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Abstract

Background: Recent evidence suggests that immunotherapy efficacy in melanoma is modulated by gut microbiota.
Few studies have examined this phenomenon in humans, and none have incorporated metatranscriptomics, important
for determining expression of metagenomic functions in the microbial community.

Methods: In melanoma patients undergoing immunotherapy, gut microbiome was characterized in pre-treatment
stool using 16S rRNA gene and shotgun metagenome sequencing (n = 27). Transcriptional expression of metagenomic
pathways was confirmed with metatranscriptome sequencing in a subset of 17. We examined associations of taxa and
metagenomic pathways with progression-free survival (PFS) using 500 x 10-fold cross-validated elastic-net penalized
Cox regression.

Results: Higher microbial community richness was associated with longer PFS in 16S and shotgun data (p < 0.05).
Clustering based on overall microbiome composition divided patients into three groups with differing PFS; the low-risk
group had 99% lower risk of progression than the high-risk group at any time during follow-up (p = 0.002). Among the
species selected in regression, abundance of Bacteroides ovatus, Bacteroides dorei, Bacteroides massiliensis, Ruminococcus
gnavus, and Blautia producta were related to shorter PFS, and Faecalibacterium prausnitzii, Coprococcus eutactus,
Prevotella stercorea, Streptococcus sanguinis, Streptococcus anginosus, and Lachnospiraceae bacterium 3 1 46FAA to longer
PFS. Metagenomic functions related to PFS that had correlated metatranscriptomic expression included risk-associated
pathways of L-rhamnose degradation, guanosine nucleotide biosynthesis, and B vitamin biosynthesis.

Conclusions: This work adds to the growing evidence that gut microbiota are related to immunotherapy outcomes,
and identifies, for the first time, transcriptionally expressed metagenomic pathways related to PFS. Further research is
warranted on microbial therapeutic targets to improve immunotherapy outcomes.
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Background

Treatment with immunotherapy targeting checkpoint in-
hibitors PD-1 or CTLA-4 significantly increases survival
in patients with metastatic melanoma over other stan-
dards of care [1, 2], with anti-PD-1 and anti-PD-1/
CTLA-4 combination therapy emerging as most effective
[3, 4]. However, responses to therapy are heterogeneous
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and not durable in large patient subsets: 3-year overall
survival rates were 58%, 52%, and 34% in combination
therapy, anti-PD-1, and anti-CTLA-4 groups, respect-
ively [4]. Consequently, identification of host and tumor
factors modulating treatment response is an area of ac-
tive research to improve survival rates [5].

Recent evidence suggests that immunotherapy efficacy
may be impacted by the gut microbiota, which profoundly
shape the human immune system [6] and thus may play a
role in antitumor T cell responses. In mice receiving anti-
CTLA-4 immunotherapy, antitumor immunity was
dependent on the presence of specific Bacteroides species
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[7]. Likewise, Bifidobacterium enhanced the efficacy of anti-
PD-L1 immunotherapy in mice with melanoma [8]. In hu-
man melanoma patients undergoing immunotherapy, gut
microbiome composition has been significantly associated
with clinical response [9-12], and antitumor immunity was
enhanced in germ-free mice receiving fecal transfer from
the responding patients [9, 10]. However, results between
studies thus far have been inconsistent regarding which
species and metagenomic functions are related to immuno-
therapy response. Notably, most published studies have
dichotomized patients into responders and non-responders,
a practice which ignores time-to-event data and could
result in loss of precision [13]. Additionally, published stud-
ies have not incorporated metatranscriptomic data into
their analysis, which is crucial for understanding actual
expression levels of metagenomic functions in the microbial
community. Here, we robustly characterized the pre-
immunotherapy gut microbiome in a pilot study of melan-
oma patients using 16S rRNA gene sequencing, shotgun
metagenome sequencing, and shotgun metatranscriptome
sequencing. We tested whether gut microbiome overall
diversity and composition were related to progression-free
survival using Cox proportional hazards models, and identi-
fied specific microbial taxa and functional pathways that
were consistently related to progression-free survival in
repeated cross-validation analyses.

Methods

Patients

Patients (7 = 27) with metastatic melanoma scheduled to
receive immunotherapy at NYU Langone Health were re-
cruited into this study from September 2016 to November
2017. Follow-up for the current analysis occurred through
September 2018. All patients pursuing treatment with im-
munotherapy were eligible for the study. The study was
discussed with patients prior to starting treatment with
immunotherapy, and all patients provided informed con-
sent. Patients were enrolled into an IRB-approved institu-
tional database and sample collection study (IRB#10362)
and had prospective-driven follow-up. In addition, pa-
tients were seen routinely for treatment, and follow-up
was performed at those visits as well. Stool kits were pro-
vided prior to starting treatment so as to obtain a pre-
treatment stool sample. All demographic and clinical/
pathological patient information was abstracted from elec-
tronic health records.

