug response in the cancer type with the highest
level of evidence. Only 3.3% of the samples contain a
druggable mutation known to be FDA approved; how-
ever, if we consider less mature evidence: clinical trials,
preclinical, and case reports, we could potentially in-
crease the percentage of tumors with drug-associated
mutations to 8.2, 8.5, and 10.5%, respectively. Here, skin
cutaneous melanoma (SKCM) is the cancer type with
the largest fraction of drug-associated mutations (78%).
SKCM with a BRAF V600E/K mutation (40% of patients)
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can be treated with BRAF and MEK inhibitors based on
FDA approval. The NRAS Q61 mutations found in 12% of
SKCM patients are more challenging to treat, as is any
RAS-mutant cancer due to activation of multiple signaling
pathways. Early generation MEK-exclusive inhibition
proved to be ineffective, with multiple failed clinical trials
prompting exploration of newer generation MEK inhibi-
tors and MEK inhibitor combinations with downstream
targets of NRAS [45]. In colon and rectal carcinoma (COAD-
READ), glioblastoma multiforme (GBM), and lung adenocar-
cinoma (LUAD), 21, 14, and 40% of their respective tumors
contain a drug-associated mutation in a cancer-type-specific
setting. In COADREAD, drug-associated variants PIK3CA
E542K, E545K, and H1047R are present in 2.1, 5.2, and 1.8%
of tumors, respectively, and are associated with sensitivity to
PIBK/AKT/mTOR pathway inhibitors in early-stage trials
[46] and aspirin in observational studies [47, 48]. PIK3CA--
mutant cancers are also an ongoing challenge to treat clinic-
ally; co-occurring drugs targeting the PI3K pathway have
been more effective than single-agent PI3K inhibition in

treating PIK3CA-mutant cancers, but efficacy varies with
mutation profile [46]. In GBM, the EGFR extracellular muta-
tions (A289V, G598V, and R108K) and IDHI mutation
R132H are present in 10 and 4.5% of tumors, respectively,
and are associated with drug response based on preclinical
data [49]. In non-small cell lung cancer, EGFR inhibitors (e.g,
erlotinib) are FDA approved for tumors with activating EGFR
mutations, which are present at 10 and 1% in our LUAD and
lung squamous cell carcinoma (LUSC) cohorts, respectively.
Despite the promise of targeted therapy, only 10.5% of
this pan-cancer cohort contains potential drug-associated
mutations in a cancer-type-specific setting. With drug re-
purposing across cancer types, in which a drug used pri-
marily in cancer type A with mutation X is repurposed for
cancer type B with mutation X, we find that an additional
54% of patients may be treated with a FDA-approved
drug-variant interaction (Figs. 2 and 3, Additional file 2:
Table S12). This number can be increased to 22.8% if we
consider repurposing of lower tier drug-variant pairs to
other cancer types; however, these interactions will require
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settings. a Fraction of tumors (y-axis) for a given cancer type (x-axis) that have at least one drug-associated mutation. Both bar graphs are sorted
by evidence level. For the cancer-type-specific graph, only the cancer types with the highest level of evidence per mutation are shown. For the
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clinical validation to be considered truly druggable. In this
cancer-type-non-specific setting, cancer types in which at
least 40% of tumors have drug-associated mutations in-
clude low-grade glioma (LGG, 76%), thyroid carcinoma
(THCA, 70%), and colorectal adenocarcinoma (COAD-
READ, 42%). A small number of drug-associated muta-
tions occur at high frequency in these cancer types. For
example, in THCA, the BRAF V600E variant is found in
60% of tumors. Clinical trials have investigated the use of
BRAF inhibitors combined with MEK inhibitors in
THCA. However, BRAF V600E also occurs at a lower
frequency in HNSC, KIRP, LGG, and GBM, indicating
significant repurposing potential for BRAF inhibitors
[50, 51] (Fig. 3).

