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Polygenic risk scores: a biased prediction?
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Abstract

A new study highlights the biases and inaccuracies of
polygenic risk scores (PRS) when predicting disease
risk in individuals from populations other than those
used in their derivation. The design bias of workhorse
tools used for research, particularly genotyping arrays,
contributes to these distortions. To avoid further
inequities in health outcomes, the inclusion of diverse
populations in research, unbiased genotyping, and
methods of bias reduction in PRS are critical.

Resurgence of polygenic risk scores
There is a renewed interest in developing and applying
polygenic risk scores (PRS) to predict the genetic liability of
human traits, including predisposition to common diseases
[1]. This resurgence is fueled by several major develop-
ments: (i) thousands of reports of genome-wide association
studies (GWAS) encompassing larger samples, with some
studies reaching up to a million subjects [2]; (ii) new meth-
odology for developing PRS from raw GWAS genotypes
without relying solely on genome-wide significant hits [3];
and (iii) the availability of large longitudinal cohorts provid-
ing the rich phenotype and genetic data [4] needed to valid-
ate and test PRS. Validation is needed to prove that a PRS
does not overfit the training data, producing inflated re-
sults, and requires a sample that is entirely separate from
the training dataset to evaluate their performance.
GWAS have been successful in identifying a subset of

the genes and causal variants behind polygenic common
diseases, such as coronary artery disease (CAD), cancers,
and type 2 diabetes. It was initially hoped that once the
genetic architecture of a trait was identified, the ob-
served effects of the risk-associated alleles could be used
to construct a combined score and to predict individuals
at the tail ends of the risk distribution. In the early days

of GWAS, the observed effects of the risk alleles were
often found to be small, so more GWAS samples were
aggregated to achieve greater power and more associated
alleles were found, but with even smaller effects. Even
when these were accounted for, only a small fraction of
heritability seemed to be explained (the so-called ‘miss-
ing heritability problem’ [5]), suggesting that the hope of
genetic risk prediction would never be realized.
However, new methodologies that relinquished the

goal of finding the complete catalog of causal genes, and
instead aggregated data from a larger fraction of the ge-
notyped variants that scored below the genome-wide
significance threshold, were devised to account for un-
discovered loci [6]. These approaches explained a much
larger fraction of trait heritability. With larger GWAS
and the advent of datasets such as the UK Biobank [4],
which collected deep genetic and phenotypic data from
approximately 500,000 individuals, the prospect of utiliz-
ing PRS as a clinical tool is gaining traction [1].

Defining the role of PRS in healthcare
The causation of common human diseases is complex as
it results from a combination of genetic and environmen-
tal factors. A key mission of genomic medicine is to pre-
dict the genetic liability of disease on the basis of an
individual’s genotype. Identifying those in the population
who are at greater risk of disease can result in break-
throughs in healthcare management and can lower costs
by reducing unnecessary disease burden and by introdu-
cing preemptive therapies or lifestyle changes for those at
greater risk. Khera et al. [7] provide an example of how a
convergence of factors is starting to realize this mission.
PRS constructed from large-scale GWAS of five common
diseases could identify individuals within the UK Biobank
with high disease risk. The PRS for CAD, for example,
found 8% of individuals in the test dataset who exhibited a
threefold or more increase in risk for the disease, a frac-
tion of the population that is 20-fold larger than that com-
prised of individuals carrying monogenic mutations that
confer a comparable increase in disease risk. This finding
suggests that if this PRS was applied in clinical care, indi-
viduals in the > 95% percentile of the CAD risk
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distribution could be started on statins and prescribed a
healthier diet, probably preventing morbidity and un-
timely mortality in this population.
Many more recent or upcoming studies have used

similar approaches to describe PRS for a multitude of
traits. And as obtaining genotype array data is becoming
more inexpensive, there are now suggestions that the
time has come to apply PRS in clinical care [1, 7]. But,
are PRS ready for prime time?

