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Abstract

Background: Prior research has established that the prevalence of pathogenic/likely pathogenic (P/LP) variants
across all of the American College of Medical Genetics (ACMG) Secondary Findings (SF) genes is approximately 0.8-5%.
We investigated the prevalence of P/LP variants in the 24 ACMG SF v2.0 cancer genes in a family-based cancer research
cohort (n=1173) and in cancer-free ethnicity-matched controls (n = 982).

Methods: We used InterVar to classify variants and subsequently conducted a manual review to further examine
variants of unknown significance (VUS).

Results: In the 24 genes on the ACMG SF v2.0 list associated with a cancer phenotype, we observed 8 P/LP unique
variants (8 individuals; 0.8%) in controls and 11 P/LP unique variants (14 individuals; 1.2%) in cases, a non-significant
difference. We reviewed 115 VUS. The median estimated per-variant review time required was 30 min; the first variant
within a gene took significantly (p = 0.0009) longer to review (median = 60 min) compared with subsequent variants
(median = 30 min). The concordance rate was 83.3% for the variants examined by two reviewers.

Conclusion: The 115 VUS required database and literature review, a time- and labor-intensive process hampered by
the difficulty in interpreting conflicting P/LP determinations. By rigorously investigating the 24 ACMG SF v2.0 cancer
genes, our work establishes a benchmark P/LP variant prevalence rate in a familial cancer cohort and controls.
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Background

In 2013, the American College of Medical Genetics and
Genomics (ACMG) recommended that “laboratories
performing clinical [exome or genome] sequencing seek
and report mutations of the specified classes or types” in
a set of 56 genes associated with a severe phenotype,
and for which disease risk may be reduced or managed
before symptoms arise [1, 2]. These recommendations
for reporting of incidental (or secondary) findings (SF)
in clinical exome and genome sequencing were later
amended to 59 genes (ACMG SF v2.0) [3].

Although both ACMG SF policy statements used the
older “known pathogenic” or “expected pathogenic” vari-
ant categorization terminology [4], a transition to the
newer five-category system of pathogenicity has been
urged [5, 6]. To date, multiple studies using the newer
pathogenicity scheme to investigate clinical exome se-
quencing data and publicly available sequence databases
in primarily European-American and African-American
cohorts have estimated the prevalence of ACMG SF
gene list (the original 2013 list and 2017 amendment)
pathogenic/likely pathogenic (P/LP) variants to be ap-
proximately 0.8—5% [7, 8]. Some, but not all, studies of
ethnically diverse cohorts have found higher prevalence
of P/LP (5.6-7%) for ACMG SF genes [9-11]. The
prevalence of P/LP variants in cancer cohorts remains
largely uninvestigated, and to our knowledge, prevalence
of P/LP variants has not been determined in a large can-
cer study with ethnicity-matched healthy controls.

The current American College of Medical Genetics
and Genomics/Association for Molecular Pathology
(ACMG/AMP) guidelines use conservative methods to
classify variants based on numerous criteria including
clinical and family history, previous literature, and
known population allele frequency [5]. Currently, there
are 28 criteria used to determine final variant classifica-
tion, and the use of these criteria is labor-intensive. One
strategy for applying the ACMG/AMP guidelines is a
consensus-based tumor board-like review by experts for
genes/variants of interest. However, this approach is
relatively low-throughput, labor-intensive, and not real-
istic for large-scale sequencing efforts. Another strategy
would employ automated procedures. The software
package InterVar was developed as a semi-automated
approach to applying the ACMG/AMP guidelines [12].
It incorporates 10 of 28 ACMG/AMP criteria automatic-
ally; the remaining 18 criteria can be applied following
manual review of a variant in the literature, if published.