COADREAD may also have potential for therapeutic
intervention via repurposing (Fig. 2a). However, COAD-
READ has been difficult to treat due to a large presence
of KRAS and BRAF mutations; EGFR inhibition as
monotherapy is used for COADREAD, but only in tu-
mors with wild-type KRAS [52, 53]. Repurposing drugs
that inhibit downstream effectors of KRAS (e.g., MEK) is
an alternative therapeutic strategy for KRAS-mutant
COADREAD (23.8% of patients). The efficacy of MEK
inhibition in combination with sorafenib has been tested
in clinical trials for KRAS- or NRAS-mutant liver hepa-
tocellular carcinoma (LIHC) [54] and has shown positive
results. Co-targeting of MEK and AKT signaling showed
some durable response in a phase I study [55], and most
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recently, a small trial showed some success combining
an investigational MEK inhibitor with a CDK4/6 inhibitor
in non-small cell lung cancer (NSCLC) (trial NCT num-
ber NCT02022982). COADREAD or other cancer types
having RAS mutations, such as cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC),

acute myeloid leukemia (AML), stomach adenocarcinoma
(STAD), and uterine corpus endometrial carcinoma
(UCEC), could benefit from further exploration of com-
binatorial therapies targeting downstream targets of KRAS
(Fig. 2b). BRAF-mutant COADREAD (7.6% of patients)
presents a similar problem in that BRAF inhibitor
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monotherapy is ineffective unlike in BRAF-mutant melan-  protein space with mutations from DEPO associated
oma and that triple drug combination targeting the EGFR,  with drug sensitivity or resistance, may themselves affect
MAPK, and PI3K pathway has shown more positive re- drug binding affinity and response. Out of 160 “sensi-
sults. Numerous clinical trials are underway to find the tive” mutations from DEPO that mapped onto protein
best combination therapies with BRAF inhibitors, including  structures, we identified 134 “sensitive” mutations in
new drugs that are Wnt pathway and cyclin-dependent kin-  HotSpot3D clusters, which in turn were clustered with
ase inhibitors [56]. Together, cancer-type-specific and 214 putative sensitive mutations that were not catalo-
non-specific mutational analyses identified potential thera- gued in DEPO. These mutations were found in 55 clus-
peutic targets in 2114 tumors (32%), some of which will be  ters from 24 genes (Fig. 4a). Among all genes in our
considered druggable only with further clinical develop- analysis, EGFR contains the highest number of putative

ment and FDA approval. sensitive mutations, with 36 mutations that clustered

with 19 mutations in DEPO from seven different clusters
Protein structure-based clustering of drug-associated (Fig. 4a). This clustering analysis helps winnow down
mutations the mutation list to candidates likely to affect drug re-

We applied a structure-based clustering tool, HotSpot3D  sponse and provides context for further experimental
[27], to the pan-cancer dataset to reveal putative func- testing, but does not necessarily indicate the direction of
tional mutations (Additional file 2: Table S13). Hot- drug response; in total, HotSpot3D analysis identified
Spot3D’s utility in predicting functional mutations is  potential therapeutic targets in 458 tumors (7%).

supported by experimental evidence using cell lines ex- We identified putative resistant mutations as those
pressing one of several EGFR-mutant proteins [36]. Hot-  that clustered with “resistant” mutations from DEPO;
Spot3D identifies mutations that, by clustering in further, to prevent contradictory annotation of putative
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mutant BRAF constructs and were cultured in 0.5% calf serum for 24 h before treatment with Dabrafenib (0-1uM) for 6 h. BRAF activity was
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mutations as both “sensitive” and “resistant,” we limited
our analysis of clusters containing “resistant” mutations
to those that did not overlap with clusters containing
sensitive mutations. This procedure yielded four differ-
ent clusters with a “resistant” mutation in AKTI,
MAP2K1, and RACI; these four clusters contained 14
putative resistant mutations clustering with four known
resistant mutations (Additional file 2: Table S13). RAC1
yielded the largest cluster, with RAC1 P29S mediating
resistance to BRAF inhibitors in BRAF-mutant SKCM
[57]. Other mutations in this cluster that may affect
binding affinity of BRAF inhibitors (or that may mediate
resistance to BRAF inhibitors) are C18Y, E31D, A159V,
P29L/T, and P34S.

