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Abstract

Background: After years of concentrated research efforts, the exact cause of Crohn’s disease (CD) remains
unknown. Its accurate diagnosis, however, helps in management and preventing the onset of disease. Genome-
wide association studies have identified 241 CD loci, but these carry small log odds ratios and are thus
diagnostically uninformative.

Methods: Here, we describe a machine learning method—AVA,Dx (Analysis of Variation for Association with
Disease)—that uses exonic variants from whole exome or genome sequencing data to extract CD signal and
predict CD status. Using the person-specific coding variation in genes from a panel of only 111 individuals, we built
disease-prediction models informative of previously undiscovered disease genes. By additionally accounting for
batch effects, we were able to accurately predict CD status for thousands of previously unseen individuals from
other panels.

Results: AVA,Dx highlighted known CD genes including NOD2 and new potential CD genes. AVA,Dx identified 16%
(at strict cutoff) of CD patients at 99% precision and 58% of the patients (at default cutoff) with 82% precision in
over 3000 individuals from separately sequenced panels.

Conclusions: Larger training panels and additional features, including other types of genetic variants and
environmental factors, e.g., human-associated microbiota, may improve model performance. However, the results
presented here already position AVA,Dx as both an effective method for revealing pathogenesis pathways and as a
CD risk analysis tool, which can improve clinical diagnostic time and accuracy. Links to the AVA,Dx Docker image
and the BitBucket source code are at https://bromberglab.org/project/avadx/.

Background
Crohn’s disease (CD) is a chronic inflammatory bowel
disease (IBD) of the gastrointestinal tract with an inci-
dence up to 29.3 cases per 100,000 person-years [1], af-
fecting as many as 780,000 people in the USA alone [2].
Chronic inflammation, a hallmark of CD, may occur in
any part of the gastrointestinal tract and may in some
cases also manifest extraintestinally [3]. A combination
of genetic, microbiome, and environmental factors is in-
volved in disease etiology [4, 5]. Genome-wide associ-
ation studies (GWAS) contribute to the understanding
of the genetic architecture of CD and have, so far,

identified 241 significantly associated loci [6]. These
findings elucidate the underlying molecular disease path-
ways, contributing to the understanding of the funda-
mental biology behind CD pathogenesis. GWAS results
highlight the roles of the endoplasmic reticulum stress
[7], barrier integrity [5], innate immunity [8], autophagy
[9], cytokine production [10], lymphocyte activation
[10], the response to bacteria, and specifically the role of
the JAK-STAT-pathway [10]. However, with few excep-
tions, individual risk loci confer only a modest effect on
disease susceptibility. Altogether, the known loci explain
approximately 13% of disease incidence [11]. Thus, de-
finitive CD diagnosis still requires a combination of
endoscopic, histological, radiological, and/or biochemical
investigations [12]. Several serologic markers, primarily
anti-Saccharomyces cerevisiae antibody (ASCA) and
perinuclear anti-neutrophilic cytoplasmic antibody
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our exome data, instead of using predetermined (Pascal) 
genes. This approach improved model performance 
(ROC AUC = 0.74). We termed the combination of our 
gene selection and model training approach AVA,Dx—
Analysis of Variation for Association with Disease X, i.e., 
we believe that AVA,Dx is generic enough to be applied 
to other diseases. This approach did not incorporate any 
prior knowledge of CD biology, and our selected genes 
were not significantly overlapping with any of the previ-
ously identified sets of genes. These findings suggest that 
AVA,Dx may reveal previously unseen Crohn’s disease 
pathogenesis pathways.
To test the true predictive performance of our model, 

we optimized batch (and sequencing platform) effect re-
moval algorithms specifically to our data type. Remark-
ably, our method was able to make similarly accurate 
predictions (CD-test panel ROC/PR AUC = 0.69/0.92 
and WTCCC-GTEx combined panel ROC/PR AUC = 
0.76/0.94) for individuals from vastly different panels.
Finally, we note that our approach has so far required 

only a very small set of people to draw conclusions. 
Moreover, while we only included the exonic informa-
tion from WES, there is a lot of regulatory information 
in this data as well. Larger training panels and additional 
features, including regulatory variants and, potentially, 
environmental factors (e.g., human-associated micro-
biota), are expected to improve model performance. 
However, current results already position AVA,Dx as 
both an effective method for highlighting pathogenesis 
pathways and as a simple CD risk analysis tool, which 
can improve clinical diagnostic time and accuracy.

Methods
Individuals in the study
Four panels of individuals were used in this study 
(Additional file 1): CD-train (https://genomeinterpreta-
tion.org/content/4-crohns-exomes), CD-test (https://gen-
omeinterpretation.org/content/crohns-disease-2013), WT 
CCC panel (EGAD00001000401, European Genome-Phe-
nome Archive), and GTEx panel (phs000424, Genotype-
Tissue Expression Project). All samples of CD-train and 
CD-test and information on their corresponding pheno-
types were obtained from the PopGen Biobank (Schles-
wig-Holstein, Germany).
The CD-train panel included 64 unrelated CDs and 47 

unrelated HCs. To avoid overfitting of models by family, 
we additionally checked for relationships in CD-train 
panel using genetic data and found S076 & S111 
and S087 & S110 to be related. These two pairs were 
treated as being in the same family in all cross-
validations in the study, i.e., we performed a 109-fold 
cross-validation as leave-one-out cross-validation in CD-
train.