Samples

Patients collected stool with provided kits at home prior
to the start of immunotherapy. Kits included a stool col-
lection tube with 10 ml RNAlater, instructions for stool
collection, and a return addressed box with pre-paid
postage. Patients were instructed to mail samples back
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within 1 day; upon receipt, samples were stored at -
80 °C until use.

Definitions

The primary endpoint was progression-free survival
(PES), which included disease progression or death from
any cause as events. Person time is defined as time from
immunotherapy start date to event (first progression or
death) or loss to follow-up (censored). Covariates in-
cluded in statistical models (i.e., age, number of sites of
metastases, stage, BMI) were based on electronic med-
ical chart information prior to the start of immunother-
apy rather than initial diagnosis, to coincide best with
time of stool sample collection.

16S rRNA gene sequencing

Assay

Stool samples underwent 16S rRNA gene sequencing at
the Environmental Sample Preparation and Sequencing
Facility at Argonne National Laboratory, as previously
described [14]. DNA was extracted using the Mo Bio
PowerSoil DNA isolation kit, following the manufac-
turer’s protocol. The V4 region of the 16S rRNA gene
was PCR amplified with the 515F/806R primer pair,
which included sequencer adapter sequences used in the
Hlumina flow cell and sample-specific barcodes [15, 16].
Each 25 uL PCR reaction contained 9.5uL of Mo Bio
PCR Water (Certified DNA-Free), 12.5pL of Quanta-
Bio’s AccuStart II PCR ToughMix (2x concentration, 1x
final), 1 uL. Golay barcode tagged Forward Primer (5 uM
concentration, 200 pM final), 1 uL Reverse Primer (5 uM
concentration, 200 pM final), and 1uL of template
DNA. The conditions for PCR were as follows: 94 °C for
3 min to denature the DNA, with 35 cycles at 94.°C for
45s, 50°C for 60, and 72 °C for 90s, with a final exten-
sion of 10 min at 72 °C. PCR products were quantified
using PicoGreen (Invitrogen) and a plate reader (Infinite
200 PRO, Tecan). Sample PCR products were then
pooled in equimolar amounts, purified using AMPure
XP Beads (Beckman Coulter), and then quantified using
a fluorometer (Qubit, Invitrogen). Molarity was then di-
luted to 2nM, denatured, and then diluted to a final
concentration of 6.75 pM with a 10% PhiX spike for se-
quencing on the Illumina MiSeq. Amplicons were se-
quenced on a 151 bp x 12 bp x 151 bp MiSeq run [16].

Sequence read processing

Sequence reads were processed using QIIME 2 [17].
Briefly, sequence reads were demultiplexed and paired-
end reads were joined, followed by quality filtering as de-
scribed in Bokulich et al. [18]. Next, the Deblur work-
flow was applied, which uses sequence error profiles to
obtain putative error-free sequences, referred to as
“sub”-operational taxonomic units (s-OTU) [19]. s-
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OTUs were assigned taxonomy using a naive Bayes clas-
sifier pre-trained on the Greengenes [20] 13_8 99%
OTUs, where the sequences have been trimmed to only
include 250 bases from the 16S V4 region, bound by the
515F/806R primer pair. A phylogenetic tree was con-
structed via sequence alignment with MAFFT [21], fil-
tering the alignment and applying FastTree [22] to
generate the tree.

Shotgun metagenome sequencing

Assay

Stool samples underwent shotgun metagenome sequencing
at the Environmental Sample Preparation and Sequencing
Facility at Argonne National Laboratory. DNA was ex-
tracted as above and quantified using a fluorometer (Qubit,
Invitrogen). DNA was then mechanically sheared to the de-
sired insert size of the final library using the Covaris S-
series system, and products brought to 15 pL using Agen-
court AMPure XP beads (Beckman Coulter). The Apollo
324 system (Takara Bio) was then used for end-repair, A-
tailing, Illumina adaptor and barcode ligation, and size se-
lection to generate the libraries. Libraries are run through
10-15 cycles of PCR with Kapa Biosystems Library Amplifi-
cation kits, followed by further size selection with Blue Pip-
pin Prep (Sage Science). Final library quantification is
achieved using the Qubit Fluorometer (for concentration)
and the Agilent 2100 Bioanalyzer (for library insert size and
length). Libraries were sequenced on the Illumina HiSeq
2500 on a 2 x 101 bp paired-end run.

Sequence read processing

Reads were demultiplexed, and Trimmomatic [23] was
used for read length filtering, trimming of Illumina
adapter sequences, and trimming of low-quality read
ends. Reads mapping to the human genome were identi-
fied using Bowtie2 [24] and removed. Forward and re-
verse reads were concatenated for input into the
taxonomic and functional profiling tools, MetaPhlAn2
and HUMANN2. MetaPhlAn2 [25] uses a set of ~ 1 mil-
lion clade-specific markers (average 184 marker genes
for each species) from >7500 species to unequivocally
identify and quantify specific microbial clades at the spe-
cies level or higher. HUMANN2 maps reads to function-
ally annotated microbial species genomes and uses a
translated search to align unmapped reads to UniRef90
protein clusters [26] (gene families). Gene families are
then grouped into MetaCyc pathways [27] using Min-
Path [28]. For a lower level of resolution, we also
regrouped UniRef90 gene families into MetaCyc reac-
tions using the “humann2_regroup_table” script. We re-
moved  unintegrated/unmapped/unknown/ungrouped
pathways, reactions, and gene families prior to calculat-
ing relative abundance, using the “humann2_renorm_
table” script.
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Shotgun metatranscriptome sequencing