To provide evidence in support of mutation clustering
as a method for identifying putative druggable muta-
tions, we first show that known drug-associated muta-
tions in DEPO that affect binding affinity of drugs in the
same drug class cluster spatially. Most clusters contain
more than one known drug-associated mutation. For ex-
ample, KIT has multiple clusters with known mutations;
one of which has three known mutations (E490D,
Y494C, S476G) in the same cluster, which are FDA ap-
proved as sensitive to combined therapy of imatinib, su-
nitinib, and regorafenib (KIT and angiogenesis inhibitor).
In addition, this cluster contains two other unique muta-
tions (D439H, 1438L) not in DEPO that, based on our
analysis using HotSpot3D, could also affect binding af-
finity and potentially tumor sensitivity to KIT combined
with angiogenesis inhibitors (Additional file 2: Table
S13). Second, we experimentally validated HotSpot3D as
a tool for identifying functional mutations associated
with drug response. To do this, we assessed the activity
and drug sensitivity of a set of six BRAF mutations
(F6351, G596D, K601E, W604L, L613F, G596R) in close
spatial proximity to the well-studied V600E pathogenic
mutation (Fig. 4b). A key function of BRAF is phosphor-
ylating MEK1/2. Therefore, we transfected BRAF muta-
tions, along with wild-type BRAF and BRAF V600E, into
HEK293T cells in the presence or absence of BRAF in-
hibitor dabrafenib, and used phosphorylation changes in
MEK1/2 as an indicator of BRAF activity. The undetect-
able level of endogenous BRAF in HEK293T cells elimi-
nates potential ambiguity in interpreting the effects of
transfected BRAF mutations. As expected, BRAF V600E
caused drastically increased phosphorylation in MEK1/2
that is reduced by dabrafenib (Fig. 4c). Three (G596D,
K601E, and W604L) out of six other transfected BRAF
mutations also showed higher levels of MEK1/2 phos-
phorylation and sensitivity to dabrafenib than wild-type
BRAF, suggesting that a high percentage of mutations
identified by Hotspot3D in close spatial proximity to
V600E are activated and similarly sensitive to dabrafenib.
Notably, BRAF G596R-transfected cells appeared to have
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a much lower level of MEK1/2 phosphorylation when
compared to those transfected with wild-type BRAF,
supporting prior findings that G596R results in BRAF
loss of function [58]. Our ongoing development of com-
prehensive computational tools combining spatial prox-
imity with considerations of specific amino acid
substitutions and other structural features will further
improve the accuracy of identifying functional muta-
tions. Overall, HotSpot3D, combined with experimental
assays, can help identify functional mutations that are
candidates for inclusion in DEPO and worth further
clinical exploration.

Druggable gene and protein expression outliers in pan-
cancer cohort

In addition to driver mutations in oncogenes, elevated
expression of genes or gene products can also be used to
select tumors for targeted therapy [59-61]. For example,
in the case of breast cancer, elevated mRNA expression
and copy number amplification of ESR1 correlate with
elevated protein expression of ER [62, 63], as well as
with sensitivity to hormonal therapy with tamoxifen [62,
64]. In general, tumors with elevated protein expression
may respond to drugs that activate antibody-dependent
cell-mediated cytotoxicity [65], suppress signaling path-
ways essential for tumor survival [66], or deliver cyto-
toxic agents via tumor-specific antigens [67].

Therefore, to further expand the set of tumors with
potential drug-associated biomarkers, we sought tran-
scriptomic and proteomic evidence of elevated gene/
protein expression. For each gene in DEPO whose ex-
pression is associated with drug response, tumors with
outliers were identified using the pan-cancer cohort as a
reference. We defined outliers as expression values ex-
ceeding 1.5 interquartile ranges (IQR) above the third
quartile of the cohort [68]. We applied this outlier detec-
tion strategy across mRNA, protein, and protein phos-
phorylation levels. RNA-seq and protein RPPA data are
available for 5286 and 3877 tumors out of 6570 tumors
in the TCGA cohort, respectively (Additional file 2:
Table S14). DEPO has 50 genes whose expression is as-
sociated with drug response, 39 of which are associated
with drug sensitivity. We identified elevated expression of
druggable genes with drug sensitivity in 16 and 30% of the
pan-cancer cohort of 6570 TCGA tumors at the mRNA
and protein/phosphoprotein levels, respectively (Fig. 5).
Interestingly, tumors with “druggable” gene fusions tend
to express elevated levels of the corresponding druggable
gene (Additional file 2: Table S15, Additional file 3:
Figure S1) [69], suggesting that fusions may be one of
several drivers of gene and protein expression.