The CD-test panel included 51 CDs and 15 HCs, from 
28 different pedigrees, including one monozygotic twin
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(pANCA), have recently been suggested to be clinically 
useful for diagnosis [13, 14]. However, these markers are 
not accurate enough to precisely diagnose CD on their 
own and are, therefore, used to supplement conventional 
tests. Moreover, for up to 14% of IBD patients, the diag-
nosis changes during the course of disease [15], suggest-
ing that some are erroneously diagnosed and may even 
be treated for the wrong disease.
The predictive value of genetic testing for the disease-

associated variants is controversial since the identified 
mutations generally exhibit weak correlation and do not 
identify causative patterns. Still, computational predic-
tions, based on 30 GWAS CD loci, have attained a fairly 
high accuracy with an area under the receiver operating 
characteristic curve (ROC AUC) of 0.71 on simulated 
data that can be further improved to 0.74 by incorporat-
ing family history [16]. In another study, a logistic re-
gression model attained even better reported predictive 
performance (ROC AUC = 0.86) by training on 573 
GWAS loci in over 13,000 individuals [17]. Note that 
when this model was applied our panel of patients and 
controls performance was worse than expected (ROC 
AUC = 0.63 for CD-train panel), possibly because our 
exome sequencing did not cover the majority of the ne-
cessary loci.
While CD GWAS-based models may have high pre-

dictive ability, they require large panel sizes for identifi-
cation of the (necessarily common) significant loci. 
Whole exome (WES) or genome (WGS) sequencing can 
provide an alternative, pathogenesis pathway-oriented, 
perspective, as many of the rare or private single nucleo-
tide human exome variants (SNVs) are functionally sig-
nificant [18].
Here, we show that health status predictions based on 

functional effects of all individual-specific non-synonym-
ous variants can be used to discriminate between CD pa-
tients and healthy individuals (HC). Using the Pascal 
method [19], we identified the genes most likely to be 
CD-relevant on the basis of GWAS summary statistics. 
For each gene in this set, we then computed its function 
score, per individual in our panel, on the basis of pre-
dicted functional effects of all its variants. The support 
vector machine (SVM) trained to recognize people as 
CD or HC attained a ROC AUC of 0.70—a performance 
similar to findings reported above. Note that model per-
formance was far worse when our scoring function for 
these genes only accounted for the number of variants 
per gene (variant burden), rather than their effects on 
molecular functionality. These results suggest that 
changes to molecular functions of affected genes are 
more representative of disease-associated pathway defi-
ciencies than the number of variants per pathway alone.
We further used computational feature selection (FS) 

techniques to directly identify CD-relevant genes from
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pair discordant for CD and eight unrelated heathy con-
trols from a separate panel. The CD-test families were
also confirmed using genetic data (Additional file 2:
Section 3).
The WTCCC panel contained 2678 CD individuals.

The GTEx panel contained data from 635 deceased indi-
viduals with no indication of CD, whom we consider
HC. Note that the highest reported populational preva-
lence of CD is 0.3% [1]; thus, given the size of the GTEx
panel, we expected no more than two GTEx individuals
to be affected by CD.
We performed ethnicity annotation [20] of all individ-

uals in all panels (Additional file 2: Section 2). All indi-
viduals from CD-train and CD-test were European
(EUR) [21], as were most of the individuals from
WTCCC and GTEx panels (Additional file 3).
We did not check whether any of the individuals in

the above data sets were used in any of the earlier CD
GWAS or by any of the other CD evaluation methods
listed below. Thus, the performance of these outside
methods may be, likely very slightly, overestimated for
these panels.

Exome sequencing and analysis
Samples from both CD-train and CD-test panels were
sequenced using Illumina TruSeq Exome Enrichment
Kit and the Illumina HiSeq2000 instrument. Reads were
mapped to the human genome build hg19. Samples of
each panel were called together using Genome Analysis
Toolkit (GATK version 3.3-0) Haplotype Caller [22].
Variant calls were restricted to the TruSeq exome target.
VCF data from WTCCC and GTEx panels were down-
loaded from European Genome-Phenome Archive and
dbGaP, respectively. The VQSR (Variant Quality Score
Recalibration) [22] method was employed to identify
true polymorphisms in the samples rather than those
due to sequencing, alignment, or data processing arti-
facts. For each VCF file, we ran ANNOVAR [23] to
identify all variants mapping to Swiss-Prot proteins [24].
Specifically, we extracted the RefSeq mRNA identifiers
from ANNOVAR output and mapped these to Swiss-
Prot. Note that if a single variant mapped to more than
one protein, all proteins were included into the affected
set.

Data filtering
For the training set (CD-train), we removed all variant
calls on the X- and Y-chromosomes, as well as mito-
chondrial DNA variants. We then filtered the original
VCF files with VQSR and retained only the PASS vari-
ants. Within one panel, we further cleaned the data to
remove all variant loci with missing calls. Removal of
these loci ensured that every individual has a confident
call at every locus of the same panel. For all testing sets,

we filtered variants with VQSR standard and removed
all variants that were not in the training set. All filtering
was done using VCFtools [25] and BCFtools [26, 27]
(see details in Additional file 2: Section 1).

Gene scoring
We first checked the Swiss-Prot [24] protein sequence
for correspondence, i.e., we looked for the variant-de-
fined wild-type residue to exist in the variant sequence
position. If the position contained the mutant amino
acid instead, we assumed allele disagreement between
reference databases RefSeq and Swiss-Prot. For these
variants, we chose the RefSeq sequence to be correct
and replaced the amino acid in the Swiss-Prot sequence
to correspond to RefSeq. We then computed the raw
SNAP [28, 29] score for each variant, ranged from − 100
to 100, where any score less than or equal to zero is clas-
sified as neutral, i.e., no protein function change, and
non-neutral otherwise. Note that we used SNAP “as-is,”
i.e., no changes were made to the method.
An individual variant score (v_score) was assigned as

follows, for:

(1) Non-synonymous variants
a. SNAP score ≥ 0 (effect): v_score = 0.06 + (SNAP

score/100) × 0.94
b. SNAP < 0 (neutral): v_score = 0.055

(2) Synonymous variant, v_score = 0.05
(3) InDel variants, v_score = 1
(4) Erroneously mapped variants and variants in 11

genes that could not be handled by SNAP (genes >
6000 amino acids), v_score = 0.055