In this study, we used the most recent ACMG/AMP
criteria and determined the prevalence of P/LP variation
in the 24 ACMG SF v2.0 gene list associated with a can-
cer phenotype in a large, family-based heterogeneous
cancer research cohort (1 =1173 individuals; 738 fam-
ilies) and in ethnicity-matched controls (7 =982). (The
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remaining 35 non-cancer ACMG SF v2.0 genes were not
fully investigated.) We used InterVar to classify variants,
followed by a manual review to further examine variants
of unknown significance (VUS). In addition, we esti-
mated the time to resolve VUS and evaluated the con-
cordance rate between reviewers for 30% of the reviewed
variants.

Methods

DCEG familial exome cohort and cancer-free controls,
anonymization, and ethics review

Cases were drawn from the NCI Division of Cancer Epi-
demiology and Genetics (DCEG) Familial Exome cohort,
a large, long-term, longitudinal, heterogeneous group of
family-based studies with a cancer phenotype and a
Mendelian or near-Mendelian pattern of inheritance.
The majority of the families lacked a known causative
germline genetic variant; the cancer phenotype in the
families may or may not overlap with the known cancer
phenotype of the 24 ACMG v2.0 cancer genes. Families
in which a causative gene was identified were not ex-
cluded. Data from 982 controls from 2 cohort studies,
Prostate, Lung, Colorectal, and Ovarian Cancer Screen-
ing Trial (PLCO [13]) and the Cancer Prevention Study
(CPSII) of the American Cancer Society [14], and 1
case-control study, the Environment and Genes in Lung
Cancer Etiology (EAGLE [15]), were available for inclu-
sion in the current study. Controls were cancer-free at
the time of enrollment. Controls in the CPSII and PLCO
studies were followed longitudinally, and if cancer devel-
oped, this was noted; EAGLE controls were not followed
longitudinally. All participants provided written con-
sent and were recruited through IRB-approved proto-
cols. For these analyses, cases and controls underwent
irrevocable anonymization. The project was reviewed
and approved by the NIH Office of Human Subjects
Research Protection, which granted a waiver of the
IRB review requirement.

Exome sequencing, quality control, ethnicity
determination, and analysis of population stratification
Exome sequencing was performed at the Cancer Gen-
omics Research Laboratory, National Cancer Institute
(CGR, NCI), as described [16, 17]. Cases and controls
were matched using an ethnicity-informative variation
[18]. After the controls and cases were matched, poor
quality and contaminated samples were excluded from
the dataset. Any variants that were flagged with our
pipeline quality control metric (CScorefilter), had a
read depth <10, ABHet <0.2 or > 0.8, or did not pass
other quality control filters were excluded from the
analysis. All variants were further filtered using pop-
maxfreq <0.01, see Additional file 1: Supplemental
Methods for additional details.
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Automated and manual review of variation in the 24
ACMG SF v2.0 cancer genes

Variation in the 24 ACMG SF v2.0 genes primarily asso-
ciated with a cancer phenotype (“ACMG SF v2.0 cancer”:
APC, BMPRIA, BRCAIL, BRCA2, MEN1, MLH1, MSH2,
MSH6, MUTYH, NF2, PMS2, PTEN, RB1, RET, SDHB,
SDHC, SDHD, SMAD4, STK11, TP53, TSC1, TSC2, VHL,
WT1) was annotated using ANNOVAR [19], which in-
cluded InterVar, a semi-automated software tool which
applies the ACMG-AMP guidelines [12]. To more fully
classify potentially pathogenic variants, all ACMG SF
v2.0 cancer gene variants listed in the Human Gene Mu-
tation Database (HGMD; version 2015.2; Qiagen, Car-
diff, Wales, UK) as “disease mutation” (DM) underwent
manual review, regardless of the InterVar assertion and
without knowledge of case or control status. In addition,
we used Google Scholar to search the published litera-
ture for information on variants designated VUS by
InterVar which were not listed in HGMD. The primary
literature was then reviewed by 17 reviewers (including
oncologists, hematologists, clinical geneticists, genetic
counselors, geneticists, or genetic epidemiologists). The
reviewers were assigned specific gene(s) after variant re-
view training and classified the variants according to the
ACMG/AMP guidelines using a pre-populated Excel file
that contained needed variant annotation information. Re-
viewers were also asked to provide comments for each
score provided and to estimate the time needed to review
each variant. We noted which variant within each gene
was the first one evaluated by each reviewer. After initial
review, variants were subject to a quality control (QC)
process in which the criteria for scoring and reviewer
comments were compared for agreement. As a second
QC check, 31% (n=36) of the 115 variants initially
reviewed were re-evaluated by a second independent re-
viewer. If there was discordance between the primary and
secondary reviewers on variant classification, discus-
sion was initiated to reach consensus. The ACMG/
AMP combining criteria were implemented using the
Genetic Variant Interpretation Tool available online
(http://www.medschool.umaryland.edu/Genetic_Varian-
t_Interpretation_Tooll.html/) [20]. Graph and p values
(¢ test) were calculated using GraphPad Prism 7 (Graph-
Pad Software Inc., La Jolla, CA), and 95% confidence in-
tervals were calculated using STATA 14 (StataCorp LLC,
College Station, TX).