To determine mRNA expression outliers in tumor
samples, we used RNA-seq data from TCGA (Fig. 5a).
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Elevated DLL3 expression was identified in 161 tumors,
including LGG, GBM, and SKCM tumors. DLL3 con-
tributes to neuroendocrine tumorigenesis by inhibiting
the Notch signaling pathway, whose role is to suppress
tumor growth. A DLL3-targeted antibody-drug conju-
gate in phase II clinical trials effectively targets
DLL3-expressing cells in high-grade pulmonary neuro-
endocrine tumors [70, 71]. This same therapy could po-
tentially benefit GBM, LGG, and SKCM via repurposing
due to shared levels of high DLL3 expression. Seventeen
percent of BRCA and UCEC express PGR and 9.4% of
BRCA express ERBB2 in our cohort, reflecting the
FDA-approved use of anti-estrogen hormone therapy
and HER-2 inhibitors, respectively, in these cancer types.
ERBB2 is expressed in other cancer types, such as BLCA

and CESC, which could benefit from repurposing and
further exploration of HER2-inhibition; HER-2 inhibitors
for COADREAD are currently being explored in
late-stage clinical trials.

To examine tumors with potential drug-associated
biomarkers based on protein expression and phosphosite
levels, we used TCGA reverse phase protein array
(RPPA) data (Fig. 5b). Compared to the pan-cancer co-
hort, 83% of prostate adenocarcinoma (PRAD) express
elevated AR, reflecting their tissue of origin. Elevated
AR is also present in 9% of breast adenocarcinoma
(BRCA). These 9% of BRCA express higher levels of AR
than 17% of PRAD, suggesting that androgen-deprivation
therapy can potentially be repurposed for AR-positive
BRCA [72] (Additional file 2: Table S16). Similarly, 26 and
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52% of BRCA and UCEC, respectively, show elevated ac-
tivity at ESR1’s p.S118 phosphosite. These only represent
a fraction of druggable BRCA, as 77% of tumors in a large
breast cancer registry are ER positive [73]. Elevated ex-
pression and activity of EGFR protein and its phosphosites
across cancer types suggest that phosphoproteome ana-
lysis may inform treatment response. EGFR phosphosites
p-Y1068 and p.Y1173 are active in GBM, head and neck
squamous cell carcinoma (HNSC), KIRC, LUAD, and
LUSC. Some evidence has shown that HNSC, LUAD, and
LUSC are responsive to EGFR tyrosine kinase inhibitors
(TKIs) [74, 75], perhaps because EGFR TKIs inhibit auto-
phosphorylation rather than elevated protein expression
[76]. In KIRC, EGFR inhibitors have negligible activity
[77-79] despite active phosphosites in our analysis, pos-
sibly because EGFR is one of many growth factors
expressed in KIRC or because EGFR inhibition is ineffect-
ive in the absence of functioning VHL [80].

Altogether, our results suggest that protein outlier ana-
lysis may require integration with mutational and/or
mRNA expression analyses to better predict response to
therapy. Additionally, mass spectrometry for protein ex-
pression can be valuable in validating RNA-seq and
RPPA data as well as capturing new putative druggable
events (Additional file 1, Additional file 3: Figure S2).
mRNA and phosphoprotein expression outlier ana-
lysis identified potential therapeutic targets in 2559
tumors (39%).

Integrative omics analysis of druggability

Assessing alterations in multiple levels of data across
genes may improve predictions of druggability. For ex-
ample, with trastuzumab, a single testing method or bio-
marker (CNV, mRNA expression, protein expression,
etc.) can be insufficient for stratifying patients into
responders and non-responders [59]. Therefore, we
assessed druggability using comprehensive mutational,
RNA-seq, and RPPA data in 3121 tumors. Of these,
1003 tumors (32%) are potentially druggable based on
two or more data types (genomic, transcriptomic, prote-
omic) (Fig. 6a, Additional file 2: Table S8), affording an
opportunity for clinical or mechanistic analyses connect-
ing drug-associated mutations with transcriptomic/prote-
omic expression events. Figure 6b and Additional file 2:
Table S10 depict tumors with multiple levels of alterations
associated with sensitivity to one of ten categories of
FDA-approved cancer drugs (Additional file 2: Table S9).
Seventy-two tumors had elevated mRNA and protein ex-
pression of HER2; these may be expected to have greater
or more uniform sensitivity to HER2 inhibition than tu-
mors with elevated mRNA or protein expression alone.
Identifying mutations associated with drug resistance may
further improve predictions of druggability. RAC1 P29S
co-occurs with mutations in BRAF and MEK1 in four
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SKCM tumors (Additional file 2: Table S17, Additional file 3:
Figure S3). RAC1 P29S renders SKCM resistant to BRAF/
MEK inhibition [57]; testing for RAC1 P29S may identify
patients with BRAF V600E SKCM unlikely to benefit from
BRAF/MEK inhibitor. In this case, the single-gene para-
digm of existing companion diagnostics may be insufficient
to determine best treatment options; rather, comprehensive
mutational profiling should be considered.