The bias in the machine
There are several potential pitfalls in the construction of
PRS that could affect how they perform in real-world clin-
ical populations. One of the most obvious is that they suffer
from the same bias that most genetics research experiences:
a lack of diversity in the populations recruited for genetic
studies [8]. Until recently, over 80% of participants in gen-
etic studies have been of European descent, 14% have been
Asian, and just 6% have been from other populations [8].
Disease-associated alleles can have significantly different
frequencies between populations as the result of demo-
graphic events, such as migrations and population bottle-
necks, which can lead to discovery bias. In addition, linkage
disequilibrium-based pruning or adjustments performed as
part of the construction of the PRS [3] can contribute bias,
because of the limited reference haplotype panels for di-
verse populations. Accordingly, Martin et al. [9] reported
that PRS derived from European-based GWAS show biases
in different, often unpredictable, directions when tested
in non-European cohorts.
A recent report from Kim et al. [10] not only confirms

that PRS derived from GWAS of European-ancestry
samples can misestimate risk when applied to other pop-
ulations, but also that the very tools used to genotype
the GWAS samples contain bias and contribute signifi-
cantly to the misestimation of disease risk across popula-
tions. These researchers first showed that disease allele
frequencies for loci in the National Human Genome Re-
search Institute (NHGRI) catalog of published GWAS
studies differ significantly between Europeans and other
populations sampled in the 1000 Genomes Project. Sec-
ond, they observed that Africans exhibit significantly
higher risk allele frequencies, a difference that is higher
for ancestral risk alleles (i.e., the allele sequence present
in hominid common ancestors) than for derived risk al-
leles (i.e., sequences that arose in the human population
more recently). When risk alleles are binned into disease
categories, those diseases with a higher proportion of
causal ancestral alleles show elevated average risk allele
frequencies in Africa. This skew in risk allele frequencies
is sometimes discordant with known differences in dis-
ease prevalence between populations (e.g., for cardiovas-
cular disease, African-Americans have a higher
incidence but a PRS showed lower risk for Africans),

implying that genetic disease risks may be misestimated,
most significantly for individuals with African ancestry.
Furthermore, the commercial single nucleotide poly-

morphism (SNP) genotyping arrays used in GWAS have
a strong ascertainment bias, as these SNPs were selected
from the sequencing data of a small sample of individ-
uals, mostly of European descent. Through simulations,
Kim et al. [10] show that this ascertainment bias alone
can cause disease risks to be misestimated. On the other
hand, simulations using whole-genome sequencing show
much reduced (although not completely eliminated)
biases in allele frequency differences between Africans
and non-Africans, particularly when sample sizes in-
crease. These results suggest that performing GWAS in
more diverse samples, which include participants from
around the world, is not sufficient to reduce discovery
bias [8], because performing such studies with standard
commercial SNP arrays would still result in biases. This
is an important insight, as SNP arrays are inexpensive
and genetic studies planned around the world are
cost-constrained. Performing whole-genome sequencing
in place of using SNP arrays would alleviate the ascer-
tainment bias problem, but would increase costs by or-
ders of magnitude. How might we resolve this dilemma?

Overcoming biases
A number of approaches have been proposed to reduce the
biases in PRS with respect to their application in popula-
tions with diverse or admixed ancestry. Clearly, the inclu-
sion of more diverse populations in GWAS and biobanking
is essential to reducing biases and addressing health dispar-
ities [8]. These studies also require improved arrays de-
signed for cosmopolitan samples and informed by diverse
variant discovery efforts. Whole-genome sequencing would
be the ideal platform on which to perform such studies but,
until costs drop further, alternative approaches, such as
low-coverage sequencing, have been proposed. Low-cover-
age sequencing at < 1× depth now has costs approaching
those of SNP microarrays and could impute a set of geno-
types with high accuracy. Imputation relies, however, on
haplotype reference panels that are mostly available for in-
dividuals of European descent and East Asians, and conse-
quently imputation into other populations is less accurate.
In the absence of truly cosmopolitan GWAS data and valid-
ation cohorts, statistical adjustments of the PRS derived
from European data could be applied to predict risk in
other populations more closely. Kim et al. [10] suggest a
method that considers whether the risk allele is ancestral or
derived and show encouraging results in their simulations,
but more research is needed in this area.

Towards precision health equity
Biases in genetic research have created the potential for
health disparities [8]. PRS based on GWAS of European-
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descent cohorts could become useful in improving health
outcomes for individuals from these populations, but cur-
rently may misestimate risk in admixed individuals and
those of different ancestries [10]. To strive towards health
equity in precision medicine and to prevent further health
disparities, both study designs that include population di-
versity and methods to compensate for the biases incurred
in constructing PRS need to be prioritized. For the sake of
simplicity, we have not discussed important non-genetic
sources of health disparities, including discrimination, lack
of access to healthcare, and gene-by-environment interac-
tions, which further complicate the problem at hand. None-
theless, we remain optimistic that a concerted effort to
both broaden representation in discovery cohorts and to
develop tools to translate these discoveries into actionable
healthcare management strategies are the way forward to
improving health outcomes for all.
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