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Abstract

Background: Endogenous retroelements (EREs) constitute about 42% of the human genome and have been
implicated in common human diseases such as autoimmunity and cancer. The dominant paradigm holds that EREs
are expressed in embryonic stem cells (ESCs) and germline cells but are repressed in differentiated somatic cells.
Despite evidence that some EREs can be expressed at the RNA and protein levels in specific contexts, a system-
level evaluation of their expression in human tissues is lacking.

Methods: Using RNA sequencing data, we analyzed ERE expression in 32 human tissues and cell types, including
medullary thymic epithelial cells (mTECs). A tissue specificity index was computed to identify tissue-restricted ERE
families. We also analyzed the transcriptome of mTECs in wild-type and autoimmune regulator (AIRE)-deficient
mice. Finally, we developed a proteogenomic workflow combining RNA sequencing and mass spectrometry (MS) in
order to evaluate whether EREs might be translated and generate MHC I-associated peptides (MAP) in B-
lymphoblastoid cell lines (B-LCL) from 16 individuals.

Results: We report that all human tissues express EREs, but the breadth and magnitude of ERE expression are very
heterogeneous from one tissue to another. ERE expression was particularly high in two MHC I-deficient tissues
(ESCs and testis) and one MHC I-expressing tissue, mTECs. In mutant mice, we report that the exceptional
expression of EREs in mTECs was AIRE-independent. MS analyses identified 103 non-redundant ERE-derived MAPs
(ereMAPs) in B-LCLs. These ereMAPs preferentially derived from sense translation of intronic EREs. Notably, detailed
analyses of their amino acid composition revealed that ERE-derived MAPs presented homology to viral MAPs.

Conclusions: This study shows that ERE expression in somatic tissues is more pervasive and heterogeneous than
anticipated. The high and diversified expression of EREs in mTECs and their ability to generate MAPs suggest that
EREs may play an important role in the establishment of self-tolerance. The viral-like properties of ERE-derived MAPs
suggest that those not expressed in mTECs can be highly immunogenic.
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Background
Endogenous retroelements (EREs) are remnants of trans-
posable elements that successfully integrated our germ-
line DNA millions of years ago [1, 2]. After initial
integration in the genome, EREs further increased their
copy number via several successive waves of retrotran-
sposition [3, 4]. Now, most ERE sequences contain mu-
tated or truncated open reading frames and have lost
their capacity to transpose in the genome [2]. Phylogenic
analyses have allowed the classification of EREs in fam-
ilies based on sequence homology [5, 6]. Most EREs are
categorized into three groups, which altogether comprise
~ 42% of the human genome: the long terminal repeats
(LTR) as well as the long and short interspersed nuclear
elements (LINE and SINE) [7–9].
Hosts repress ERE expression in order to protect their

genomic integrity from deleterious insertions of EREs in
open reading frames [10, 11]. Indeed, a strict epigenetic
regulation of ERE sequences is applied at both the DNA
and histone levels [12]. Growing evidence suggests that
KRAB zinc finger proteins (KZFPs) are involved in an
evolutionary arms race to repress the expression of novel
ERE integrations [13]. KZFPs recruit numerous restric-
tion factors to silence ERE sequences: the histone meth-
yltransferase SETDB1, the DNA methyltransferase
proteins, the nucleosome remodeling and deacetylase
complex NuRD, and the heterochromatin protein HP1
[14]. KZFP-independent mechanisms, such as the HUSH
complex [15] and the histone demethylase LSD1 [16],
also apply non-redundant epigenetic silencing on ERE
sequences. Nevertheless, some “domesticated” EREs con-
tribute at many levels to human development and sur-
vival. Specifically, ERE sequences are key components of
several promoters and enhancers of genes implicated in
interferon responses, DNA damage response in the male
germline, and maintenance of stem cell pluripotency
[17–19]. Additionally, a LINE-derived transcript is es-
sential to embryonic stem cell (ESCs) self-renewal via
activation of rRNA synthesis [20]. Finally, syncytins are
ERE-derived proteins that mediate cell-cell fusion to
allow the formation of the placental syncytium [21, 22].
The dominant paradigm holds that EREs are expressed

in ESCs as well as in germline cells, but are repressed in
other differentiated cells outside specific contexts in
which they have relevant functions [12]. However, stud-
ies on ERE expression have been limited to subsets of
ERE families in one or few tissues. Additionally, to our
knowledge, no study has addressed ERE expression in
the thymus where central T cell immune tolerance is
established. Hence, we have no clue as to the ability of
EREs to induce T cell tolerance. In the present report,
we demonstrate that ERE expression is widespread in
human tissues, but with tissue-specific profiles. In
addition, our mass spectrometry (MS) analyses revealed

that the three main groups of EREs generate MHC I-
associated peptides (MAPs) retaining similarities with
viral peptides. Finally, we found that mTECs express top
levels of EREs, in a fashion that is independent of the
autoimmune regulator (AIRE), which could mediate self-
tolerance to the antigens deriving from them.

Methods
Transcriptomic data manifest
RNA-seq data of 30 non-redundant human tissues were
downloaded from the Genotype-Tissue Expression
(GTEx) on the dbGaP portal (accession number
phs000424.v8.p2.c1) [23]. When possible, 50 samples
were randomly selected per tissue; otherwise, all avail-
able samples were analyzed. Transcriptomic data of
ESCs from Lister et al. [24] were downloaded from the
sequence read archive. RNA-seq data of purified
hematopoietic cells were obtained from the Gene Ex-
pression Omnibus (GEO) (projects PRJNA384650 and
PRJNA225999) [25, 26]. Six human mTEC samples were
analyzed: four from Laumont et al. [27] and two add-
itional samples processed with the same protocol with
minor modifications: (i) after transfer to our laboratory,
thymic samples were frozen in cryovials containing a
cryoprotective medium composed of 5% DMSO and
95% Dextran-40 solution (5% concentration); (ii) CD45−

cells were magnetically enriched with the CD45
Microbeads human kit from Miltenyi Biotec (no. 130-
045-801) prior to mTEC sorting; (iii) cDNA libraries
were prepared with the KAPA mRNAseq stranded kit
(KAPA, Cat no. KK8421); and (iv) sequencing generated
around 400 × 106 reads per sample. Transcriptomic data
of the two new mTEC samples were deposited on the
Gene Expression Omnibus (GEO) as GSE127826 [28].
For the complete list of human samples analyzed, see
Table S1 (Additional file 1: Table S1). Mature murine
mTECs (mTEChi) data were obtained from St-Pierre
et al. [29] on GEO (accession GSE65617).