Multi-omics profiling also reveals opportunities for
combinatorial therapy. AKT1 E17K co-occurs with
BRAF V600E in five tumors (Additional file 2: Table
S17, Additional file 3: Figure S3). Combining an AKT in-
hibitor with the current standard of treatment for BRAF
V600E-positive SKCM (BRAF/MEK co-inhibition) may
delay drug resistance [81]. Transcriptomic and prote-
omic expression profiling reveals 48 additional tumors
with BRAF V600E/K and elevated AKT (AKT1/2/3) ex-
pression at the mRNA or protein/phosphoprotein levels;
these may also benefit from BRAF/AKT inhibition
(Fig. 6b, Additional file 2: Table S10). Similarly, Fig. 6b
shows that 38 tumors contain biomarkers of response
(i.e., mutational or expression based) for both EGFR and
CDK inhibitors. Though both therapies are FDA ap-
proved, no clinical trials to date have examined com-
binatorial therapy with EGFR and CDK dual inhibition.
Additionally, 105 tumors contain activating PIK3CA
mutations co-occurring with elevated mRNA or protein
expression of ESR1 or PGR. Given the success of mTOR
and anti-estrogen therapy in ER-positive breast cancer
[82], this combination may be useful in other cancer
types that are dependent on hormonal or PI3K/mTOR
signaling. By identifying tumors with biomarkers of
response to multiple drugs, and by identifying variations
in biomarkers across gender and ethnicity (Additional file 1,
Additional file 2: Table S11, Additional file 3: Figure S4),
multi-omics profiling can facilitate the rational design of
clinical trials for combinatorial therapy.

Validation of druggability analyses with large-scale drug
screening

We sought to provide support for our two hypotheses
that our approaches relied upon: (1) a drug with evi-
dence supporting use in a given cancer type can be
repurposed to other cancer types that contain a shared
genetic alteration; (2) gene/protein expression outlier
score is a predictor of drug sensitivity. To test these hy-
potheses, we utilized the Genomics of Drug Sensitivity
in Cancer (GDSC) database, which contains drug sensi-
tivity data for around 75,000 experiments of 138 anti-
cancer drugs (Additional file 2: Table S4) across 700
cancer cell lines [83]. We extracted tissue type, the mu-
tational landscape (missense mutations and in-frame
indels), gene expression, and drug sensitivity information
for each cell line.
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Twenty-six sensitive mutations from DEPO are found
in GDSC cell lines paired with 44 drugs (Additional file 2:
Table S5). BRAF V600E, PIK3CA H1047R, and KRAS
G12D occur most frequently in GDSC cell lines. Overall,
the mean LN(ICs,) for cell lines that contain a sensitive
mutation from DEPO was significantly lower than back-
ground LN(ICs50) in both the cancer-type-specific and
non-specific setting (Mann-Whitney U test, P=1.1e-96
and P = 1.3e-109, respectively) (Fig. 7a). Individual variant/
drug combinations from DEPO also performed well; 39
variant/drug combinations in the cell line data occurred in
sufficient samples in both the cancer-type-specific and

non-specific settings for statistical analysis (Additional file 2:
Table S6). This represented 6 of 26 sensitive mutations. In
both the cancer-type-specific and non-specific settings, 19
variant/drug combinations had significantly lower mean
LN(ICs5p) than background LN(ICs) for the corresponding
drug. Based on these 19 drug-variant combinations, 4 out
of 6 sensitive mutations in DEPO (KRAS GI12V, BRAF
V600E, NRAS Q61K, and KRAS G12D) were significantly
associated with sensitivity to at least one of their paired
drugs in both the cancer-type-specific and non-specific set-
tings. For example, cell lines with BRAF V600E were associ-
ated with sensitivity to BRAF inhibitors PLX4720 (1),
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PLX4720 (2), and dabrafenib in both the cancer-type-specific
(SKCM) and non-specific settings (BRCA, COADREAD,
GBM, LGG, LIHC, and THCA) (Fig. 7b). Two out of six
mutations (PIK3CA HI1047R and KRAS GI12C) was
associated with sensitivity in either the cancer-type-specific
or the non-specific setting. Cell lines with PIK3CA
H1047R had a significantly lower mean LN(ICjo) in
the cancer-type-non-specific setting; however, this