Results

Sequence quality, demographics, and matching cases and
controls

For the entire DCEG Familial Exome cohort (plus con-
trols), exome sequencing was performed such that 88%
of coding sequence from the University of California
Santa Cruz (UCSC) human genome (hg) 19 transcripts
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database had >15 reads with an average coverage of
61x. After the sample quality control, there were 982
control individuals from the PLCO, EAGLE, and CPSII co-
horts and 1173 cases (738 families) from 15 cancer-based
studies (Tables 1 and 2, Additional file 2: Table S1). Popu-
lation stratification for Northern and Western European
ancestry (CEU) >0.80 (Additional file 2: Figure S1) re-
sulted in well-matched cases and controls by principal
component analysis (Additional file 2: Figure S2).

InterVar classification of ACMG SF v2.0 cancer and non-
cancer genes prior to expert review

We used InterVar to classify all filtered variants into 6
categories (pathogenic (P), likely pathogenic (LP), variant
of unknown significance (VUS), likely benign (LB), be-
nign (B), and no classification) for cases and controls.
Since our cohort includes family members, we per-
formed 2 separate analyses: first, we used all cases, and
second, we randomly selected 1 affected individual per
family. Table 3 shows the InterVar classification of the
variants for all ACMG SF v2.0 genes, divided into “can-
cer genes” and “non-cancer genes” columns. In cancer
genes, there were 760 variants deemed VUS or “no clas-
sification”; “no classification” variants were primarily in-
tronic, located in the 5 or 3" untranslated regions, or
indels. There were 8 unique P variants (controls and
cases); 2 were in MUTYH. MUTYH is the only ACMG
SF v2.0 cancer gene in which the phenotype is associated
with an autosomal recessive pattern of inheritance and is
therefore reportable only for compound heterozygotes
or homozygotes [21]. Since all subjects in this study har-
bored only 1 P/LP MUTYH variant, we excluded this
gene from our prevalence calculation.

InterVar classification of ACMG SF v2.0 cancer genes after
expert review

Of the InterVar-determined cancer gene VUS (n =297)
or “no classification” variants (n = 463) in cases and con-
trols, 115 (15%) had been reported previously, as per
queries of HGMD and Google Scholar (VUS variants
only). A total of 77 variants were classified as “DM” in
HGMD, and an additional 38 VUS variants were identi-
fied in the searchable published literature queried

Table 1 Demographic characteristics of cases

Variable Cases
Ancestry European (CEU > 0.80)
Sex M: 682 (58%)
F: 491 (42%)
Number of families 738 families
Number of individuals 1173

Involved studies See Additional file 2: Table S1

CEU Northern and Western European ancestry
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Table 2 Demographic characteristics of controls