Expression of transcripts derived from EREs and canonical
genes
RNA-seq reads of human samples were trimmed with
Trimmomatic 0.35 [30] to remove adapters and low-
quality sequences. Expression levels of transcripts and
EREs were quantified in transcripts per million (TPM)
with kallisto 0.43.1 [31] with indexes composed of (i)
Ensembl 88 (GRCh38.88) transcripts and human ERE se-
quences from RepeatMasker or (ii) Mouse mm10
(GRCm38) transcripts and murine ERE sequences from
RepeatMasker for human and murine samples, respect-
ively. TPM values of transcripts and ERE sequences were
summed in genes and ERE families based on Ensembl
and RepeatMasker annotations, respectively, using the
aggregate function in R.
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ERE expression profiling in human tissues
Expression levels of ERE families were computed for
each tissue by calculating the median expression across
all samples for a given tissue. The numbers of standard
deviations from the mean (row Z-score) of ERE families
for each tissue were determined using the scale function
in R. The Euclidean distance was then calculated be-
tween all tissues based on the row Z-scores of ERE fam-
ilies, followed by an unsupervised hierarchical clustering.
The pvClust package in R [32] was used to assess the
statistical significance of the clustering using a bootstrap
procedure (1000 iterations). Finally, standard deviations
of expression of each ERE family between samples of a
given tissue were computed.

Quintile ranking of ERE expression in somatic tissues
Median expression of ERE families were calculated
among all samples of a given tissue. Tissues were then
ranked based on their expression level of each ERE fam-
ily individually and assigned to quintiles of 6, 6, 8, 6, and
6 tissues. Finally, tissues were sorted based on the num-
ber of times they were assigned to the fifth quintile.

Identification and characterization of tissue-restricted
EREs (TREs)
The τ index of tissue specificity was calculated as per
Yanai et al. [33]. Briefly, the τ index is defined as:

τ ¼ ΣN
i¼1 1−xið Þ
N−1

where xi is the level of expression of a gene or ERE fam-
ily in tissue i normalized to its maximal expression level
among all tissues, and N is the number of tissues. Genes
and ERE families with τ ≥ 0.8 were considered as tissue-
restricted. To determine in which tissue(s) a tissue-
restricted gene or ERE family was overexpressed, a bin-
ary pattern was computed as reported by Yanai et al.
[33]. Briefly, tissues were sorted based on their expres-
sion level for each tissue-restricted gene (TRG) or ERE
family (TRE). The distance between neighboring tissues
was calculated, and the maximal distance or “gap” was
used as a threshold for the binary pattern. Tissues with
an expression level above the gap were considered as
overexpressing the TRG or TRE while other tissues were
considered as underexpressing them, and were given a
value of 1 or 0, respectively. ERE groups were deter-
mined for all identified TREs, and the proportions of
LINE, LTR, and SINE elements in TREs were compared
to their representation among ERE families. A chi-
squared test was performed to assess the enrichment of
discrete ERE groups among TREs. Using the above-
described binary pattern, the number of overexpressing
tissues was determined for each TRG or TRE.

Impact of AIRE on ERE expression in mTECs
Lists of AIRE-dependent, AIRE-independent, and consti-
tutively expressed genes were generated as per St-Pierre
et al. [29]. Expression levels of these three sets of genes
as well as ERE families were compared between wild-
type (n = 3) and AIRE knock-out (n = 3) murine mTEChi

using Wilcoxon tests. Expression levels of each individ-
ual ERE family were also compared between wild-type
and AIRE knock-out mice using Wilcoxon tests.

MS analyses
Immunopeptidomic data of a cohort of 16 B-lymphoblastoid
cell line (B-LCL) samples from Pearson et al. [34] were
downloaded from the PRIDE Archive (Project PXD004023).
For the detailed protocol of mild acid elution and peptide
processing, see Granados et al. [35]. Peptides were identified
using Peaks X (Bioinformatics Solution Inc.), and peptide se-
quences were searched against the personalized proteome of
each sample. For peptide identification, tolerance was set at
5 ppm and 0.02Da for precursor and fragment ions, respect-
ively. The occurrence of oxidation (M) and deamination
(NQ) was considered as post-translational modifications.

Identification of ereMAPs
For individual B-LCL samples, RNA-seq reads were
aligned to the Ensembl 88 human reference genome
(GRCh38.88) using STAR [36] with default parameters.
Using the intersect mode of the BEDTools suite [37],
reads entirely mapping in RepeatMasker and Ensembl
annotations were separated in ERE and canonical data-
sets, respectively, and any read seen in the canonical
dataset was discarded from the ERE dataset. Unmapped
reads, secondary alignments, and low-quality reads were
then removed from the ERE dataset using Samtools view
[38] with the following parameters: -f “163”, “147”, “99”
or “83”, and -F “3852”. In order to keep a manageable
database size, ambiguous nucleotides were trimmed
from reads of the ERE dataset, followed by a translation
in all possible reading frames. Finally, the resulting ERE
amino acid sequences were spliced to remove sequences
following stop codons. Only sequences of at least 8
amino acids were kept and given a unique ID to gener-
ate a theoretical ERE proteome. In parallel, a canonical
personalized proteome containing the polymorphisms of
the donor was generated as per [27] for each sample.
Briefly, single-nucleotide variants were detected using
freebayes version 1.0.2 [39], and variants with a minimal
alternate count of 5 were inserted in transcript se-
quences using pyGeno [40]. Expression levels of tran-
scripts were quantified with kallisto using GRCh38.88
transcripts (downloaded from Ensembl) as an index, and
only transcripts with a TPM > 0 were translated into a
canonical proteome, which was concatenated with the
ERE proteome to generate a personalized proteome
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unique to each sample. To further validate our proteoge-
nomic workflow, we also analyzed matched transcrip-
tomic and immunopeptidomic data of an ovarian cancer
cell line (OVCAR-3) treated with IFNγ (12.5 ng/mL) for
72 h in order to increase MHC I expression. Transcrip-
tomic and immunopeptidomic data of OVCAR-3 cells
were deposited on GEO as GSE147570 (BioProject ac-
cession number: PRJNA615537) [41] and on the PRIDE
Archive (Project PXD018124) [42], respectively.