SNAP score of non-neutral (effect) variant was stan-
dardized to fit a 0 to 1 range (0 and 1 represented no
mutation and knockout of function, respectively) and to
account for overarching effect/no effect classification.
No effect for non-synonymous variants was similar to
having a synonymous variant—a fixed small score
(0.055). Indels were fixed to large scores (1)—this scor-
ing was not optimized, but rather heuristically chosen to
represent likely functional effects of variants. Individual
v_scores of heterozygous variants were multiplied by
0.25 (in Eq. 1 het = 0.25 for heterozygous and het = 1 for
homozygous variants) to approximate the effects of
heterozygosity.
For every gene in every individual, we computed a

gene functional deficit score (gene_score) as a sum over
all gene-specific v_scores (Eq. 1). Note that gene scores
computed in this fashion are zero only for genes that
have no variants at all. However, further comparison be-
tween gene scores for different genes is not possible, as
the score is highly dependent on gene length and overall
tolerance for variability, e.g., longer genes with more
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variable regions will tend to score higher while
remaining relatively functional biochemically.
Thus, for each gene, g, the overall variant burden score

of all Ng variants was:

gene score gð Þ ¼
XNg

i
heti � v scorei ð1Þ

In our representation, thus, every individual exome
can thus be viewed as a vector of individual gene scores
with an associated binary disease class (status: CD vs.
HC). All exome vectors of one panel of individuals are
of the same length, i.e., genes that are not affected by
any variants in a particular individual are assigned a zero
score. Genes with no variants in any individual in a
panel were removed from consideration. We also re-
moved genes that have consistent non-zero scores
within one panel and genes that were only mutated in
one individual (i.e., had only one non-zero score) in the
entire panel. Besides gene_score, we tested the perform-
ance of another four gene scoring schemes (Add-
itional file 2: Section 4) as well.

Reference candidate gene set extraction
We extracted CD-related genes by five different ap-
proaches (see details in Additional file 2: Section 5): (1)
genes selected via natural language processing of ab-
stracts indexed by PubMed with medical subject head-
ing, MeSH, terms relating to Crohn’s disease (MeSH set,
2471 genes); (2) genes in linkage disequilibrium (LD)
with the known GWAS-established CD loci [10] (un-
ranked-GWAS set, 1286 genes); (3) a set of all proteins
annotated as Crohn’s disease related (Disease feature) in
Swiss-Prot [24]. (SP set, 22 genes); (4) Pascal [19] ranked
list of CD-related genes from CD GWAS summary sta-
tistics, 393 genes with a Benjamini and Hochberg cor-
rected p val < 0.05 (PascalGWAS set, 312 genes from
PascalGWAS set were in CD-train); (5) 50 genes associ-
ated with very early onset (VEO) IBD reported by Uhlig
et al. [30] (VEO set, only 36 genes of the VEO set con-
tained variants in at least one individual in CD-train).
Additionally, all genes where at least one individual in
CD-train had at least one variant were termed ALL set.
In text, a subscript number following the set name indi-
cated the gene number of top-ranked genes from this set
used to build models. For example, PascalGWAS100 indi-
cated building a model using top-ranked 100 genes from
PascalGWAS set.

Feature selection (FS) candidate gene set extraction
We performed the following gene set selections from the
CD-train panel:

(1) Collected genes where at least 3 CDs and no HCs
had non-zero gene_scores (disease set, abbreviated as
DIS set)

(2) Compared the distribution of gene_scores for CDs
vs. HCs using the t test (TT5 set) and Kolmogorov-
Smirnov test (KS5 set) and took the genes that were
differently (p < 0.05, no correction for multiple
testing) distributed in CDs and HCs

(3) Applied DKMcost feature selection [31] (from R
CORElearn package [32]) and ranked genes by their
merit

In order to avoid overfitting, we applied the above FS
techniques (DIS, KS5, TT5, and DKMcost) in a leave one
out fashion, iteratively in each fold of cross-validation
(see the “CD models” section—training cross-validation).
Thus, we had built multiple AVA,Dx models of CD-
train-based with different gene sets each using the same
FS technique, so that no model was trained and tested
on the same samples. As a “sanity check,” we collected
genes as described in method (1), DIS set, above from
the entire CD-train panel (overfitting, DISO set), and
trained DISO gene models in a leave-one-out fashion.
Subscript numbers, e.g., KS5r100 or DKMcost125, meant
the random (r) or top ranked (125), respectively, number
of genes used in building the model as described in the
“Reference candidate gene set extraction” section. When
all genes from the FS set were used to build a model, the
gene name was followed by a subscript max (e.g.,
KS5max).

Computing gene set overlap
As described above, the number of FS candidate gene
sets for one panel and one extraction technique was
equal to the number of unrelated individuals in that
panel, e.g., there were 109 different KS5 sets in a 109-
fold cross-validation on CD-train data. For calculation of
overlap between any KS5 set and a gene set with fixed
genes, e.g., MeSH set, we computed the overlap and the
significance (hypergeometric distribution test against a
background of the corresponding variant-affected genes)
for all 109 KS5 sets and recorded the mean. For calcula-
tion of overlap between two non-fixed gene sets, e.g., be-
tween KS5 and DKMcost sets, we computed the overlap
and significance when the same test individual was held-
out, and recorded the mean.

Finding gene networks
We used the ConsensusPath database [33–35] to identify
the enrichment in alterations of the known molecular
pathways in the selected CD-train genes. ALL set of CD-
train was used as the background list. KS5max and
DKMcost125 selected from the entire CD-train panel, as
well as PascalGWAS175 genes, were used as input for the
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pathway enrichment analysis (pathways with a q val < 0.1
in Additional file 4). Induced network analysis from
ConsensusPath database using FS genes as starting
points was used to detect additional potentially CD-asso-
ciated genes.

CD models
Training: model building and cross-validation
We built CD models using leave-one-out cross-valid-
ation on the CD-train panel. Note that individuals of the
pair S087 & S110 and the pair S076 & S111 are more
genetically similar than others and potentially related
(Additional file 5), so we left the members of each of
these pairs out simultaneously in our leave-one-out
cross-validation, i.e., we performed a 109-fold cross-val-
idation on the CD-train data of 111 individuals. For each
model, to make the classes of the training set balanced
for CD vs. HC individuals, we bootstrapped the individ-
ual samples of the minor class (resampling with replace-
ment) to create new training samples in a balanced
manner. All models used the Support Vector Machine
(SVM), algorithm in R’s e1071 package [36]. Note that
changing the learning method, i.e., replacing SVM with
Naïve Bayes, neural networks, etc. or adjusting method
parameters, could potentially produce better results.
However, as the goal of this experiment was to evaluate
the CD relevance of the selected gene sets, we did not
optimize algorithm performance. For evaluating the per-
formance of the different gene selection methods, we:

(1) Randomly sampled with replacement different
numbers (10, 25–300, in steps of 25) of genes, 100
times from each cross-validation fold gene set. The
gene number was recorded as a subscript following
the gene set name as described in “Reference
candidate gene set extraction” and “Feature
selection (FS) candidate gene set extraction”
sections. For example, for 100-gene KS5 set
(KS5r100) in CD-train, this meant that we trained
10,900 models—100 random gene sets for each
cross-validation fold. Note that when the gene set
did not have enough genes for sampling, we used
the entire set to build models—one model per fold
(max subscript following the gene set name, e.g.,
KS5max). For example, if the KS5 set had 113 genes,
models requiring more than that used the whole
KS5 (KS5max) set in every model training iteration.
Note that for all models built using a fixed set of
genes, the only source of difference in model
performance is the differential resampling of the
training individuals of the minor class.