Variable CPSII PLCO EAGLE

Ancestry European (CEU > 0.80)

Sex M: 106 (49%) M: 217 (59%) M: 314 (79%)

Number of families
Number of individuals
Average age (years)
Average follow-up (years)

Number of individuals with a cancer found during follow-up

F: 111 (51%) F: 153 (41%) F: 81 (21%)
No families
217 370 395
71 67 66
1.1 93 N/A
7 32 Were not followed

CEU Northern and Western European ancestry, CPSIl Cancer Prevention Study Il (American Cancer Society), EAGLE Environment and Genes in Lung Cancer Etiology,
F female, M male, N/A not applicable, PLCO Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial

through Google Scholar. Of the remaining 645 variants,
there was little or no additional published or online in-
formation available, and therefore, these variants were
not further evaluated. After review by 1 cancer expert,
36 (31%) randomly selected variants underwent review
by a second cancer expert. The concordance rate be-
tween the primary and secondary reviewers for the
pathogenicity category of these 36 variants was 83.3%.
Discussion between reviewers led to the resolution of
the 6 discrepant variants from the 36 re-reviewed vari-
ants(16.7%) in this study. Among the 115 variants
reviewed, 2 unique variants were promoted to P from
VUS and 5 unique variants were promoted to P from
“no classification.” Two unique variants were promoted
to LP from VUS, and 1 unique variant was promoted to
LP from “no classification” (Additional file 3: Table S2).

Prevalence of P/LP variation in cases and controls and
estimated time to review

The allele and total counts of P/LP variants for the 24
ACMG SF v2.0 cancer genes after expert review for
cases and controls are shown in Table 4. The prevalence
of P/LP variants among controls was 0.8% (95% confi-
dence interval (CI) 0.3-1.4%), among cases, 1.2% (95%
CI 0.6-1.8%), and for one case per family, 1.1% (95% CI
0.3-1.8%). In controls, the P/LP alleles were in BRCA2
(five unique), MSH2 (one), PMS2 (one), and TP53 (one)

(Additional file 3: Table S2). In cases, the P/LP alleles
were in BRCAI (one) BRCA2 (one), PMS2 (one), and
TP53 (eight unique) (Additional file 3: Table S2). There
were no significant differences in the prevalence of P/LP
variants between controls and either case set (Table 4).
Reviewers needed an estimated median of 30 min (range
= 5-240 min) per variant to review the pertinent litera-
ture, to consult the ACMG/AMP guidelines, and to
make a judgment on the classification criteria (Fig. 1).
The first variant examined within a gene took signifi-
cantly longer (p =0.0009) to review (median = 60 min;
range = 10—240 min) compared with subsequent variants
in the same gene (median = 30 min; range = 5-117 min).
However, these estimated times did not account for the
time required to run InterVar, perform a QC check, con-
duct secondary reviewer validation, and resolve discor-
dances. Incorporating these additional tasks into the
review process would result in a much higher time re-
quirement to classify variants.

Discussion

In 1173 individuals from a heterogeneous, family-based
study of inherited cancer predisposition, the prevalence
of P/LP variants in the 24 ACMG SF v2.0 cancer genes
was 1.2%, not significantly different from P/LP variant
prevalence in 982 ethnicity-matched controls (0.8%).
Our study is notable for the large cohort size, the use of

Table 3 ACMG SF v2.0 genes classified per ACMG/AMP guidelines using InterVar software

Classification Controls (982 exomes)

All cases (1173 exomes)

1 case/family (738 exomes)

Cancer genes  Non-cancer genes

Cancer genes

Non-cancer genes ~ Cancer genes  Non-cancer genes

Pathogenic 4(17) 0

Likely pathogenic 0 (0) 8 (8)
Variant of unknown significance 141 (174) 403 (503)
Likely benign 248 (463) 398 (671)
Benign 12 (42) 30 (208)
No classification® 252 (3477) 832 (8181)