Peptide annotation and validation
Following peptide identification, a list of unique peptides
was extracted for each sample, and a false discovery rate
(FDR) of 5% was applied to the peptide scores. Binding
affinities to the sample’s HLA alleles were predicted with
NetMHC4.0 [43] or with NetMHCpan-4.0 [44] when an
HLA allele was not included in NetMHC4.0, and only 8-
to 11-amino-acid-long peptides with a percentile rank ≤
2% were included for further annotation. For each pep-
tide, a binary code was generated based on the presence
or absence of its amino acid sequence in the ERE and
canonical proteomes, and an ERE status of “yes,”
“maybe,” or “no” was given to the peptide accordingly.
Peptides that were seen only in the ERE proteome or the
canonical proteome were classified as “yes” and “no,” re-
spectively. To determine if candidates with a “maybe”
status were ereMAP candidates, we retrieved all their
possible nucleotide coding sequences from the sample’s
reads and split them in a set of 24-nucleotide-long sub-
sequences (k-mers). These k-mers were then queried in
24-nucleotide-long k-mer databases generated from our
ERE and canonical reads datasets using Jellyfish version
2.2.3 [45] (with the -C argument to consider the read’s
sequence and its reverse complement). Only peptides
encoded by more than one read were kept for further
validation to reduce risks of sequencing errors. If at least
one of the MAP-coding sequences (MCS) was only seen
in the canonical read dataset, the peptide was discarded.
“Maybe” peptides were considered as ereMAP candi-
dates if the minimal occurrence of their most abundant
MCS was at least 10 times higher in the ERE k-mer data-
base than in the canonical k-mer database. Because leu-
cine and isoleucine variants are not distinguishable by
standard MS approaches, all possible I/L variants for
each ereMAP candidates were searched in the personal-
ized proteome. If one of the I/L variants had a higher ex-
pression in the personalized proteome, the ereMAP
candidate was discarded. The genomic region generating
each ereMAP candidate was determined by mapping the
reads coding for the peptide on the GRCh38.88 assembly
of the reference genome with the BLAT algorithm of the
UCSC Genome Browser. If a clear genomic region could
not be found, the peptide was discarded. Genomic re-
gions coding for ereMAP candidates were then inspected

in IGV [46] to see if the MCS contained known germline
polymorphisms (using dbSNP v.149), and candidates
were kept or discarded based on their orientation in ERE
and annotated sequences. Briefly, any ereMAP candidate
whose MCS mapped in the sense of a gene coding se-
quence was discarded, whereas candidates whose coding
sequences mapped in intergenic regions were considered
as ereMAPs no matter their orientation. Candidates
were also discarded if they fulfilled these two conditions:
(i) their MCS mapped in the sense of an intron and in
the antisense of the ERE and (ii) if their MCS did not
map in other ERE sequences (Additional file 2: Fig. S3).
Finally, the MS/MS spectra of the ereMAP candidates
were manually validated to ensure the quality of the
identification. Peptides that passed all these validation
steps were then considered as ereMAPs.

Characterization of ereMAPs
During manual validation in IGV, characteristics regard-
ing the family and group of the ERE generating the pep-
tides, the type of genomic region encoding the peptide
(coding sequence, intronic, or intergenic), and the orien-
tation of the peptide sequences (sense or antisense) were
retrieved for individual ereMAPs. When a peptide was
identified in multiple samples and had different charac-
teristics depending upon the sample, all possibilities
were kept; otherwise, they were aggregated to reduce re-
dundancy. The expression levels of ERE families that
were source or non-source of ereMAPs were averaged
among B-LCL samples, and their distributions were
compared with a Mann-Whitney test. We next com-
pared the proportions of the three main groups of EREs
(LINE, LTR, and SINE) in the genome, transcriptome,
and immunopeptidome. Representation of EREs in the
transcriptome was assessed in our B-LCL samples: the
expression levels of LINE, LTR, and SINE elements were
summed in each sample and divided by the expression
level of all EREs. We then averaged these transcriptomic
proportions across all B-LCL samples. We used immu-
nopeptidomic proportions of LINE, LTR, and SINE ele-
ments from the ereMAPs identified in this work,
whereas the genomic proportions were taken from
Treangen et al. [8]. A chi-squared test was performed to
compare the proportions of ERE groups at the genomic,
transcriptomic, and immunopeptidomic levels. The pro-
portions of ERE sequences located in intergenic and in-
tronic regions as well as in coding sequences were
determined by intersecting the genomic localization of
ERE sequences with the localization of introns and
exons from the UCSC Table Browser (files downloaded
on August 21, 2019). A chi-squared test was used to de-
termine the enrichment of a certain genomic region for
ereMAP generation. Last, Kendall tau correlation be-
tween the number of ereMAPs generated by each ERE
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family and the number of copies of the family’s se-
quence in the human genome (determined from
RepeatMasker annotations) was computed with a con-
fidence level of 95%.