(2) We took the top-ranked 10 or 25 to 300 (in steps of
25) genes and performed cross-validation with the
same top-ranked genes for each fold of cross-

validation: e.g., DKMcost50 means we trained 10,900
models—top-ranked 50 DKMcost genes for each
testing fold. Here as above, the only source of
the difference in model performance is the
differential resampling of the training individuals
of the minor class.

For each gene set, we computed the various model
performance metrics, including AUC of the precision-re-
call (PR) and ROC curves (R package PRROC [37],
Eq. 2, where TP = true positives, correctly identified indi-
viduals with CD; FP = false positives, healthy individuals
misclassified as having CD; TN = true negatives, cor-
rectly identified healthy individuals; and FN = individuals
with CD misidentified as being healthy).

Precision positive predictive valueð Þ ¼ TP
TPþ FP

Recall sensitivity; true positive rateð Þ ¼ TP
TPþ FN

ð2Þ

False positive rate ¼ FP
FPþ TN

Class labels for CD and HC were set at 100 and − 100,
i.e., more negative scores indicate likely healthy individ-
uals and more positive scores indicate likely CD patients.
We obtained ROC and PR curves by varying the thresh-
old for classifying an individual as CD-affected or
healthy from − 100 (most healthy) to 100 (most CD).
To further test if the performance was achieved by

chance, we did permutation test by shuffling the labels
of every training fold in the cross-validation 1000 times.
Null distributions of ROC and PR AUCs were based on
these 1000 results. The permutation p values for the
“real” cross-validation AUCs were obtained empirically
by counting the number of larger permuted AUCs (di-
vided by 1000).

GWAS-based predictions
We compared the prediction performance of AVA,Dx to
two GWAS-based CD evaluation methods (see details in
Additional file 2: Section 6). Briefly, (1) we calculated
the polygenic risk score (PRS) for all individuals, using
the log odds ratios of the 230 CD-relevant EUR loci [38],
and (2) we obtained a CD logistic regression model from
a previous study [17].

Eliminating inter-panel batch effects of sequencing
To remove the batch effect, we applied the ComBat
method [39] (from R package sva [40]). ComBat is an
empirical Bayes framework for adjusting (originally) gene
expression data for batch effects. Here, we applied
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are 0.58, 0.79, 0.82, for CD-train, CD-test, and the
WTCCC-GTEx (only EUR) panels, respectively, i.e.,
the number of positive samples (here CD) divided by
the number of total samples. The significance of the
prediction result was also evaluated empirically by a
1000-time permutation test as described in cross-
validation.

MCC ¼ TP� TN−FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp

ð3Þ

F1 ¼ 2� TP
2� TPþ FPþ FN

ð4Þ

Results
AVA,Dx pipeline
We constructed the AVA,Dx pipeline as outlined in
Fig. 1 and the “Methods” section. Briefly, we performed
predictions of functional effects of variants and con-
verted the latter into per-gene scores (gene_score) of
individual-specific functionality. To build predictive
models, we (1) considered externally determined dis-
ease genes (e.g., GWAS and literature-identified genes,
“Methods” section and Additional file 2: Section 5) and
(2) extracted gene sets via computational feature selec-
tion (FS), which identified previously unreported CD-
related genes (“Methods” section). SVM [41] models
using these gene sets were trained in leave-one-out
cross-validation on the training panel of individuals
(CD-train; all individuals of 1000 Genomes Project [42]
EUR, European descent, designation). We further ap-
plied permutation testing for each model to calculate
the empirical p values, which show that our prediction
performance was significantly non-random (“Methods”
section).
We tested four different gene scoring schemes in

addition to our default gene_score (Additional file 2: Sec-
tion 4). Our gene_score outperformed all other scoring
schemes in testing (Additional file 2: Figure S1),
highlighting the importance of using the severity of
functional effects of variants in evaluating disease genet-
ics. We also looked for variants in the CD-train panel
that may be associated with the CD phenotype (Fisher’s
exact test with false discovery rate correction). However,
due to panel size and, possibly, sequencing/data filtering
issues, no significant associations were found (Add-
itional file 2: Table S1). We thus used gene_score in all
further analyses.
For prediction of individuals from different panels,

we only considered the variants that were also present
in CD-train individuals and calculated the gene_scores.
The ComBat algorithm [39] was used for batch effect
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ComBat to the gene_scores, which represent the gene 
functional changes instead. To simulate the “real-world 
situation” of predicting disease, ComBat was applied in-
dividually to each person from the test sets vs. the entire 
CD-train panel. Note that since in this case the un-
known batch has only one sample, only the means, and 
not the variance, of the gene_scores were adjusted. Also, 
note that gene_scores of the testing individual were ad-
justed against the entire CD-train panel regardless of the 
class label, i.e., we did not use the class label of the test-
ing individual in the batch effect removal process (details 
in Additional file 2: Section 7).