category encompassed several cancer types, including
BRCA, HNSC, and ovarian serous carcinoma (OV).
Similarly, cell lines with KRAS G12C had a significant
lower mean LN(ICs,) in the cancer-type-specific set-
ting, encompassing LIHC, LUAD, LUSC, and pancre-
atic adenocarcinoma (PAAD). Overall, our analyses
provide some evidence to support our hypothesis that
drugs can potentially be repurposed across several
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cancer types using shared mutational biomarkers of
druggability. It must be noted, however, that sensitivity to
drug response in cell lines does not necessarily translate
over to clinical efficacy, and RAS- and PIK3CA-mutant
cancers continue to be controversial.

To verify that gene expression outlier score was corre-
lated with drug response, we conducted linear regression
analysis for gene probe/drug combinations (Additional file 2:
Table S18) using 116 different probes for 22 genes in
DEPO. Forty-two probe/drug combinations corresponding
to 10 genes had significant negative correlation (P < 0.05)
between LN(IC5p) and gene expression outlier score (Fig. 7c,
Additional file 2: Table S7). For example, MDM2 expres-
sion correlates with sensitivity to nutlin-3a and EGFR ex-
pression correlates with sensitivity to erlotinib, lapatinib,
and gefitinib (Fig. 7d, e). Similar trends are observed in
CDK6 with palbociclib (PD-0332991: CDK4/6 inhibitor)
and ERBB2 with lapatinib (Additional file 2: Table S7).
Though cell line-based validation does not guarantee 100%
drug response in patients, our analysis demonstrates that
expression in 10 of 22 genes correlates with drug sensitivity
in GDSC. Expression in other genes such as AKT2 and
KIT did not correlate with drug sensitivity (Additional file 2:
Table S7). However, this does not rule out the clinical utility
of expression assays for these genes given that, for in-
stance, KIT protein expression is an FDA-approved
companion diagnostic for imatinib use. Overall, our
analysis suggests that using gene expression outliers is
a reasonable approach for predicting druggability in
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human cancers; however, some of these interactions
still need to be validated in a clinical setting.

Discussion
This study presents a pan-cancer analysis of
multi-omics-driven prescription of targeted therapy
across 6570 TCGA patients. Using DEPO, a curated
database of variant/drug interactions with clinically rele-
vant annotations, we investigated the frequency of po-
tential druggable multi-omics alterations based on
various levels of evidence to help guide future clinical
trials. After adjusting the percentages of potentially
druggable tumors based on our validation strategy, we
found that mutational, mRNA expression outliers, and
phosphoprotein/protein expression outliers implicate
druggability of 5% of tumors, respectively based on
FDA-approved interactions only. However, up to 15.6%
of the cohort could benefit if repurposing of these
FDA-approved interactions to other cancer types are fur-
ther explored; this percentage could increase to 33.9,
34.4, 44.6, and 48.4% of tumor samples based on clinical
trials, case reports, preclinical evidence, and HotSpot3D evi-
dence, respectively should these drug-variant interactions be
approved clinically in their respective cancer types (Fig. 8,
Additional file 2: Table S19, Additional file 3: Figure S5).
Our analysis illustrates the potential of a “precision
oncology” approach to prescribe targeted therapy to a
pan-cancer cohort of patients. Compared to prior work
[17], our study offers four novel advancements. First,
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Fig. 8 Summary of multi-omics-based druggability. Bar graphs show the percentages of tumor samples with a drug-associated variant type
(mutation, mMRNA expression, protein expression) in the cancer-type-specific and cancer-type-non-specific settings. The circular display shows
cumulative percentages of tumor samples with drug-associated biomarkers of successively decreasing levels of evidence
J