Expression profiling of ereMAPs’ coding sequences
To evaluate the expression of the ereMAP-coding se-
quences in peripheral tissues, we downloaded RNA-seq
data of 30 tissues from the GTEx Consortium
(phs000424.v7.p2). For the complete protocol of this
analysis, see Laumont et al. [27]. Briefly, we generated
24-nucleotide-long k-mer databases for each sample, in
which we queried each ereMAP-coding sequence’s 24-
nucleotide-long k-mer set. For each ereMAP, the min-
imal occurrence in the k-mer set was used as the num-
ber of reads coding for the peptide in a given sample
(roverlap). The number of reads coding for a peptide was
normalized between RNA-seq experiments by dividing
roverlap by the total number of reads of the sample and
multiplying this number by 108 to obtain the number of
reads detected per hundred million reads sequenced
(rphm). We then averaged the log-transformed rphm
values (log10(rphm + 1)) for each tissue, and an average
expression superior to 10 rphm in a tissue was consid-
ered as significant. This analysis was also performed on
12 TCGA cohorts (50 randomly selected samples per co-
hort) to assess the expression of transcripts coding our
ereMAPs (identified in B-LCLs) in the following cancer
types: urothelial bladder carcinoma, breast invasive car-
cinoma, colon adenocarcinoma, head-neck squamous
cell carcinoma, kidney renal clear cell carcinoma, liver
hepatocellular carcinoma, lung adenocarcinoma, lung
squamous cell carcinoma, ovarian cancer, pancreatic
adenocarcinoma, prostate adenocarcinoma, and skin cu-
taneous melanoma. Last, methylation data (HM27 array
for ovarian cancer, HM450 for other cancer types)
matched with the RNA-seq samples used to profile ere-
MAPs’ expression in TCGA cohorts were downloaded
when available. Only probes located in a window of
5000 nucleotides from the ereMAPs’ genomic locations
were used for this analysis. We then computed the Pear-
son correlation between the ereMAP’s RNA expression
(in rphm) and the methylation level of the genomic re-
gion coding for the peptide.

Amino acid composition of ereMAPs
In addition to the list of ereMAPs identified on our B-
LCL samples, two linear and MHC I-restricted epitopes’
sequence datasets were downloaded from the Immune
Epitope Database: the first dataset consists of 36,472
MAPs from any virus infecting human cells, and the sec-
ond one consists of 282,069 human canonical MAPs
(downloaded on August 7, 2019). Lists of 8- to 11-
amino-acid-long MAPs were extracted from these two

datasets. The usage frequency of each amino acid was
calculated by dividing their occurrences by the total
number of amino acids in the ERE, viral, and human ca-
nonical MAP datasets. In parallel, datasets were sepa-
rated in subsets of 8-, 9-, 10-, and 11-amino-acid-long
MAPs, and frequencies of amino acids were computed
for each peptide position of each subset of MAPs. The
11-amino-acid-long MAP subset was discarded because
of an insufficient number of ereMAPs (n = 2).

Viral homology
To assess the similarity between ereMAPs and viral pep-
tides, we used the same datasets of viral and human ca-
nonical MAPs from the Immune Epitope Database used
for the amino acid composition analysis (see the “Amino
acid composition of ereMAPs” section). We aligned ere-
MAP sequences to this database of viral peptides using
version 2.2.28 of the Protein Basic Local Alignment Tool
(BLASTp) [47] in the blastp-short mode with the follow-
ing arguments: -word_size 2, -gapopen 5, -gapextend 2,
-matrix PAM30, and -evalue 10 000 000. As control, hu-
man canonical MAPs were aligned to the viral peptide
dataset with BLASTp. For the viral homology analysis,
we compared the 103 ERE MAPs to 10,000 groups of
103 randomly sampled canonical MAPs. We calculated
the percentage of identity (%I) of ereMAPs and canonical
MAPs with viral peptides as:

%I ¼ Mmax � La
Lp

� 100%

where Mmax is the maximal percentage of identical
matches with the viral MAP database, La is the length of
the alignment, and Lp is the length of the ereMAP or the
canonical MAP. The average percentage of identity of
ereMAPs and each subgroup of the bootstrap distribu-
tion was computed, and the P value was determined as
the number of times that the percentage of identity of
the bootstrap distribution was higher than the percent-
age of identity of ereMAPs divided by the number of
bootstrap iterations (10,000) as per Granados et al. [48].

ereMAPs’ immunogenicity prediction
We used the Repitope algorithm [49] with default set-
tings to predict ereMAPs’ immunogenicity for CD8 T
cells. As negative controls, we used conventional thymic
MAPs identified by Adamopoulou et al. [50]. The distri-
butions of immunogenicity scores for thymic MAPs and
ereMAPs were compared with a Mann-Whitney test.

Generation of monocyte-derived dendritic cells (DCs)
Monocyte-derived DCs were generated from frozen
PBMCs, as previously described [51, 52]. Briefly, DCs
were prepared from the adherent PBMC fraction by
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culture for 8 days in X-vivo 15 medium (Lonza Bio-
science) complemented with 5% human serum (Sigma-
Aldrich), sodium pyruvate (1 mM), IL-4 (100 ng/mL,
Peprotech), and GM-CSF (100 ng/mL, Peprotech). After
7 days of culture, DCs were matured overnight with
IFNγ (1000 IU/mL, Gibco) and LPS (100 ng/mL, Sigma
Aldrich). DCs were loaded with 2 μg/mL of peptide dur-
ing 2 h after maturation process and were then irradiated
(40 Gy) before they were used as APCs in T-DC culture.
As control, the experiment was performed for the so-
called MelanA peptide when the number of T cells was
sufficient. This peptide (ALPVALPSL) is an in vitro
modified version of the wild-type EAAGIGILTV MART-
1/Melan-A26-35 decamer and is one of the most im-
munogenic human MAPs.