Prediction models
We used the entire unadjusted CD-train panel to select 
DKMcost125 genes as fixed features for our final model. 
We then tested the predictive ability of our model by 
predicting the health status of 62 individuals from the 
CD-test panel, 2488 from the WTCCC panel, and 544 
from the GTEx panel (all EUR, duplicated individuals re-
moved, see details in Additional file 2: Section 3). We 
performed the prediction and evaluation for the non-
EURs as well (Additional file 2: Section 8). Specifically, 
for each exome, (1) the batch effect was removed as de-
scribed above, that is, gene_scores of the testing individ-
ual and the CD-train panel were adjusted towards the 
same mean regardless of the class label; (2) the CD-train 
panel was resampled to create 500 individuals of each 
HC and CD class; and (3) a model was trained on these 
1000 individuals to make a prediction for the test indi-
vidual. Note that the test individuals were never seen by 
the corresponding models.

Choosing the default prediction cutoff
We once more built models of CD-train in cross-val-
idation as described above, but this time we also 
resampled individuals in each fold of training to cre-
ate 500 individuals of the CD and HC classes. We 
used the originally selected DKMcost125 gene sets for 
each of the 109 models and tested on the left-out in-
dividuals. We computed the means of the prediction 
scores of the CD-train set CD and HC individuals, 
choosing the mean of these two means as the default 
cutoff. As the cutoff varied with different resampling 
and training rounds, we conducted this process 1000 
times and chose the most common cutoff value for 
subsequent predictions.
When predictions of all individuals were made, we 

evaluated the performance by computing the MCC 
(Matthews correlation coefficient, Eq. 3), and both CD 
and HC precision, recall, and F1 score (Eq. 4) at different 
cutoffs. We also computed the AUC for the ROC and 
the PR curves for both CD and HC classes. Note that a 
baseline ROC AUC is 0.5. The baseline PR AUCs here
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removal of the gene_score differences between the
training set and each test individual. The CD-train
SVM model was further tested on the individuals
from CD-test, WTCCC (all CD), and GTEx panels
(all healthy controls, HC; “Methods” section).

Pascal-ranked CD GWAS genes differentiate CDs from HCs
The Pascal [19] top-ranked CD GWAS genes (PascalG-
WAS set, “Methods” section), scored for functional ef-
fects (Eq. 1), were used to build SVM models on the
CD-train set, as described above. These models achieved
much better performance than models using random
genes from other external (known CD) gene sets includ-
ing unranked GWAS, MeSH, Swiss-Prot, and VEO gene
sets (Additional file 2: Figure S2). Our models achieved
the highest ROC AUC of 0.70 (PR AUC = 0.73) using
175 Pascal top-ranked genes (PascalGWAS175 genes,
Fig. 2a). By further permuting (“Methods” section) the
CD/HC labels in cross-validation, we showed that the
performance of our models is significantly non-random
(ROC/PR permutation p val = 0.001/0.011). Note that
here and in all fixed gene sets, the only source of the dif-
ference in model performance is the differential resam-
pling of the training individuals of the minor class
(“Methods” section).

Feature selected (FS) genes outperform Pascal genes in
differentiating CDs from HCs
We further evaluated the performance of the computa-
tionally extracted FS genes (DIS/DISO, KS5, TT5 and
DKMcost sets; “Methods” section). Trivially, the best per-
formance (ROC/PR AUC = 1/1) was achieved by the
DISO (Disease Overfitted) sets of more than 100 genes,
defined as genes that were not affected in any of the
CD-train HCs (“Methods” section).
Both the KS5max (all genes in KS5 set, ROC/PR AUC =

0.71/0.77, permutation p val = 0.033/0.022) and the
DKMcost125 (top-ranked 125 genes from DKMcost set,
ROC/PR AUC = 0.75/0.80, permutation p val = 0.014/
0.010) models outperformed PascalGWAS175 (Fig. 2b, c).
For the KS5 set, including more genes slightly improved
performance (Fig. 2b). This was not the case for
DKMcost, whose performance had reached a peak at 125
genes before dropping off. Note, however, that the max-
imum number of KS genes was 127, suggesting that
models may simply not benefit from additional genes.
TT5max and DISmax genes also had outperformed base-
line, but were not as good as KS5max or DKMcost125
genes (Additional file 2: Figure S3). Also note that the
FS sets were never overfitted to the data, as FS was per-
formed in a leave-one-out fashion, i.e., excluding the
testing individual. Thus, our results suggest that FS

Fig. 1 AVA,Dx pipeline flowchart. A simplified pipeline of AVA,Dx (Analysis of Variation for Association with Disease). Input data is in variant call
format (VCF) file from whole exome sequencing. Different versions of gene_scores are calculated as described in the “Methods” section. Models
for prediction of Crohn’s disease status are evaluated by cross-validation. Best gene_score scheme, FS algorithm, and, finally, SVM model are
selected on the basis of performance in cross-validation. These are further used for prediction of unknown individuals
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selected genes can differentiate CDs from HCs in our
data, particularly using rare variant signal that is not
available to the common variant-based methods.

Feature selection identifies known and previously
unreported CD genes
As described above, both PascalGWAS175 and FS sets
(DKMcost125 and KS5max) performed well in differentiat-
ing CDs from HCs in the CD-train panel (Fig. 2). How-
ever, the FS sets overlapped with PascalGWAS175 by no
more than five genes (average p val > 0.25, hypergeo-
metric test, in the background of ALL genes, Table 1).

On the other hand, the KS5max set significantly over-
lapped with the DKMcost125 genes (over 57 genes; aver-
age p val = 6.64e−93). We also found that while the FS
sets did not significantly overlap with most of the exter-
nal sets (GWAS, MeSH, and PascalGWAS175), the exter-
nal sets overlapped with each other (all with p val < 0.05,
Table 1). Note as an exception that while Swiss-Prot had
no overlap with KS5max, the overlap of the former with
DKMcost125 was significant (NOD2 [43], MDR1 [44],
and DMBT1 [45], three genes of only 18 in Swiss-Prot),
highlighting well-known CD genes extracted computa-
tionally without prior knowledge.