4(13) 0 4(7) 0

0(0) 11(17) 0(0) 10 (11)
179 (260) 440 (713) 140 (167) 336 (454)
242 (570) 417 (865) 202 (355) 332 (541)
12 (106) 28 (266) 11 (69) 26 (167)
290 (4315) 814 (10393) 225 (2714) 668 (6535)

Numbers represent unique variant count and number in parenthesis represents allele counts
*Majority of the “no classification” variants were intronic, 573" untranslated regions, and 22 indels
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Table 4 Pathogenic and likely pathogenic variants in 24 ACMG SF v2.0 cancer genes after expert review

Classification

Controls (982 exomes)

All cases (1173 exomes) 1 case/family (738 exomes)

Pathogenic 6 (6)

Likely pathogenic 2(2)

Prevalence of pathogenic and likely pathogenic variants 8/982
0.8%

95% Cl 0.3-1.4%

p value (controls vs. all cases)

p value (controls vs. 1 case/families)

5 (6) 303)
6 (8) 49
14/1173 8/738

1.2%
95% Cl 0.6-1.8%

0.5196

1.1%
95% Cl 0.3-1.8%

06171

Variants in MUTYH were excluded from counts since it underlies a recessive disorder and no MUTYH homozygotes or compound heterozygotes were observed in
cases or controls. The first number represents unique variant count and number in parenthesis represents allele counts

Cl confidence interval

variation-based ethnicity-matching of cases and controls,
thorough expert-driven review of variants by ACMG/
AMP criteria, and an exclusive focus on the 24 ACMG
SF v2.0 cancer genes.

Direct comparison of our results with previous studies
is challenging because of the differences in methodology
and study populations. We acknowledge that our familial
cancer cohort is heterogeneous since it is comprised of
individuals drawn from a wide variety of familial
tumor-predisposition studies, making comparison diffi-
cult. Analyses of the 1000 Genomes and the NHLBI GO
Exome Sequencing Project cohorts for P/LP variants in
a list of “medically actionable” genes (larger than the
ACMG SF v.2.0 list) found a prevalence of 2.2-3.4% [11,
22]. The P/LP prevalence rate (for the original (v1.0)

Time to review variants

300

p=0.0073 p=0.0010

200+

Minutes

100+

Fig. 1 Time required to review variants. Box-and-whisker plot of
reviewer-reported per-variant time (in minutes) to conduct manual
review of published literature and render a judgment on pathogenicity,
as per ACMG/AMP guidelines. There were statistically significant
differences in time to review all variants (blue; n=115) vs. the first variant
(red; n=24) and first variant vs. subsequent variants (green; n=91)

ACMG SF 56-gene list) in smaller, single-institution re-
search cohorts spanned an order of magnitude from
0.86% (Baylor-Hopkins Center for Mendelian Genomics)
[23] to 8.8% (Undiagnosed Disease Project) [24].

Data on the prevalence of P/LP variants in cancer co-
horts are sparse. To be comprehensive in this research
study, we considered both P and LP variants in our ana-
lysis, although the threshold to report LP variation from
ACMG SF v.2.0 genes in a clinical setting is under de-
bate [6]. One study of 439 individuals undergoing
tumor-germline dyad sequencing found that 4.3% har-
bored a germline variant (in a panel of 247 genes) indi-
cative of hereditary cancer predisposition [25]. A study
of 392 patients with pancreatic cancer undergoing
tumor/normal sequencing found a prevalence rate of
pathogenic variation of 5.1% from a panel of 130 genes
[26]. We were not able to find publications that reported
prevalence of P/LP for all ACMG SF genes in cancer co-
horts. The lower prevalence rate we observed in our
study compared with prior publications may be attribut-
able to our evaluating only a subset of known cancer
susceptibility genes. In addition, the 24 ACMG SF v2.0
cancer genes largely underlie risk in common cancers
(e.g., breast, ovarian, and colon cancer) and well-known
genetic disorders (e.g., Li-Fraumeni syndrome, retino-
blastoma) and are not necessarily associated with the
disorders constituting our study cohort (Additional file 2:
Table S1). Although one of our studies recruited individ-
uals with a history of familial breast and ovarian cancer,
eligibility required documentation of negative germline
BRCA1/2 genetic testing (Additional file 2: Table S1).