In vitro peptide-specific T cell expansion
Peptide-specific CD8+ T cells were expanded as previ-
ously described, with some minor modifications [52, 53].
Briefly, thawed PBMCs were first CD8+ T cell enriched
using the Human CD8+ T cell isolation kit (Miltenyi
Biotech) and co-incubated with autologous peptide-
pulsed DCs at a DC:T cell ratio of 1:10. Expanding T
cells were cultured for 4 weeks (with pulsed-DC stimula-
tion every 7 days) in Advanced RPMI medium (Gibco)
supplemented with 8% human serum (Sigma-Aldrich),
L-glutamine (Gibco), and cytokines. For the first cocul-
ture week, IL-12 (10 ng/mL) and IL-21 (30 ng/mL) were
added to the medium. Two days after, IL-2 (100 UI/mL)
was also added to the cytokine mix. In the second week,
IL-2 (100 UI/mL), IL-7 (10 ng/mL), IL-15 (5 ng/mL), and
IL-21 (30 ng/ml) were added to the medium. For the
two last weeks of coculture, IL-2 (100 UI/mL), IL-7 (10
ng/mL), and IL-15 (5 ng/mL) were used. Medium sup-
plemented with the appropriate cytokine mix was added
in the cocultures every 2 days. At the end of the fourth
week of coculture, cells were harvested in order to per-
form ELISPOT assays. If the number of specific T cells
was not sufficient at the end of the fourth week of cocul-
ture, cocultures were maintained for an additional week
(week 5).

IFNγ ELISPOT assay
ELISpot Human IFNγ (R&D Systems, USA) kit was used
according to the manufacturer’s recommendations. Har-
vested CD8+ T cells were then plated and incubated at
37 °C for 24 h in the presence of irradiated peptide-
pulsed PBMCs (40 Gy) that were used as stimulator
cells. As a negative control, sorted CD8 T cells were in-
cubated with irradiated non-pulsed PBMCs. Spots were
revealed as mentioned in the manufacturer’s protocol
and were counted using an ImmunoSpot S5 UV
Analyzer (Cellular Technology Ltd., Shaker Heights,
OH). IFNγ production was expressed as the number of

peptide-specific spot-forming cells (SFC) per 106 CD8+
T cells after subtracting the spot counts from negative
control wells.

Results
Expression of ERE transcripts in normal human tissues
and cells
To assess ERE expression in healthy human tissues, we
quantified the expression levels of the 809 ERE families
contained in the RepeatMasker annotations in 1371
samples from 30 different healthy human tissues and 2
cell types (mTECs and ESCs). For brevity, mTECs and
ESCs will be referred to as tissues in the rest of the
manuscript. We calculated the median expression of
each ERE family among samples of a given tissue (Add-
itional file 1: Table S2) and then computed the row Z-
score across tissues. Unsupervised hierarchical clustering
identified a statistically significant cluster of three cell
types with high ERE expression: ESCs, testis, and mTECs
(Fig. 1). The remaining tissues could then be visually
separated into two groups with low and intermediate
ERE expression (Fig. 1). High ERE expression (cluster 1)
in ESCs and testis was expected. The salient finding was
the high ERE expression in mTECs which, to the best of
our knowledge, has never been reported before. Com-
parison with hematopoietic cell types at several differen-
tiation stages confirmed the high ERE expression in
mTECs and ESCs (Additional file 2: Fig. S1A). Comput-
ing the standard deviation of ERE expression among in-
dividual samples for each tissue also revealed that most
ERE families displayed low interindividual variability
(Additional file 2: Fig. S1B). Finally, while quintile rank-
ing analysis showed that ERE expression was generally
concordant between ERE families in each tissue ana-
lyzed, almost all tissues expressed some ERE families at
high levels (Additional file 2: Fig. S2), suggesting that
some tissue-specific factors regulate ERE expression in
human tissues.

Most human tissues show a tissue-specific ERE expression
To ascertain if the expression of discrete ERE families was re-
stricted to specific tissues, we computed the τ index of tissue
specificity as defined by Yanai et al. [33]. Briefly, the τ index
compares the expression of a gene in a set of tissues and has a
value ≤ 0.4 for housekeeping genes and ≥ 0.8 for tissue-
restricted genes [54]. We identified a total of 124 ERE families
with a tissue-restricted expression. As a control, we computed
the τ index for annotated genes and known tissue-restricted
genes (TRGs), such as INS, CRP, and CHRNA1. The majority
(108/124) of the tissue-restricted ERE families (TREs) were
identified in ESCs, testis, and mTECs, revealing that in addition
to their high expression of EREs, these tissues express a
broader repertoire of EREs than other tissues (Fig. 1, Fig. 2a).
Nonetheless, tissue-restricted expression of EREs is a
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widespread phenomenon across human tissues because we
identified TREs in 17 out of the 32 human tissues analyzed.
For a given tissue, the number of TREs is positively associated
with the number of TRGs (Fig. 2a) suggesting some common-
ality between expression regulation of TRGs and TREs. We
also identified a significant enrichment of LTRs in TREs
(86.29%) relative to their proportion among all ERE families
(71.45%), revealing an increased tissue specificity of LTR se-
quences compared to LINEs and SINEs (Fig. 2b). Finally,
TREs’ expression was typically restricted to fewer tissues than
TRGs, with 89.5% of TREs (111/124) being tissue-specific
(Fig. 2c, Additional file 1: Table S3). Altogether, these results
show that ERE expression in healthy human tissues is wide-
spread but not homogenous. Indeed, 124 ERE families, most
of which are LTR elements with low copy numbers, showed
tissue-specific expression.

Impact of the AIRE gene on ERE expression in mTECs
Out of the three tissues with high ERE expression
(Fig. 1), two express no or barely detectable MHC I mol-
ecules (testis and ESCs, respectively), whereas mTECs
express standard levels of MHC I [55–57]. Promiscuous
expression of genomic sequences is a quintessential fea-
ture of mTECs that is driven in part by the AIRE gene
and also by other genes whose identity is still debated
[58]. Since the role of mTECs is to induce tolerance to
the MAPs that they display, EREs expressed in mTECs
could be tolerogenic. However, T cell-mediated re-
sponses towards EREs were previously observed, sug-
gesting that the establishment of central tolerance
towards EREs in the thymus is incomplete [59, 60].
Therefore, we next investigated the contribution of the
AIRE transcription factor to ERE expression in mTECs.