Table 1 Gene set overlap summary

*Significant overlap between gene sets. The number of genes above the diagonal is the overlap between two sets. The corresponding overlap significance is
below the diagonal (hypergeometric test in the background of ALL genes from the CD-train panel)
**There were 109 cross-validation/FS folds for each FS method (DKMcost125 and KS5max), i.e., 109 different gene sets. Here, the average fold size and range (in
parenthesis) are displayed

Fig. 2 DKMcost genes outperform PascalGWAS and KS5 sets in leave-one-out cross-validation on the CD-train panel. The x-axis is the number of
genes/features used in each model. The y-axis is the AUC for precision/recall (PR, gray) and ROC (yellow) curves. At each point on the graph, the
SVM models were trained using a top-ranked genes from the PascalGWAS genes, b randomly selected KS5 genes; note that at most 127 genes
were in KS5, i.e., were below the Kolmogorov-Smirnov p value of 0.05 (“Methods” section), c top-ranked DKMcost genes. Error bars are standard
deviations over 100 iterations of model training. Note that for each point on the x-axis in a and c the genes used in each of these training
iterations were the same, but the resampling of individuals was different. Dotted lines indicate baseline performance of ROC AUC of 0.5 (yellow)
and PR AUC of 0.58 (gray, 64 CDs out of 111 total number of individuals). Dashed lines indicate the highest performance achieved through all
gene sets
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Our FS techniques identified some known (GWAS and
MeSH) genes. For example, both FS sets contained the
CD-associated LRRK2 [46] and the uncharacterized
KIAA1109 [47] genes, which also appeared in GWAS
and MeSH sets. Additionally, DKMcost125 genes NOD2
[43], LSP1 [48, 49], and CCR6 [50] and KS5max genes
IL19 [8] and ATF4 [51] also appeared in GWAS and
MeSH. Overall, however, few genes appeared both in the
FS sets and in the experimentally derived external sets.
The performance of the KS5max and DKMcost125 models
thus suggests that computational FS methods are able to
identify previously unsuspected CD genes.

CD-relevant genes interact
We used gene set overrepresentation analysis to check if
DKMcost125, KS5max, or PascalGWAS175 genes are
enriched in known molecular pathways. FS found several
significantly enriched, likely CD-related, pathways that
were not identified by PascalGWAS175, e.g., antimicro-
bial peptides, apoptosis-related pathways, cGMP effects,
neutrophil degranulation, and innate immune system

(Additional file 4). The protein-protein interaction net-
work of DKMcost125 genes (Fig. 3) suggested additional
genes/proteins, which were not directly found by FS but
may be relevant to CD, e.g., the TAF1 and the HNF4A
transcription factors regulate many DKMcost125 genes,
including the infamous NOD2. HNF4A was annotated
as CD-associated in previous studies [52]. TAF1, on the
other hand, needs further evaluation, but preliminary
analysis shows that it contains a bromodomain, which
may be critical in inflammation in general and bowel in-
flammation [53–55].

At high scoring thresholds, AVA,Dx precisely identifies
people affected by Crohn’s disease
Cutoff selection
To select the cutoff in AVA,Dx score for calling an indi-
vidual healthy or CD-affected, we plotted the prediction
scores for each individual from CD-train in cross-valid-
ation and selected a cutoff that best differentiated CDs
from HCs (Fig. 4, Additional file 2). We chose three cut-
offs as follows: (1) The default cutoff was set at 14.3

Fig. 3 Induced network of CD-train DKMcost125 genes. Interconnection of DKMcost125 genes through protein interaction and gene regulatory
interaction. Magenta nodes were genes/proteins that were not selected by FS but interact with the FS genes (black nodes) through protein or
gene regulatory interactions. Transcription factors TAF1 and HNF4A regulate many DKMcost125 genes, indicating their potential role in
CD pathogenesis
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(“Methods” section), where we had balanced precision
and recall for both CDs and HCs in our set (47 of 64
CD patients were correctly identified, as were 28 of 47
healthy controls; 71% precision, 73% recall, Matthews
correlation coefficient (MCC) = 0.33). (2) To precisely
identify CD, we set a stricter cutoff at 45, where 94% of
the individuals above the cutoff were sick (27% recall).
(3) On the other hand, to identify as many CD patients
as possible, we set a cutoff at 0 where 89% of the CD pa-
tients were identified (70% precision). This tradeoff be-
tween precision and recall of predictions across
thresholds suggest using the individual AVA,Dx scores
to estimate the reliability of each prediction, i.e., it is
more likely that the higher scoring individuals have CD
than lower scoring ones. Note, however, that the score
was not evaluated and should not be used as an indica-
tor of disease severity.
For all further analyses, we built/used PascalGWAS175

and DKMcost125 prediction models using the entire CD-

train panel, as opposed to leaving one sample out for
cross-validation.

Batch effect across panels
For AVA,Dx to be useful in diagnosis of new patients,
the method has to be directly applicable to samples from
different sequencing batches handled by different labs.
Regardless of health status, the sequencing procedures
may cover different regions on the genome/exome and
potentially result in different numbers of variants even
for the covered regions (Additional file 2: Section 7).
This “batch effect” is a likely result of the use of diverse
sequencing platforms and variant calling settings (Add-
itional file 2: Tables S2 and S3). To evaluate the severity
of the batch effect, we combined the ALL gene_score
profiles of our CD-train panel with those of all other
panels at our disposal (CD-test, WTCCC, and GTEx
panels). We further performed principal component ana-
lysis on the combined set. Individuals clustered precisely
according to batch (Additional file 2: Figure S4), suggest-
ing that our models could not be used for prediction of
individual CD status in different batches. To test new in-
dividuals, batch effects had to be removed. Moreover, to
apply our method in a real-life situation, where only one
individual is to be evaluated for CD at a time, the
“batch” was designated as containing only one person.
Thus, for each individual from the CD-test, WTCCC,
and GTEx panels, we first extracted the loci covered by
CD-train and then applied ComBat to adjust gene_scores
of the entire CD-train panel and the one testing individ-
ual. We then built a new model using the adjusted CD-
train panel for every testing individual—3379 models in
total for the evaluation of all panels. Note that the AVA,
Dx pipeline thus retrains the model to precisely fit the
genomic data of every new test individual (an estimated
10 s per individual, on a 64-bit Mac iOS, with 2.9-GHz
Intel Core i5 CPU and 16-GB DDR3 memory).