Assay

Stool samples underwent shotgun metatranscriptome se-
quencing at the Environmental Sample Preparation and
Sequencing Facility at Argonne National Laboratory.
RNA was extracted using the Mo Bio PowerMicrobiome
RNA Isolation Kit and quantified using a Qubit
Fluorometer. RNA integrity and size distribution were
determined using the Agilent RNA 6000 Nano Kit on
the Agilent 2100 Bioanalyzer. Samples then underwent
DNase treatment using the Turbo DNA-free kit (Life
Technologies), and ribosomal depletion using the Ribo-
Zero rRNA Removal Kit (Bacteria) (Illumina). Bacterial
mRNA purification was achieved with AMPure RNA-
Clean XP Beads, and cDNA libraries were generated
using the ScriptSeq V2 RNA-Seq Library Preparation Kit
(Ilumina). Libraries were sequenced on the Illumina
HiSeq 2500 on a 2x 151 bp paired-end run. In this
study, metatranscriptomic library preparation failed for
10 samples due to poor RNA quality; thus, only a subset
of 17 patient samples underwent metatranscriptomic
sequencing.

Sequence read processing

Reads were processed in the same way as the shotgun
metagenome samples, with the exception of removing
reads with Bowtie2 mapping to the human transcrip-
tome, rather than human genome. Paired metagenomic
taxonomic profiles were used as taxonomic profile in-
puts for HUMANNNZ2. In addition to relative abundance
of gene families, reactions, and functional pathways
metatranscriptomic expression, we also derived relative
expression (i.e., independent of gene copy number) using
the “humann2_rna_dna_norm” script on these three
levels of data.

Statistical analysis

a-Diversity

a-diversity (within-sample microbiome diversity) was
assessed based on the 16S rRNA gene and shotgun
sequencing data, using richness (number of s-OTUs
[16S] or subspecies [shotgun]) and the Shannon diversity
index. For 16S, these indices were calculated in 100
iterations of s-OTU tables rarefied to 18,368 sequence
reads per sample, which was the lowest sequencing
depth among samples, using the QIIME 2 diversity plu-
gin. The final value for each sample was calculated by
averaging over the 100 iterations. For shotgun, these
indices were calculated on the subspecies-level data
without rarefaction. The subspecies level of the shotgun
data includes both strains and species (for species with
no strain classification). We used Cox proportional
hazards models to determine whether a-diversity was
associated with progression-free survival, adjusting for
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age, sex, BMI], stage, number of sites of metastases, and
antibiotic use in the last 6 months.

B-Diversity

B-diversity (between-sample microbiome diversity) was
assessed based on the 16S rRNA gene and shotgun se-
quencing data using the weighted UniFrac distance [29]
(16S only) and the Jensen-Shannon Divergence (JSD)
[30]. Distances were calculated on the s-OTU (16S) or
subspecies (shotgun) level. Principal coordinate analysis
(PCoA) [31] was used for visualization. The community-
level test of association between the microbiota and sur-
vival times (MiRKAT-S) [32] and the optimal
microbiome-based survival analysis test (OMiSA) [33]
were used to test the association of overall bacterial
composition with progression-free survival, adjusting for
age, sex, BMI, stage, number of sites of metastases, and
antibiotic use in the last 6 months. We also assigned
samples to clusters by applying Ward’s Hierarchical Ag-
glomerative Clustering method [34] to the distance
matrices, and then tested whether these clusters were re-
lated progression-free survival using log-rank tests.

Identification of taxa

Genera, species, and subspecies (or sub-OTUs) associ-
ated with progression-free survival were assessed inde-
pendently in the 16S and shotgun metagenome datasets
using repeated cross-validated elastic-net penalized Cox
proportional hazards regression. 16S s-OTUs were ag-
glomerated into genus and species levels; this was not
necessary for MetaPhlAn2 (shotgun) output which is
already in a taxonomic level format. Taxonomic abun-
dance was transformed using the centered log ratio (clr)
transformation [35, 36] after adding a pseudocount, in
order to remove compositional constraints of sequen-
cing. 16S agglomerated genera or species missing genus-
or species-level classification, respectively, were removed
for this analysis. Likewise, shotgun taxa missing classifi-
cation at the genus, species, or subspecies levels were re-
moved from the respective levels. Additionally, we only
tested taxa present in at least 25% of samples and with
mean relative abundance greater than 0.01% in order to
minimize the number of tests. These exclusions resulted
in inclusion of 42 16S genera, 24 16S species, and 233
16S s-OTUs, and 43 shotgun genera, 110 shotgun spe-
cies, and 65 shotgun subspecies for testing. We con-
ducted 500 x 10-fold  cross-validated  elastic-net
penalized Cox regression using the “cv.glmnet” function
in the glmnet R package [37], with an a value of 0.5 to
allow groups of correlated predictors to be selected to-
gether. Non-penalized covariates (age, sex, BMI, stage,
number of sites of metastases, and antibiotic use in the
last 6 months) were included in each model. We
summed the number of times each taxon was selected
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out of the 500 repetitions. For all tested taxa, we also fit
standard Cox proportional hazards models for
progression-free survival, adjusting for the covariates
listed above. p values for these models were adjusted for
the false discovery rate (FDR) [38]; FDR adjustment was
done at each taxonomic level (i.e., genus, species) separ-
ately. We focused further on taxa selected >25% of the
500 times (125 times or more) and with FDR-adjusted
q <0.20 in either the 16S or shotgun data; for these, we
compared hazard ratios and examined correlations be-
tween the two data types to confirm findings and con-
firm taxonomic identities.