The ethnicity-matched controls (PLCO/EAGLE/CPSII)
were on average 70 years of age, healthy adults without a
history of cancer (other than non-melanoma skin cancer)
at the time of study enrollment and sample collection.
Interestingly, 0.8% of this control sample harbored a P/LP
variant in one of the 24 ACMG SF v2.0 cancer genes, not
significantly different from the cancer cohort (p=0.5)
(Table 4). Furthermore, participants in the CPSII and
PLCO study have been followed for an average of 10 years
after sample collection. During this follow-up, out of 586
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participants from CPSII and PLCO, 39 participants devel-
oped cancer. Considering only controls who did not de-
velop cancer after research follow-up, we found a similar
prevalence of P/LP variants compared with all controls
(1.2% vs. 1.5%, respectively).

By rigorously investigating P/LP variation in the 24
ACMG SF v2.0 cancer genes, our work establishes a
clinically useful benchmark prevalence rate, especially in
controls. Recent studies have shown that pathogenic
variation in single genes like DICERI [27] and TP53 [28]
(in public datasets like non-TCGA ExAC, 1000G, and
ESP) have a higher prevalence than the known or ex-
pected population frequency of their associated
syndromes. In the case of DICERI and TP53, the recog-
nition that pathogenic variation in recognized cancer
genes is more common than expected is an important,
emerging, and unanticipated finding from population-
based exome sequencing, one that has significant clinical
implications. In this study, we observed P/LP variation
in the 24 ACMG SF v2.0 cancer genes (specifically,
BRCA2, MLH1, MSH2, PMS2, and TP53) in 0.8% of our
982 controls, who, by a mean age of ~ 70 years, had not
developed any malignancy. Thus, in our controls, the
prevalence of P/LP germline variation in BRCA2 was
0.5% (all subjects 5/982, females only 1/345; none were
common Ashkenazi variants). In Lynch syndrome genes,
the prevalence was 0.4% (MLHI, MSH2, PMS2; exclud-
ing MUTYH 4/982), and for Li-Fraumeni syndrome, it
was 0.1% (7P53; 1/982). These frequencies are compar-
able to other published estimates (BRCA2 0.45% in
cancer-free Australian women [29]; 0.31% in women of
European non-Finnish descent in the Exome Aggrega-
tion Consortium, excluding The Cancer Genome Atlas
data [30]; Lynch 0.2% [31]). We acknowledge that our
controls may not be representative of the entire general
population since, as volunteers, the controls may have
an interest in cancer studies perhaps due to a family his-
tory of cancer.

Reviewers were required to track the estimated
amount of time needed to classify variants. Our study is
the first to distinguish between the amount of time to
review first and subsequent variants within a gene. We
found that the first variant took significantly longer to
review when compared with subsequent variants, a re-
flection of the learning curve inherent in applying these
new, complex classification algorithms. Although our
team was composed of cancer experts, they were not ne-
cessarily experts on the specific genes they were review-
ing. This could potentially have led to the additional
time for familiarization with the gene(s) to be reviewed.
Our overall finding that variant review was time-con-
suming is consistent with previous studies [32]. How-
ever, in some clinical labs, a more sophisticated
automated pipeline and highly trained variant specialists
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would likely result in shorter review times. We note that
our measurements reflect only the estimated time to re-
view the primary literature and do not include the time
required to conduct InterVar classification, secondary re-
view, and consensus-seeking or summation of the
ACMG/AMP scores. Since the 24 ACMG SF v2.0 cancer
genes are recognized and generally well-studied, the
amount of available literature (and time spent reviewing
it) may be greater than for lesser-known (non-ACMG SF
v2.0) genes. In addition, our study population was re-
stricted to people of non-Finnish European ancestry.
Published work has highlighted the additional chal-
lenges in interpreting genetic variation in non-Euro-
pean  populations  [33]. Thus, our variant
interpretation times may have been shorter compared
with those of non-European populations.