Evaluation of predictions
For all evaluations, as for the training set, we retained
only the EUR individuals from all test sets (see perform-
ance on non-EUR individuals in Additional file 2: Sec-
tion 8). The PascalGWAS175 model was nearly random
in predicting the status of all CD-test individuals (ROC/
PR AUC of 0.57/0.82, Additional file 2: Figure S5). Our
DKMcost125 model, however, reached ROC/PR AUC =
0.69/0.92 (Fig. 5 and Table 2, permutation p val = 0.041/
0.035, baseline PR AUC = 0.79). That is, at default cutoff,
using this model, we were able to correctly identify 36 of
49 CD patients and 5 of 13 healthy controls (Table 2).
Moreover, in predicting all WTCCC (CD) and GTEx
(HC) individuals, the DKMcost125 model reached a
ROC/PR AUC = 0.76/0.94 (Fig. 5 and Table 2, permuta-
tion p val < 0.001/0.001, baseline PR AUC = 0.82), while

Fig. 4 Prediction of CD-train individuals using the DKMcost125 model
in leave-one-out cross-validation. Each dot represents one person in
the panel, colored according to health status (red = CD, blue = HC).
Dots are jittered along the x-axis for better visualization. Dashed
lines are the three cutoffs used for different levels of prediction
stringency in calling an individual a CD patient. The predicted scores
of CD and HC individuals were significantly different (Kolmogorov-
Smirnov test p value = 0.0002226)
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the PascalGWAS175 model failed to differentiate CD and
HC (ROC/PR AUC = 0.30/0.76). Our model identified
HC individuals less accurately than CD patients, but bet-
ter than the baseline (DKMcost125 model vs. baseline PR
AUCs for HC were 0.35 vs. 0.21 and 0.31 vs. 0.18 for
CD-test and WTCCC-GTEx panels, respectively).

Discussion
After years of study on the subject and numerous prom-
ising findings, CD risk prediction on the basis of genetic
information still remains a problem. We developed
AVA,Dx, a machine learning method that uses individ-
ual exome data of a panel of CD patients and healthy in-
dividuals to select CD-relevant genes and, potentially,
predict the health status of previously unseen individ-
uals. We first identified the functional effects of exome
SNVs and combined them to create gene scores,

indicative of gene functional deficiencies. This approach
efficiently decreases the dimensionality of data from
considering all exome variants (173,013 variants) to fo-
cusing only on affected genes (13,957 genes). Addition-
ally, FS techniques reveal new disease-related genes thus
further reducing the dimensionality of data. While our
method currently only considers coding variants, the
path to integrating other CD-relevant types of variants,
e.g., splice site and regulatory, into gene scoring is also
clear.
The main idea behind AVA,Dx is that disease-causing

variation is likely to be functionally detrimental to af-
fected genes/pathway components. To evaluate whether
molecular function disruption is an important indicator
of gene involvement in disease, we tested a number of
variant effect scoring schemes. Confirming our suspi-
cion, we found that functional scoring was more

Fig. 5 DKMcost125 model prediction of test set individuals. The predicted scores of all individuals from sets a CD-test panel and b WTCCC (all CD)
and GTEx (all HC) panels combined. Dots are jittered along the x-axis for better visualization. Dashed lines are cutoffs for calling an individual a
CD patient (as in Fig. 4): loose (at 0), default (at 14.3), and strict (at 45). The predicted scores of CD and HC individuals were significantly different
(Kolmogorov-Smirnov test p values a = 0.007413 and b < 2.2e−16, respectively)

Table 2 DKMcost125 model performance on test sets

Cutoff CD-test WTCCC and GTEx^

TP FN TN FP Prec % Rec % MCC TP FN TN FP Prec % Bal. Prec % Rec % MCC

45 9 40 13 0 100.0 18.4 0.212 384 2104 543 1 99.7 98.8 15.4 0.176

14.3 36 13 5 8 81.8 73.5 0.107 1432 1056 476 68 95.5 82.2 57.6 0.346

0 44 5 2 11 80.0 89.8 0.067 1924 564 302 242 88.8 63.5 77.3 0.279

TP true positive (CDs predicted to be CD by AVA,Dx), FN false negative (CDs predicted to be HC), TN true negative (HCs predicted to be HC), FP false positive (HCs 
predicted to be CD), Prec precision, Rec recall of identifying CD patients (Eq. 2), Bal. Prec balanced precision, where the number of CD and HCs is standardized to 
represent 50% of the data, each. MCC is in Eq. 3. A more detailed performance evaluation is in Additional file 2: Tables S4 and S5
^WTCCC and GTEx panels were combined for evaluation since WTCCC contains only CD individuals and GTEx contains only HC individuals
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informative than simple counting of relevant variants.
Furthermore, as expected, models built using GWAS
(with Pascal filtering) genes performed significantly bet-
ter than random, indicating that GWAS indeed captures
CD association successfully. On the other hand, our FS
genes outperformed the GWAS genes, suggesting that
variant functional effects are more likely to highlight
causative, rather than association signals. Note, however,
that AVA,Dx is not limited conceptually to the gene
scoring described in this study; that is, other scores de-
scribing gene functional deficiency and including other
variant types (e.g., regulatory or synonymous) and/or dif-
ferent genotype weighing and variant effect summation
schemes can potentially be used.
Even as GWAS predictive accuracy improves, these

studies are limited by large sample size requirements
and use of only common SNPs. Thus, GWAS associa-
tions are often markers of disease, not causes, e.g., some
disease-related genes may not be found simply because
their variants are not common enough or are not cov-
ered by the SNP array. Our FS genes, on the other hand,
are more informative of pathogenicity pathways, as they
are selected on the basis of variation-driven gene func-
tional changes that separate CD-affected individuals
from healthy controls. Interestingly, while both FS and
GWAS gene-based models both perform well, the gene
sets do not have much overlap, suggesting that FS iden-
tifies previously unknown CD-related genes. We also
note that for other complex or rare diseases, where
GWAS data is not available or informative, AVA,Dx
may work uniquely to predict health status and identify
pathogenicity pathways based on even a small number
of whole exome sequences.
AVA,Dx required only 111 people to build a functional