Identification of gene families, reactions, and functional
pathways

We assessed associations of metagenomic functional
pathways, reactions, and gene families’ relative abun-
dance with progression-free survival. Pathways, reac-
tions, and gene families were transformed using the
centered log ratio (clr) transformation [35, 36] after add-
ing a pseudocount, in order to remove compositional
constraints of sequencing. We only assessed pathways/
reactions/gene families present in at least 25% of sam-
ples, with mean relative abundance greater than 0.01%
(for gene families) or 0.03% (for pathways/reactions)
and, among these, with variance greater than the 25th
percentile of variances, in order to minimize the number
of tests that are unlikely to result in significant findings.
This resulted in inclusion of 177 metagenomic pathways,
662 reactions, and 146 gene families. 500 x 10-fold
cross-validated elastic-net penalized Cox regression, as
described above in “Identification of taxa”, was used to
identify functional pathways, reactions, and gene families
related to progression-free survival. We used Spearman’s
correlation to examine associations between relative
abundance of metagenomic features and their corre-
sponding relative abundance in the metatranscriptome,
and focused on metagenomic features with (a) selection
>25% of the 500 times, (b) FDR-adjusted g <0.20, and
(c) correlated metatranscriptomic expression (p <0.05).
Using the same procedure, we also examined metatran-
scriptomic expression and relative expression of path-
ways/reactions/gene families related to progression-free
survival; we considered this analysis exploratory due to a
reduced sample size (n = 17).

Results

Among the patients included in the current study, 12
progressed over the course of follow-up, which ranged
from 10 to 25 months. The majority of the patients were
male (78%) and white (96%), and 41% of the patients
were receiving adjuvant immunotherapy (i.e., complete
resection prior to therapy) (Table 1). Patients who pro-
gressed tended to be older and have lower BMI at
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Table 1 Demographic and clinical characteristics of melanoma patients on immunotherapy
Characteristic All patients No progression Any progression (n=12) p°
(n=27) (n=15)
Age (years)®, mean + SD 703+£119 666+ 125 749+96 < 0.0001
Male, % 77.8 733 83.3 0.66
White, % 96.3 100 91.7 044
BMI (kg/m?)P°, mean + SD 275+48 284+43 265+53 <0.0001
Melanoma type, % 0.02
Nodular 18.5 6.7 333
Acral lentiginous 37 0 83
Superficial spreading 37 0 83
Desmoplastic 37 0 83
NOS/missing 704 933 41.7
Driver mutation, % 0.83
NRAS 185 133 25
BRAF 259 333 16.7
None 296 267 333
Missing 259 26.7 25
Stage®, % 0.68
Il 333 40 25
% 66.7 60 75
LDH > 618 U/L®, % 7.4 0 16.7 022
Sites of metastasis®<, % 0.21
0 40.7 533 25
1-2 333 333 333
23 259 133 4.7
Immunotherapy type, % 044
Anti-PD-1 51.9 46.7 583
Anti-CTLA-4 37 0 83
Anti-PD-1/anti-CTLA-4 444 533 333
Antibiotics in prior 6 months, % 556 60 50 0.71

?p value for difference by progression status, from Wilcoxon rank-sum test for continuous variables or Fisher's exact test for categorical variables

PCharacteristic prior to immunotherapy start (not at diagnosis)

Patients with 0 sites of metastasis were resected with no evidence of disease and were being treated adjuvantly

baseline than patients who remained progression free
(Table 1).

Higher microbiome community richness was associated
with longer progression-free survival (number of 16S s-
OTUs: HR [95% CI] = 0.97 [0.95, 1.00], p = 0.02; number
of shotgun subspecies: HR [95% CI]=0.89 [0.79, 0.99],
p=0.03), adjusting for the covariates of age, sex, BM],
stage, number of sites of metastases, and antibiotic use in
the last 6 months. Higher community diversity, as mea-
sured by the Shannon index, was associated with longer
progression-free survival in the 16S data (p = 0.02) but not
in the shotgun data (p = 0.90) (Additional file 1: Table S1).
Results were similar with additional adjustment for im-
munotherapy regimen (monotherapy or combined ther-
apy) (Additional file 1: Table S1).