Fig. 1 Expression profiling of endogenous retroelements in 30 healthy human tissues and 2 cell types. Hierarchical clustering of tissues based on
the expression levels of the 809 ERE families sorted in LINE, LTR, and SINE elements. For each tissue, the mean expression of ERE families was
computed among available samples. Row Z-scores were then determined for each ERE family across tissues. Significant clusters identified by
pvClust are indicated (cluster 1 and cluster 2)
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To do so, we quantified the expression of ERE families
as well as canonical genes in mTECs extracted from
wild-type and AIRE knock-out mice previously reported
[29]. Canonical genes were sorted in three categories
based on St-Pierre et al. [29]: (i) constitutively expressed
genes, (ii) AIRE-independent TRGs, and (iii) AIRE-
dependent TRGs. As expected, expression of AIRE-
dependent TRGs significantly decreased in the absence
of AIRE, whereas constitutively expressed genes and
AIRE-independent TRGs were minimally affected by
AIRE depletion (Fig. 3a). Strikingly, global ERE expres-
sion was independent of AIRE since it was unchanged in
AIRE knock-out relative to wild-type mice (Fig. 3a). Fur-
thermore, computing Mann-Whitney tests for each ERE
family revealed that the absence of AIRE did not affect
the expression of any ERE family (Fig. 3b). Hence, the
expression of all ERE families was independent of AIRE
in mTECs.

Translation of ERE transcripts
We next sought to determine whether some ERE tran-
scripts are translated in healthy cells. However, the iden-
tification of EREs by MS can be challenging due to their
inherently low abundance in the corresponding prote-
ome and the lack of appropriate protein databases for
large-scale searches. We therefore decided to investigate
the contribution of EREs to the immunopeptidome,
which is mainly composed of peptides derived from

rapidly degraded proteins [61, 62]. To do so, we reana-
lyzed previously reported transcriptomic and immuno-
peptidomic data from 16 B-lymphoblastoid cell lines (B-
LCL) (Additional file 1: Table S4) [34]. As conventional
approaches do not include ERE sequences, we developed
a proteogenomic workflow combining RNA sequencing
and MS to enable ereMAP identification (Fig. 4a, Add-
itional file 2: Fig. S3). Briefly, we generated for each B-
LCL a personalized proteome that contained only the
sample’s expressed sequences as well as its polymor-
phisms. Canonical and ERE RNA sequences were trans-
lated in silico and concatenated to generate a
personalized proteome that was used to identify MAPs
in MS analyses (Fig. 4a). For each MAP identified, we re-
trieved the peptide’s coding sequence and proceeded to
its annotation. Two categories of peptides were kept as
ereMAP candidates to be further manually validated: (i)
peptides that were only seen in the ERE proteome and
(ii) peptides seen in both the ERE and canonical pro-
teomes (“maybe” candidates) and for which the occur-
rence of the coding sequences was at least 10-fold
higher in ERE reads compared to canonical reads.
Our proteogenomic approach enabled the identifica-

tion of 129 ereMAPs in the 16 B-LCL samples analyzed,
revealing that ERE sequences are translated in non-
neoplastic cells (Fig. 4b). Of those, 103 were non-
redundant, confirming that ereMAPs can be shared by
multiple individuals (Additional file 1: Table S5). Of

Fig. 2 Tissue specificity of ERE expression in healthy human tissues. Tissue specificity indexes were computed for ERE families as well as annotated
genes. a Barplots showing the number of TRGs and TREs for each of the 32 healthy human tissues analyzed. b Pie charts depicting the proportions of
the 809 ERE families (left panel) or TREs (right panel) belonging to the LINE, LTR, and SINE groups (chi-squared test, *P≤ 0.05). c Histogram showing
the number of tissues in which each identified TRGs and TREs are overexpressed
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course, the extent of interindividual sharing would be
considerably greater in cohorts of HLA-matched individ-
uals since various HLA allotypes present different sets of
MAPs [61]. Profiling of ereMAPs’ RNA expression in
healthy human tissues showed that 26% (27/103) of ere-
MAPs’ coding sequences were expressed at high levels
by multiple tissues (Additional file 2: Fig. S4). Hence,
since highly expressed transcripts are preferential
sources of MAPs [34], ereMAPs derived from abundant
transcripts could be presented on the surface of a wide
range of tissues (Additional file 2: Fig. S4). We also ob-
served that ereMAPs were generated by the three main
groups of ERE sequences (SINE, LINE, LTR), confirming
that they all have the potential to be translated in
healthy cells (Fig. 4c). As EREs are frequently dysregu-
lated in cancer cells, we quantified the RNA expression
of our ereMAPs (identified in B-LCLs) in 12 cohorts
from TCGA (Additional file 2: Fig. S5A). Strikingly, the
majority of ereMAPs (94/103, 91.3%) identified in B-

LCLs were expressed at similar levels by healthy and
cancer cells (Additional file 2: Fig. S5B), and ereMAPs’
RNA expression in cancer cells did not correlate with
DNA methylation levels (Additional file 2: Fig. S5C).
Additionally, applying our proteogenomic workflow to
an ovarian cancer cell line (OVCAR-3) enabled the
identification of 5 ereMAPs, including one peptide
(TPRHIIVRF) also presented by B-LCL samples (Add-
itional file 1: Table S6). Together, these proteogenomic
analyses show that several EREs are translated and gen-
erate ereMAPs in B-LCLs, and suggest that this is also
the case in a wide range of healthy and neoplastic hu-
man tissues.

High expression of intronic regions is the main source of
ereMAPs
We next investigated the mechanisms leading to the
presentation of ereMAPs on the cell surface. First, we
noted that ereMAPs preferentially derived from highly