Our experience with InterVar and the ACMG/AMP
guidelines deserves a brief comment. We found that
InterVar was a useful tool to start the initial variant clas-
sification using the ACMG/AMP guidelines. Despite the
use of InterVar and manual review, most variants remain
unresolved due to the lack of published literature and
for our study and limited clinical information. Proper
classification of variants, especially those used in clinical
decision-making, is a time-consuming and laborious
process that, for now, requires human expertise and
judgment. Currently, this process is more subjective, and
yields less reproducible results, than is optimal. In the
future, this may be streamlined with more extensive,
comprehensive electronic databases of definitively classi-
fied variants, more sophisticated software (e.g., neural
networks) [34], and artificial intelligence programs (e.g.,
machine learning) [35], based on formal, probabilistic
frameworks [36].

Reviewers in this study frequently noted that gaining a
working familiarity with the ACMG/AMP guidelines
was demanding. As a quality control procedure, we
compared criterion scores (0 or 1) with the respective
comments provided by the reviewer; we observed confu-
sion related to multiple criteria. Despite these challenges
and after correction of inconsistently scored criteria
(based on the comments provided), our secondary re-
view and consensus process showed a concordance rate
of 83.3%, which is at the upper limit of previously re-
ported concordance rates (34-79%) [11, 23, 37, 38]. In
many cases, ambiguous words in the ACMG/AMP cri-
teria such as “well-established” (e.g., in criteria PM1,
PS3, BS3) and “multiple” (PP1, BP4) are subjective and
unavoidably led to discrepancies between reviewers in
the consensus process. These differences in criteria in-
terpretation were resolvable with a discussion between
the primary and secondary reviewers. Suggestions to re-
fine the wording of the ACMG/AMP guidelines, as well
as other practical improvements (e.g., specific cutoff
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MATF for each disease, resources for which genes cause
disease by loss of function, which functional assays are
appropriate, and the quantitative threshold for segrega-
tion) have been promulgated [37]. To resolve this ambi-
guity, the Clinical Genome Resource (ClinGen) [39] is
working with experts in the field to refine the guidelines.
For hereditary cancer, there are five different working
groups (breast and ovarian cancer, CDHI, colon cancer,
PTEN, and TP53).

We acknowledge the limitations of our study. Since
cases and controls were anonymized, there were restric-
tions on the depth and detail of clinical information.
Thus, we were not able to assess de novo or cis/trans
status or to assess segregation of a variant with pheno-
type. Availability of these data may have increased the
number of variants that were definitively classifiable,
which would have reduced the number of VUS. In
addition, we did not review all VUS variants called by
InterVar; we only considered the 115 variants that were
reported by HGMD as DM or for which sufficient infor-
mation was found in Google Scholar. Furthermore, this
study only examined the white population, potentially
limiting the applicability of these findings on P/LP
prevalence to other ethnic groups and variant review
time. Lastly, although the cases were drawn from a het-
erogeneous, convenient cohort of families assembled
over multiple decades and protocols, the generalizability
of our results may be limited, given the broad spectrum
of cancer diagnoses.

Conclusions

We found a non-significant difference in the prevalence
of P/LP variants from the ACMG SF v2.0 cancer genes
in a cancer cohort (1.2%) and ethnically matched healthy
controls (0.8%). Variant review, even with the help of so-
phisticated software tools, is time-consuming. Newer ap-
proaches, perhaps using artificial intelligence tools and
neural networks, are needed to simplify and expedite
this important task.
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