In both the 16S and shotgun data, hierarchical cluster-
ing based on the JSD clustered patients into two groups,
and these two groups significantly differed in their
progression-free survival (16S log-rank p = 0.005; shotgun
log-rank p = 0.02) (Additional file 2: Figure S1). We then
further grouped patients as follows: a “low-risk” group
comprised of patients concordantly in the low-risk 16S
and low-risk shotgun clusters; a “high-risk” group com-
prised of patients concordantly in the high-risk 16S and
high-risk shotgun clusters; and an “intermediate-risk”
group comprised of patients discordant between the 16S
and shotgun clusters (Fig. 1a). These groups differed sig-
nificantly in their progression-free survival (log-rank p =
0.006; Fig. 1b). Additionally, these groups were related to
progression-free survival in Cox proportional hazards
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Fig. 1 Patient clusters based on overall microbiome composition in 165 and shotgun data are related to progression-free survival. Ward's Hierarchical
Agglomerative Clustering method was used on the Jensen-Shannon Divergence (JSD) from the 16S s-OTU data and shotgun subspecies data to cluster
patients into groups. a The dendrograms from 16S and shotgun were compared, and patients were assigned to two concordant groups (orange and blue)
or a discordant group (purple). b The Kaplan-Meier curves of the patient groupings had significantly different progression-free survival (log-rank p = 0.0057)
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models adjusting for covariates: patients in the low-risk
group had 99% lower risk of progression than the high-
risk group at any time during follow-up (HR [95% CI] =
0.01 [0.001, 0.20], p=0.002), while patients in the
intermediate-risk group had non-significantly lower risk
(HR [95% CI]=0.10 [0.005, 2.17], p=0.14) (Add-
itional file 1: Table S1).

In the MiRKAT-S test, overall microbiome community
composition as measured by the JSD was marginally re-
lated to progression-free survival for both the 16S (p =
0.09) and shotgun (p =0.06) data, adjusting for covari-
ates (Additional file 1: Table S1). Measures relying on
the phylogenetic tree (weighted UniFrac, OMiSA) could
only be assessed in the 16S data; community compos-
ition as measured by the weighted UniFrac was margin-
ally associated with progression-free survival (p = 0.07),
while the OMIiSA test was not significant (p=0.17)
(Additional file 1: Table S1).

In 500 x 10-fold cross-validated elastic-net Cox regres-
sion models for progression-free survival adjusting for
covariates, 6 genera and 3 species were selected > 25% of
the time with g <0.20 in the 16S data, and 8 species and
4 subspecies were selected >25% of the time with g <
0.20 in the shotgun data (Fig. 2a, b; Additional file 1:
Table S2; Additional file 2: Figure S2). There were no
16S s-OTUs or shotgun genera which met the cut-off
criteria (Additional file 1: Table S2). Most of the genera
and species selected in either the 16S or shotgun data
that were present in both datasets were highly correlated
between the two datasets (Fig. 2¢, d) and showed con-
sistent associations with progression-free survival in
both datasets. These included genera Bacteroides and
Bilophila, and species Bacteroides ovatus, Blautia

producta, and Ruminococcus gnavus, associated with
shorter progression-free survival, and genera Faecalibac-
terium and Parabacteroides and species Faecalibacter-
ium prausnitzii, associated with longer progression-free
survival. Genus Clostridium was not well correlated be-
tween the 16S and shotgun datasets and was only associ-
ated with longer progression-free survival in the 16S
data, while Coprococcus eutactus was associated with
longer progression-free survival in the 16S data but had
insufficient abundance to be tested in the shotgun data
(Fig. 2). As to be expected, many of the species selected
in the shotgun data were not detected, either at all or
with sufficient abundance, in the 16S data, including
Bacteroides dorei and Bacteroides massiliensis, associated
with shorter progression-free survival, and Prevotella
stercorea, Lachnospiraceae bacterium 3 1 46FAA,
Streptococcus anginosus, and Streptococcus sanguinis, as-
sociated with longer progression-free survival (Fig. 2b).

Relative abundance of the selected species and subspe-
cies (based on shotgun data) tended to differ between
the high-risk and low-risk JSD cluster groups (Fig. 3a, b).
Taxa associated with shorter progression-free survival,
such as species Bacteroides ovatus, Bacteroides dorei,
Bacteroides massiliensis, and Blautia producta, and sub-
species of Lachnospiraceae bacterium 5 1 57FAA, were
elevated in the high-risk group, while taxa associated
with longer progression-free survival, such as species
Streptococcus sanguinis and Streptococcus anginosus, and
subspecies of Prevotella stercorea, Faecalibacterium
prausnitzii, and Lachnospiraceae bacterium 3 1 46FAA,
were elevated in the low-risk group (Fig. 3a, b).