Fig. 3 ERE expression is independent of AIRE in mouse mTECs. a Boxplot showing the expression levels of constitutively expressed genes, AIRE-
dependent TRGs, AIRE-independent TRGs (lists of genes based on St-Pierre et al. [29]), and ERE families in wild-type (n = 3) and AIRE knock-out
(n = 3) mice. b Heatmap depicting the expression levels of ERE families in each replicate of wild-type and AIRE knock-out murine mTECs. A Mann-
Whitney test was used for statistical analysis in both panels; n.s. not significant (P > 0.05, ***P ≤ 0.001)
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expressed ERE transcripts (Fig. 5a). For the majority of
ereMAPs, this transcription was in the same sense as the
ERE sequence in the genome, but ~ 30% of ereMAPs
(34/103) resulted from antisense transcription (Fig. 5b),
which is common for EREs [63–65]. Even though ere-
MAPs were generated by the three main groups of EREs
(Fig. 4c), the relative frequency of LTR translation was
higher than that of LINEs and SINEs (Fig. 5c). Indeed,
the representation of LTRs in the immunopeptidome
was superior to the space they occupy in the genome or
their abundance in the transcriptome (Fig. 5c). Addition-
ally, intronic EREs were a preferential source of ere-
MAPs: while 51% of EREs were intronic, ~ 79% of
ereMAPs derived from intronic EREs (Fig. 5d). Finally,
we noted that some ERE families generated several

distinct ereMAPs (Additional file 1: Table S5). This can
be explained in part by variations in the genomic space
occupied by the various ERE families. Indeed, we ob-
served a moderate, yet significant, correlation between
the number of genomic copies and the number of ere-
MAPs (Fig. 5e). Altogether, these results demonstrate
that (i) ereMAPs are generated by both sense and anti-
sense transcripts that are preferentially located in introns
and expressed at high levels, and (ii) generation of ere-
MAPs is enhanced when a family belongs to the LTR
group occupying a large genomic space.

ereMAPs have a viral-like amino acid composition
We next asked to what extent ereMAPs and their coding
transcripts might retain some traces of their phylogeny

Fig. 4 ERE sequences are translated and contribute to the immunopeptidome of B-LCLs. a Schematic depicting how the personalized proteome
of each B-LCL sample was generated. The personalized proteome was generated by combining the ERE and the canonical proteomes and then
used to identify MAPs by MS. MAPs were annotated to keep only ereMAPs. b, c Barplots showing the number of ereMAPs identified in B-LCL
samples separated by b individual samples analyzed and c according to the three main groups of EREs
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(“viral features”). We found conspicuous differences be-
tween amino acid frequencies in ereMAPs relative to
both viral MAPs and canonical human MAPs listed in
the Immune Epitope Database (Fig. 6a). Indeed, ere-
MAPs showed a lower abundance of multiple amino
acids (aspartic and glutamic acids, phenylalanine, me-
thionine, asparagine, and tryptophan) and higher fre-
quencies of leucine (L) and proline (P) residues.
ereMAPs had therefore a less balanced (i.e., more
skewed) amino acid composition. Furthermore, analysis
of amino acid usage at individual MAP positions re-
vealed that, relative to human MAPs, some residues
were specifically enriched in ERE and viral MAPs, such
as arginine (R) in P5 of 8-amino-acid-long MAPs (Add-
itional file 2: Fig. S6). We therefore aligned ereMAPs se-
quences to the viral MAP dataset using BLAST and
calculated the average percentage of identity between
ereMAPs and viral MAPs. We then compared this result
with a bootstrap distribution (10,000 iterations) of ran-
domly selected canonical MAPs that were also aligned
to the viral MAP dataset (Fig. 6b). This analysis revealed
that ereMAPs had a significantly higher percentage of

identity with viral MAPs than all 10,000 randomly se-
lected sets of canonical MAPs. Finally, we investigated if
the viral features of ereMAPs might confer them the
ability to activate CD8 T cells. First, immunogenicity
prediction using the Repitope algorithm showed that
ereMAPs have significantly higher immunogenicity
scores than canonical MAPs presented in the thymus
(Additional file 2: Fig. S7A). Additionally, IFNγ ELISpot
assays demonstrated that two cancer-specific ereMAPs
(i.e., not expressed by mTECs), identified by Laumont
et al. [27] on B-ALL samples, have the ability to activate
CD8 T cells (Additional file 2: Fig. S7B, C). Hence, ere-
MAPs clearly retain features that reflect their viral ori-
gin, conferring them the ability to elicit CD8 T cell
responses when they are not expressed in mTECs.

Discussion
Hundreds of scientific articles have alluded to the poten-
tial implication of EREs in various human diseases, par-
ticularly cancer and autoimmunity [2, 66–71]. We
therefore felt compelled to draw the global landscape of
ERE expression in human somatic cells. One salient

Fig. 5 Sense transcription of intronic EREs is the main source of ereMAPs. a Boxplot showing the mean expression levels (log10(TPM + 1)) of ERE
families that are source or non-source of ereMAPs in B-LCLs (Mann-Whitney test, ***P ≤ 0.001). b Barplot showing the number of ereMAPs
generated by sense or antisense transcription of ERE sequences. c Stacked barplot depicting the proportions of LINE, LTR, and SINE groups in the
genome, transcriptome, and immunopeptidome. Statistical significance was computed with a chi-squared test (**P≤ 0.01). d Pie charts depicting
the percentages of all ERE sequences (left) and of ereMAP-coding sequences (right) that are localized in intergenic regions, introns, or coding
sequences (chi-squared test, ***P≤ 0.001). e Scatterplot showing the Kendall tau correlation between the number of ereMAPs generated by each
ERE family and the number of copies of the ERE family’s sequence in the human genome based on RepeatMasker annotations
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point emerging from this atlas is that ERE expression in
somatic tissues is more pervasive and heterogeneous
than anticipated. All tissues express EREs, but the
breadth and magnitude of ERE expression are very het-
erogeneous from one tissue to another. Thus, we identi-
fied 124 ERE families expressed in a tissue-restricted
fashion, most of which were LTR elements. LTRs can
act as promoters and enhancers to stimulate gene ex-
pression [17, 19], and some LTR families are tissue-
specifically enriched in intronic enhancer regions con-
taining transcription factor binding sites [72]. Our work
therefore suggests that EREs, and more particularly
LTRs, may regulate gene expression in a wide range of
somatic tissues. In future experiments, single-cell

analyses might unveil a further level of heterogeneity
that we could not capture by global tissue expression
profiling. It was previously reported that EREs were
expressed at high levels in two MHC I-deficient cell
types: ESCs and testis [73, 74]. That similar levels of ex-
pression were found in mTECs for the three major
groups of EREs (LINE, SINE, and LTR) (Fig. 1) is re-
markable and raises fundamental questions as to the
mechanism and role of ERE expression in mTECs. The
key role of mTECs is to induce central immune toler-
ance to a vast repertoire of self-peptides displayed by
somatic tissues [58, 75]. Given the large-scale expression
of EREs in peripheral tissues highlighted in the present
report, we speculate that it may be important for