Sengupta et al. Genome Medicine (2018) 10:60

with DEPO, our analysis of druggability in a given tumor
is exclusively based on mutation/drug interactions rather
than gene/drug interactions, with variants including both
predefined mutations (e.g., BRAF V600E) and categories
of mutations (e.g., EGFR exon 19 deletions). The most
comprehensive prior study assessing prescription of anti-
cancer drugs included fewer than 10 mutations associ-
ated with drug sensitivity [17] (http://www.intogen.org/
downloads); in comparison, the present study includes
362 mutations associated with drug sensitivity. Second,
while prior studies exclusively used genomic data to
infer druggability [12, 17], ours is comprehensive in its
use of genomic, transcriptomic, and proteomic data
types, specifically leveraging mRNA expression and
phosphoproteomic expression data to further define tu-
mors with potential drug-associated biomarkers. It fur-
ther demonstrates that integrating data types can allow
novel, personalized combinatorial therapy. Third, it uses
an analytic tool to create a set of putative druggable mu-
tations, of which a subset occurring in BRAF were tested
and validated in vitro. Finally, we used a large-scale drug
screening dataset (GDSC) to support our predictions of
druggability based on repurposing across cancer types
and expression outlier analysis. GDSC and other drug
screening datasets have been used to identify biomarkers
of drug sensitivity in hypothesis-free analyses [18, 84, 85],
but our study is unique in using GDSC as orthogonal val-
idation of putative biomarkers from clinical trials, case re-
ports, and preclinical studies.

Though our study and prior studies [12, 15, 17] impli-
cate large percentages of tumors as potentially druggable
(48% and 94%/76%/73%, respectively), prior studies
made several assumptions regarding off-variant and
off-target drug activity that may not be clinically feasible.
For example, using the more stringent prescription
guidelines of the present study (variant/drug prescription
with no off-variant or off-target effects), only 12.3% of
tumors in Rubio-Perez et al. would be druggable. Fur-
thermore, ongoing clinical trials [86, 87] argue that more
accurate druggability annotations require specifying al-
terations at the variant level, as the present study does,
but which Frampton et al. [15] and Van Allen et al. [12]
do not. Realistically, only a fraction of the 48% of tumors
with potential drug-associated omics alterations will be
clinically druggable because the mere presence of a
shared genetic biomarker (mutation, mRNA/protein
expression outlier) does not guarantee clinical efficacy
across cancer types, nor does it guarantee acceptable
clinical toxicity. Not all preclinical drug-biomarker
pairs, including those predicted with HotSpot3D, will
advance to clinical trials. Further, we recognize that
our computational survey of the landscape of poten-
tial drug-associated omics alterations may include
some controversial drug/biomarker relationships (e.g.,
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PI3K inhibitors in PIK3CA-mutant cancers), some of
which have either failed clinical trials and/or are still
being actively developed in clinical trials. Nonetheless, our
study is important in identifying which drug-biomarker
pairs, repurposing events, and combinatorial therapies are
worth exploring and provides a robust platform for both
design and analysis of clinical trials.

Our analysis has several limitations. First, TCGA
tumor samples are treatment naive. Given that tar-
geted therapy is often used once other therapeutic
options (e.g., cytotoxic chemotherapy, radiotherapy)
have been exhausted, tumors treated in the clinical
setting may have different genomic profiles than those
in this study. Second, our analysis does not account
for clonal heterogeneity, which is not unreasonable
given that therapies targeting genomic alterations with
high variant allele frequencies can induce substantial
tumor regression [88]. However, we acknowledge that
for clonally heterogeneous cancer types such as GBM,
even if the dominant clone is sensitive to therapy,
one or more subclones lacking a druggable genomic
event may escape [89]. Third, some potential expres-
sion outliers may be missed since we do not compute
cancer-specific expression outliers; therefore, outliers
in cancer types with low overall expression may not
be identified, and only high confidence outliers that
are most likely targetable are reported. Additionally,
some outliers may represent cancer lineage markers
or non-cancer cells within tumors and not necessarily
a somatically altered pathway, such as the 58% of
KICH expressing KIT (Fig. 5a). Future studies can de-
termine which kinase expression outliers are contrib-
uting to a somatically altered pathway by checking
phosphorylation and/or expression of downstream
substrates. Fourth, our analysis does not consider
germline mutations that sensitize a tumor to targeted
therapy, nor does it attempt to use integrative omics
data to predict sensitivity to immune checkpoint in-
hibitors. Finally, our analysis ignores therapeutic tox-
icity. In particular, toxicity is often a limiting factor
for combination therapy [90, 91], though rationally
designed combinations can reduce toxicity [92].

Conclusions

This study is the first to comprehensively profile the
druggability of cancer types using integrative omics
TCGA data. While multi-omics-driven prescription of
anticancer drugs is a powerful concept [17], the efficacy
of each drug still requires testing within the context of
clinical trials. By describing the landscape of potentially
druggable alterations across cancer types, our study
serves as a roadmap for the interpretation and design of
clinical trials in precision oncology.
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