In repeated cross-validated Cox regression for metage-
nomic functional pathways, reactions, and gene families,
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11 pathways, 26 reactions, and 16 gene families were se-
lected > 25% of the time with g < 0.20 (Additional file 1:
Table S3-S5). Among these, 8 pathways, 17 reactions,
and 7 gene families had significant positive correlations
(p<0.05) with metatranscriptomic expression (Fig. 4,
Additional file 2: Figures S3-S4). Selected metagenomic
pathways with correlated metatranscriptomic expression
that were related to longer progression-free survival in-
cluded biosynthesis pathways for L-isoleucine and petro-
selinate. Those related to shorter progression-free survival
included biosynthesis pathways for 6-hydroxymethyl-
dihydropterin diphosphate, pantothenate and coenzyme
A, flavin, pyridoxal 5-phosphate, and guanosine nucleo-
tides, and the degradation pathway for L-rhamnose (Fig. 4a,
b; Additional file 1: Table S3). Within each of these path-
ways, abundance of specific biochemical reactions were
also related to progression-free survival, typically in the
same direction as the parent pathway (Fig. 4c). Selected
metagenomic reactions with correlated metatranscrip-
tomic expression that were related to shorter progression-
free survival included reactions involved in nucleotide
phosphorylation and biosynthesis, L-rhamnose degrad-
ation, pectin degradation, and aerobic respiration (Add-
itional file 1: Table S4, S6; Additional file 2: Figure S3).

Most of the selected gene families with correlated meta-
transcriptomic expression were uncharacterized proteins;
results for these gene families are shown in Add-
itional file 1: Table S5 and Additional file 2: Figure S4. In
repeated cross-validated Cox regression for metatranscrip-
tomic expression and relative expression of functional
pathways, reactions, and gene families, we did not identify
features meeting our selection criteria, likely due to the
smaller sample size (n=17) available for this analysis
(Additional file 1: Table S3-S5).

Risk-associated metagenomic pathways tended to be
positively correlated with risk-associated species/subspe-
cies and negatively correlated with protective species
(Fig. 5a). For example, risk-associated Bacteroides dorei
and Bacteroides ovatus were positively associated with L-
rhamnose degradation and pantothenate and coenzyme
A biosynthesis. Protective metagenomic pathways did
not correlate strongly with protective species/subspecies.
Similar correlation patterns were observed for species/
subspecies with metatranscriptomic expression of these
pathways (Fig. 5a). We next explored average species
contributions to overall metagenome and metatranscrip-
tome pathway abundances in this patient population
(Fig. 5b); while multiple species are involved in each
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pathway, we noted that Bacteroides ovatus was a signifi-
cant contributor to degradation of L-rhamnose and bio-
synthesis of pyridoxal 5-phosphate, 6-hydroxymethyl-
dihydropterin diphosphate, and pantothenate and coen-
zyme A, while Bacteroides dorei was a significant con-
tributor to guanosine nucleotides biosynthesis (Fig. 5b).
Analysis of per-species pathway abundances with
progression-free survival implied that degradation of L-
rhamnose and biosynthesis of pyridoxal 5-phosphate, 6-
hydroxymethyl-dihydropterin diphosphate, and panto-
thenate and coenzyme A by Bacteroides ovatus was re-
lated to shorter progression-free survival; that guanosine
nucleotides biosynthesis by Bacteroides dorei and Bacter-
oides massiliensis was related to shorter progression-free
survival; and that L-isoleucine biosynthesis by Coprococcus
eutactus was related to longer progression-free survival
(Fig. 5¢).

Discussion

In this pilot study of melanoma patients treated with im-
munotherapy, we observed a relationship between over-
all microbiome composition and risk of progression
during follow-up. Clustering of patients based on the
underlying microbial composition in their stool revealed
patient groups with significantly different progression-
free survival, including a high-risk group enriched in

Bacteroides species, and a low-risk group enriched in
Faecalibacterium prausnitzii and other protective spe-
cies. Further, we observed metagenomic functions re-
lated to progression-free survival that had correlated
metatranscriptomic expression and may serve as mecha-
nisms for bacteria to influence immunotherapy response,
including protective pathways of amino acid biosynthesis
and risk-associated pathways of sugar degradation,
guanosine nucleotide biosynthesis, and B vitamin biosyn-
thesis. Finally, we observed that greater microbiome
community richness was significantly associated with
prolonged progression-free survival. Many of these re-
sults are consistent with previous literature, highlighting
emergent bacterial modulators of immunotherapy treat-
ment response.