Fig. 6 Endogenous retroelements retained sequence homology with viruses. a Barplot showing the frequencies of each amino acid in ereMAPs,
viral MAPs, and human canonical MAPs. Abbreviations for amino acids: Y, tyrosine; W, tryptophan; V, valine; T, threonine; S, serine; R, arginine; Q,
glutamine; P, proline; N, asparagine; M, methionine; L, leucine; K, lysine; I, isoleucine; H, histidine; G, glycine; F, phenylalanine; E, glutamic acid; D,
aspartic acid; C, cysteine; A, alanine. b Human canonical MAPs and ereMAPs were aligned to a database of viral peptides using BLAST, and the
percentage of identity of their sequences with viral peptides was computed. The red line represents the average percentage of identity of
ereMAPs with viral MAPs. A bootstrap procedure was used to calculate the percentage of identity of 10,000 sets of 103 randomly selected human
canonical MAPs with viral MAPs. P value was calculated as the number of times the bootstrap distribution had a higher percentage of identity
with viral MAPs than ereMAPs (P < 0.0001)
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gnathostomes to be tolerant to a wide array of ERE-
derived antigens. As a corollary, when EREs are overex-
pressed, for instance in cancer cells [76, 77], only those
that are not expressed in mTECs may be immunogenic.
Induction of tolerance to the multitude of self-peptides
depends on the unique ability of mTECs to promiscu-
ously express thousands of otherwise tissue-specific
genes [78, 79]. Promiscuous gene expression in mTECs
is driven in part by AIRE and in part by other genes
whose identity is unresolved, which may include FEZF2
as well as genes involved in DNA methylation, histone
modification, and RNA splicing [29, 58, 80–82]. Our
data clearly show that the overexpression of numerous
ERE families in mTECs is entirely AIRE-independent
(Fig. 3). This observation underscores the relevance of
further studies on the mechanisms of AIRE-independent
promiscuous gene expression in mTECs.
A notable finding was that our MS analyses identified

ereMAPs derived from LINEs (n = 47), SINEs (n = 29),
and LTRs (n = 27). This means that these EREs are
translated and produce peptides that are adequately
processed for presentation by MHC I molecules. Our
analyses suggest that LTRs have a superior ability to
generate MAPs. As SINEs do not contain protein-coding
sequences, they were expected to generate fewer pep-
tides. However, the reason why LTRs would be more ef-
ficiently translated than LINEs remains elusive but
might include codon usage and sequence conservation.
A few ereMAPs have previously been identified in can-
cer cells [27, 70, 77]. The presence of ereMAPs on nor-
mal cells means that the mere identification of ereMAPs
on cancer cells could not be sufficient to infer that these
MAPs are cancer-specific nor immunogenic. Neverthe-
less, we have previously shown in mice that some ere-
MAPs are truly cancer-specific and immunogenic and
can elicit protective anti-tumor responses [27]. Further-
more, compelling evidence has been reported that some
LTRs can generate immunogenic ereMAPs in clear cell
renal cell carcinoma in humans [67]. These studies
coupled to our findings that ereMAPs (i) retain viral-like
features (Fig. 6) and (ii) can be recognized by CD8 T
cells (Additional file 2: Fig. S7B and C) suggest that ere-
MAPs may represent particularly attractive targets for
the development of cancer vaccines. In line with this, we
must also emphasize that the number of translated EREs
is certainly superior to the number of ereMAPs identi-
fied in our study: (i) collectively, our 16 B-LCLs
expressed 39 MHC I allotypes out of the thousands that
can be found in human populations (Additional file 1:
Table S5), and (ii) like canonical proteins [34], some
translated EREs may not generate MAPs.
We anticipate that the biogenesis of ereMAPs in nor-

mal and neoplastic cells will be a fertile field of investi-
gation. First, several observations suggest that the

landscape of ereMAPs is highly diversified: (i) the MAP
repertoire is shaped by several cell type-specific varia-
tions in gene expression [83], and (ii) ERE transcription
is highly heterogeneous among various cell types (Fig. 1)
and can be drastically affected by neoplastic transform-
ation [84]. The processing of ereMAPs is also intriguing.
Indeed, following their integration in human genomes,
EREs have undergone several rounds of mutation and
truncation and very few have previously been shown to
be translated [2, 85]. Because ERE sequences are degen-
erate, they are not expected to yield stable polypeptides.
However, MAPs preferentially derive from rapidly de-
graded unstable peptides, commonly referred to as defect-
ive ribosomal products [62]. We therefore hypothesize
that for most EREs, translation may yield ereMAPs but
not stable long-lived proteins. In other words, the prod-
ucts of ERE translation may be detectable only in the
immunopeptidome and not in the proteome.

Conclusions
In summary, transcriptomic analysis demonstrated that
ERE expression is heterogeneous in healthy human tis-
sues, with a higher expression in mTECs, ESCs, and
testis than in other tissues. mTECs are the sole normal
human cells that express high levels of both EREs and
MHC I molecules. In mutant mice, we report that the
exceptional expression of EREs in mTECs is AIRE-
independent. We also identified ERE families expressed
in a tissue-restricted manner, revealing that most healthy
human tissues have a unique ERE signature. MS analyses
of 16 B-LCL samples enabled the identification of 103
non-redundant ereMAPs, showing that EREs contribute
to the immunopeptidome of healthy cells. Interestingly,
sharing of ereMAPs by multiple B-LCL samples was ob-
served, and ereMAPs’ coding sequences are expressed at
similar levels in other somatic tissues, suggesting that
ereMAPs could also be presented by other cell types. Fi-
nally, we found that ereMAPs bear strong homology to
viral MAPs and therefore have the potential to be par-
ticularly immunogenic. We hope that this work will
serve as a reference in further studies on EREs in various
physiological and pathological conditions.
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