model (ROC AUC = 0.75). This was less than a tenth of
the ~ 13,000 individuals that were needed in an earlier
study to build a GWAS logistic regression model (re-
ported ROC AUC = 0.86). Note that using only ~ 1300
people, significantly reduced the performance of this
model (reported ROC AUC = 0.60) [17]. Thus, the num-
ber of individuals in this latter type of study clearly
contributed heavily to its resolution of CD risk. Interest-
ingly, when used with our CD-train panel, the logistic
regression Wei et al. model (limited to exonic variants
only) was able to correctly identify nearly three quarters
(46 of 64 correct) of the patients but also misidentified
more than half (21 of 47 correct) of the healthy individ-
uals. On the other hand, AVA,Dx (at the default cutoff)
identified just one less CD patient correctly (45 of 64
correct), but it did so at significantly higher accuracy—
mislabeling only a third of the healthy individuals (28 of
47 correct).
For the larger WTCCC and GTEx panels, where > 80%

of the 573 necessary GWAS loci were covered, the

logistic regression model only reached 0.59 ROC AUC
(a false positive rate of 86% at default cutoff; Add-
itional file 2: Table S4). Similarly, polygenic risk scoring
[38] (PRS; all 230 CD loci, as described in the “Methods”
section, were present in the WTCCC-GTEx panel) was
only able to attain an ROC AUC of 0.57 (Additional file 2:
Table S6). Note that the distribution of ethnic subpopu-
lations (e.g., European American, Irish, and British)
across the WTCCC and GTEx cohorts was very similar,
and thus unlikely a contributing factor to performance
estimates (Additional file 3). Both the logistic regression
model and the PRS methods significantly underper-
formed AVA,Dx on this same panel (ROC AUC = 0.76).
With all of its advantages, several limitations of our

method remain. First, AVA,Dx’s prediction power de-
creases when the exome sequences of the test panel, or
the individual whose status is to be evaluated, share too
few loci with the CD-train panel. There are two reasons
for the difference in the covered loci—exome population
of origin and sequencing quality. In case of the former,
it is, arguably, not surprising that a genetic test that
works for one population is not as good in, or may be
not even applicable to, other populations, as is the case
for other diseases (e.g., as for venous thromboembolism
in African-Americans vs. Caucasians [56]). At an even
finer level, different types of CD may also not be prop-
erly evaluated with a single test, as is also the case, e.g.,
different subtypes of breast cancer [57]. Note, however,
that AVA,Dx performs similarly well for the early- and
late-onset CD individuals, whose exomes were part of
the training panel; the possible difference in perform-
ance could not be evaluated further as the WTCCC
panel had no annotations of time of onset. The differ-
ence in sequencing quality is an even more straightfor-
ward issue—missing variant calls decrease the method
power. We estimate that sharing at least 58% of the
training set variants (Additional file 2: Table S3) is suffi-
cient for prediction ROC AUC of 0.69 (i.e., CD-test); al-
though sharing more is better (i.e., ~ 80% shared in
WTCC-GTEX; ROC AUC = 0.76).
Importantly, also note that evaluating AVA,Dx per-

formance on testing panels sequenced separately not
only from the training set, but also from each other, is
complicated by inter-test batch effects. That is, although
we used ComBat to ameliorate the batch effects between
the training panel and testing individuals, our procedure
of removing batch effects for one individual at a time
could not guarantee that testing panels would be non-
differentiable by batch. We evaluated whether sequen-
cing explicitly differentiates testing panels by checking
their sequenced variant overlap; here, WTCCC and
GTEx shared over 92% (981) of the variants in the AVA,
Dx DKM gene set (of 1059 in WTCCC and 1026 in
GTEx). These results suggest that sequencing differences
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between testing panels did not contribute significantly to
the results of this study. However, more work with lar-
ger panels is necessary to evaluate the impact of batch
effects on prediction performance.
Another limitation of AVA,Dx is its poor ability to

recognize healthy people as healthy. The explanation for
this observation is simple: our method aims to identify
genetic patterns common to individuals affected by CD
(a fairly well-defined panel), rather than those of healthy
ones (an extremely wide set of people). Answering the
latter question is akin to proving a negative—how can
one be sure that the healthy people in our panel actually
do not have and will never develop CD? Also note that
the reliability of CD prediction is modulated by choosing
a higher prediction threshold. Thus, people scoring
above our strict cutoff are very likely to have CD; how-
ever, those that score just below it are termed “healthy,”
which they often are not. Thus, although AVA,Dx was
better than random in identifying healthy people in our
panel, we do not suggest using it for these purposes.
Our method is able to use less than 5% of the people

normally involved in a GWAS study to identify disease
genes and to make fairly accurate CD predictions for
previously unseen individuals. At high AVA,Dx scores,
our method is optimized for high precision, i.e., misclas-
sifying few healthy individuals as sick; lower AVA,Dx re-
call at this cutoff, i.e., failing to identify many CD
patients, suggests that there are multiple CD subtypes
that have yet to be clinically established. Notably, AVA,
Dx is robust to differences in panels and in sequencing/
filtering methods, making our approach potentially clin-
ically useful going forward.
Furthermore, AVA,Dx-identified genes appear to be

relevant to CD, as indicated by the matches of our path-
ways to known work, and yet significantly different from
those highlighted by other methods. Thus, our method
presents an orthogonal way for identifying disease-re-
lated genes, while avoiding the most severe research
limitation—the requirement of a large study panel. This
finding is in line with the higher risk expectation of
causal, rather than associated, variants [58]. While a lar-
ger panel could improve performance, our results sug-
gest that model training can also be performed using
already existing panels. Note that GWAS are higher
powered to stratify CD subtypes and better able to deal
with ethnicity-driven differences. Most crucially, how-
ever, they can identify the disease-relevant non-coding
variants. Thus, it is clear that future inclusion of the ef-
fects of regulatory, synonymous, and copy number vari-
ants is likely to improve AVA,Dx performance. Finally,
we suggest that the AVA,Dx approach to model building
is not limited to Crohn’s disease, but is rather applicable
to a wide spectrum of genetically linked, potentially rare
and complex, diseases.

Conclusions
To summarize, we developed AVA,Dx, a tool that uses
exome variant-caused gene functional changes to iden-
tify disease-related genes and make health status predic-
tions. AVA,Dx can be used orthogonally for identifying
disease-related genes. Larger panels and more compre-
hensive gene scoring schemes could potentially improve
performance.
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