While several studies now suggest that the gut micro-
biome is a critical player in immunotherapy response,
the mechanisms by which this may occur remains
unclear. The main principle of immunotherapy is to
block immunosuppressive T cell checkpoints, allowing
cytotoxic T cells to attack tumors [39]. Human gut
microbiota may modulate the effectiveness of immuno-
therapy, and anticancer immunosurveillance in general,
by shaping both effector and suppressor immune cell
populations through pathogen-associated molecular
patterns (PAMPs), antigens, and metabolites [40]. One
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Fig. 4 Metagenomic functional pathways related to progression-free survival. For metagenomic pathways selected > 125 times in 500 x 10-fold
cross-validated elastic-net penalized Cox regression, that also had FDR-adjusted g < 0.20 and correlated (p < 0.05) metatranscriptomic expression,
we show a number of times selected and the hazard ratio (alongside parallel data from the metatranscriptomic analysis in n=17) and b correlations
between metagenomic and metratranscriptomic functional pathway relative abundance. Spearman’s rho and p value are displayed on the plots. ¢ MetaCyc
pathway layouts for the pathways in (a, b). Each arrow represents one MetaCyc reaction, color-coded by its hazard ratio in the metagenomic analysis.
Arrows in black represent reactions not tested due to low carriage, abundance, or variance of the reaction

hypothesis by which this occurs is via microbial proteins
that mimic tumor antigens, resulting in T cell cross-
reactivity; T cells may be primed by microbial antigens in
the gut and travel to tumor sites, or the gut microbes or
microbial antigens themselves may translocate to distant
sites to induce a local T cell response near the tumor [40].
A second hypothesis is that gut microbes or microbial
products activate pattern recognition receptors (PRRs),
which stimulate the production of cytokines and inter-
ferons, thus leading to immunostimulatory or immuno-
suppressive reactions in T cells; PRR activation may occur
in the gut and stimulate traveling innate immune cells, or
the microbes or microbial products themselves may trans-
locate [40]. Evidence for these hypothetical mechanisms
underlines the potential causal impact of the gut micro-
biota on immunotherapy response and supports the future
use of microbiome manipulation to increase the efficacy
of immunotherapy [40].

To our knowledge, four studies have examined the rela-
tionship of the gut microbiome to immunotherapy response
in human patients with melanoma. In 2018, Gopalakrishnan
et al. reported higher a-diversity, higher relative abundance
of Faecalibacterium prausnitzii, and lower relative abun-
dance of Bacteroidales, in anti-PD-1 immunotherapy re-
sponders (n =30) compared to non-responders (1 =13) [9].
They quantified T cell densities in pre-treatment tumors and
peripheral blood and observed significant positive correla-
tions of gut Faecalibacterium relative abundance with tumor
CD8+ T cell infiltrate and peripheral CD8+ T cell and ef-
fector CD4+ T cell frequencies, while Bacteroidales was in-
versely related to these markers. Further, they found that gut
Faecalibacterium was positively related to a peripheral cyto-
kine profile favorable for response to anti-PD-1 immunother-
apy, while Bacteroidales was related to a blunted peripheral
cytokine response and to higher peripheral frequencies of
immunosuppressive regulatory T cells and myeloid-derived
suppressor cells [9]. Germ-free mice receiving fecal trans-
plant from responding patients had reduced tumor size and
enhanced antitumor T cell responses compared to mice re-
ceiving fecal transplant from non-responding patients [9].
Also in 2018, Matson et al. reported higher relative abun-
dance of Bifidobacterium longum, Collinsella aerofaciens,
and Enterococcus faecium and lower relative abundance of
Ruminococcus obeum and Roseburia intestinalis, in anti-PD-
1 immunotherapy responders (n=16) compared to non-
responders (n=26) [10]. They too administered fecal

material of responders and non-responders to germ-free
mice via gavage, and found improved tumor control and
enhanced T cell responses in the mice receiving fecal ma-
terial from responding compared to non-responding pa-
tients [10]. In 2017, Frankel et al. reported enrichment of
Bacteroides caccae in immunotherapy responders (1 = 24)
compared to non-responders (n = 15); among ipilimumab
(anti-CTLA-4) + nivolumab (anti-PD-1) responders, they
observed enrichment of Faecalibacterium prausnitzii,
Bacteroides thetaiotamicron, and Holdemania filiformis,
while in pembrolizumab (anti-PD-1) responders they ob-
served enrichment of Dorea formicigenerans [11]. Finally,
in another 2017 report, Chaput et al. observed higher rela-
tive abundance of Faecalibacterium, Gemmiger, and Clos-
tridium XIVa and lower abundance of Bacteroides, in
anti-CTLA-4 responders (n=9) compared to non-
responders (n = 17) [12]. Two of these studies have found
that Bacteroides is related to poor immunotherapy re-
sponse, while Faecalibacterium is related to improved re-
sponse, consistent with our findings here. However, some
of these previous studies have identified response-related
taxa that were not significant in our study, and vice versa,
we have identified response-related taxa that were not re-
lated to response in previous studies.

Inconsistent results between studies regarding the cen-
tral species involved in immunotherapy response could
be due to small sample sizes and differing populations
under study. However, it is possible that the functional
capacities of the microbiota (which can be redundant
across species) are the more key determinant of im-
munotherapy responses rather than individual species.
For this reason, we have characterized the metagenomes
and metatranscriptomes of the study patients, to identify
metagenomic functions expressed by the microbial com-
munity that may influence patient outcomes. We
observed that a sugar degradation pathway (L-rham-
nose), B vitamin biosynthesis pathways (pantothenate,
pyridoxal 5-phospate, flavin, and 6-hydroxymethyl-
dihydropterin diphosphate [folate precursor]), and
guanosine nucleotide biosynthesis pathways were associ-
ated with shorter progression-free survival. Lactate, a
product of sugar degradation, is known to drive tumor
progression via its use by cancer cells as a nutrient
source and by its promotion of tumor inflammation and
inhibitory effect on cytotoxic T cells [41, 42]. It is not
clear how microbial B vitamin biosynthesis may diminish
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Fig. 5 Contribution of shotgun metagenome taxa to shotgun metagenome and metatranscriptome functional pathways. a Spearman’s
correlations are shown for shotgun species and subspecies vs. shotgun metagenome and metatranscriptome pathways. Only taxa selected
in repeated cross-validated elastic-net penalized Cox regression are shown, and only pathways selected in regression and that had
correlated metatranscriptomic expression are shown. Taxa and pathways relative abundance were used for correlation analysis. Taxa and
pathways are annotated with the direction of their hazard ratio with progression-free survival in the metagenomic analysis. *p < 0.05;

**p <0.01. b Mean percent contribution of species to functional pathways in the metagenome and metatranscriptome data. Per-species
pathway abundance values were normalized to 100% for each pathway within each patient individually, and means were taken across
patients; here, we show the mean percent contribution for the top 5 contributing species to each pathway. ¢ Hazard ratios for species-
specific pathway abundances; all species-by-pathway combinations existing in the data (for our selected species and pathways) are shown

immunotherapy response; yet interestingly, metage-
nomic pantothenate and riboflavin biosynthesis were
both associated with resistance to colitis in melanoma
patients on anti-CTLA-4 immunotherapy [43], perhaps
indicative of their effects on immunity. We also observed
that biosynthesis of the amino acid L-isoleucine was as-
sociated with longer progression-free survival. With
mechanisms again unclear, Gopalakrishnan et al. also
highlighted that metagenomic amino acid biosynthesis
predominated in melanoma patients who responded to
immunotherapy [9], though no specific amino acids were
identified. Biosynthesis of the fatty acid petroselinate
was also related to longer progression-free survival,
though reactions within this pathway were not, making
this a somewhat unstable finding. Finally, we observed
that pectin degradation reactions were associated with
shorter progression-free survival, leading us to infer that
anticancer properties of pectin [44] may be disrupted by
bacterial degradation.

Our study is strengthened by the robust assessment
of the gut microbiome via 16S rRNA gene, shotgun
metagenome, and for the first time, shotgun metatran-
scriptome sequencing. This allowed us to focus on
expressed metagenomic functions potentially related to
prognosis, which may be important for identifying adju-
vant therapeutic targets for metagenomic functions, ra-
ther than specific species. We were additionally able to
replicate our findings with the two primary flavors of
microbiome profiling—targeted 16S amplicon sequen-
cing and broad metagenomic shotgun sequencing. With
analysis of 16S rRNA gene and shotgun metagenome
data side by side, we were able to confirm the robust-
ness of our findings with two data types. Clustering of
patients based on 16S microbiome composition was
slightly more predictive of progression-free survival
than clusters based on shotgun microbiome compos-
ition, but species-level classification was much higher
in the shotgun data, permitting us to identify more
response-associated species than with 16S data alone. A
further strength of our study was the long follow-up of
patients and our use of survival analysis rather than di-
chotomization of patients into responders and non-
responders, a practice done in previous studies [9-11]
which may result in loss of precision [13].

Our study is limited by its small sample size, like other
studies which came before; yet our replication of some find-
ings from those previous studies, such as the relationship of
Faecalibacterium prausnitzii and Bacteroides with immuno-
therapy outcomes, is encouraging. A further limitation of our
study is that we had insufficient sample size to analyze adju-
vant and metastatic patient groups separately and thus
present a combined analysis of adjuvant and metastatic pa-
tients as one group. Though we did not observe differences
in pre-treatment gut microbiome composition between adju-
vant and metastatic patients (Additional file 2: Figure S6), we
were unable to examine heterogeneity of microbiome effects
on survival. Similarly, sample size was insufficient to analyze
patient groups separately by immunotherapy treatment regi-
men; this type of analysis will be important to determine
which immunotherapies could be enhanced most by an opti-
mal microbiome composition. Finally, metatranscriptome se-
quencing data was only available for a subset of 17 patients,
which limited our power to assess the relationship of meta-
transcriptomic expression and relative expression with
progression-free survival.

Conclusions

In conclusion, our pilot study results support the notion that
the gut microbiota modulate response to immunotherapy in
melanoma patients. Larger studies with robust microbiome
characterization are needed to validate the microbial species
and functions related to progression-free survival in melan-
oma patients on immunotherapy, and whether these rela-
tionships differ for adjuvant and metastatic patients or by
immunotherapy type. Ultimately, this research may provide
microbial therapeutic targets to improve immunotherapy
outcomes and increase survival in these patients.
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