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Abstract

Background: Immune checkpoint blockade (ICB) with antibodies inhibiting cytotoxic T lymphocyte-associated
protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) (or its ligand (PD-L1)) can stimulate immune
responses against cancer and have revolutionized the treatment of tumors. The influence of host germline genetics
and its interaction with tumor neoantigens remains poorly defined. We sought to determine the interaction
between tumor mutational burden (TMB) and the ability of a patient’s major histocompatibility complex class I
(MHC-I) to efficiently present mutated driver neoantigens in predicting response ICB.

Methods: Comprehensive genomic profiling was performed on 83 patients with diverse cancers treated with ICB
to determine TMB and human leukocyte antigen-I (HLA-I) genotype. The ability of a patient’s MHC-I to efficiently
present mutated driver neoantigens (defined by the Patient Harmonic-mean Best Rank (PHBR) score (with lower
PHBR indicating more efficient presentation)) was calculated for each patient.

Results: The median progression-free survival (PFS) for PHBR score < 0.5 vs. ≥ 0.5 was 5.1 vs. 4.4 months (P = 0.04).
Using a TMB cutoff of 10 mutations/mb, the stable disease > 6 months/partial response/complete response rate,
median PFS, and median overall survival (OS) of TMB high/PHBR high vs. TMB high/PHBR low were 43% vs. 78%
(P = 0.049), 5.8 vs. 26.8 months (P = 0.03), and 17.2 months vs. not reached (P = 0.23), respectively. These findings
were confirmed in an independent validation cohort of 32 patients.

Conclusions: Poor presentation of driver mutation neoantigens by MHC-I may explain why some tumors (even
with a high TMB) do not respond to ICB.
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Background
Immune checkpoint blockade (ICB) with antibodies
inhibiting cytotoxic T lymphocyte-associated protein-4
(CTLA-4) and programmed cell death protein-1 (PD-1)
(or its ligand (PD-L1)) can stimulate immune responses
against cancer and has revolutionized the treatment of
both solid [1] and hematologic malignancies [2]. Durable
remissions after ICB have been reported in patients with
diverse advanced cancers including, but not limited to,
melanoma [3], non-small cell lung cancer (NSCLC) [4],
renal cell carcinoma [5], and Hodgkin lymphoma [6].
Still, responses to ICB can be variable, toxicity can be
serious, resistance is common [7], and hyperprogression
can occur [8]. Further, the majority of patients will not
benefit from ICB, and there is a need to better select pa-
tients for treatment [9].
Multiple factors influence the immune response

against tumors including tumor T cell infiltration, tumor
mutational burden (TMB), PD-L1 expression, interferon
signaling, mismatch repair (MMR) deficiency, tumor an-
euploidy, and possibly the intestinal microbiota [10].
Biomarkers that have entered clinical practice include
PD-L1 expression measured by immunohistochemistry
(IHC) [11], PD-L1 amplification [12], microsatellite in-
stability (MSI) [13, 14], and TMB [15, 16].
Somatic mutations in tumors can be recognized by the

immune system [17] resulting in tumor eradication.
MMR-deficient/MSI-high tumors have 10 to 100 times
as many somatic alterations as MMR-proficient tumors
[13], resulting in exquisite sensitivity to ICB therapy
[14]. Most cancers harboring MMR alterations are asso-
ciated with high TMB [18]. In addition, many cancers
harbor high TMB (10–20% depending on the definition
of high TMB), even without MMR alterations [15, 19].
Higher TMB correlates with better treatment outcomes,
including higher response rates and longer progression-
free survival (PFS) and overall survival (OS), in diverse
cancers treated with immunotherapies [15].
Despite the improved efficacy of ICB in TMB-high tu-

mors, approximately 40–60% of patients with a high
TMB will not respond [15, 16]. To date, there is no suffi-
cient way to predict which patients with high TMB will
or will not respond to ICB. It has been hypothesized that
tumors with high TMB and low PD-L1 expression might
not respond as well to ICB; however, studies have dem-
onstrated higher response rates and PFS in patients with
high TMB versus low TMB, irrespective of PD-L1 ex-
pression [20].
Major histocompatibility complex class I (MHC-I)

molecules, encoded by the human leukocyte antigen-I
(HLA-I) locus, present intracellular peptides on the sur-
face of both normal and tumor cells for recognition by
CD8+ cytotoxic T cells [21]. HLA-I genotype has been
linked to a variety of different immune responses

including infection [22], autoimmune diseases [23], and
the graft versus host/tumor effect seen after allogeneic
stem cell transplantation [24]. There is accumulating ex-
perimental evidence suggesting that immunosurveillance
shapes the mutational landscapes of cancers through the
elimination of early tumor cells [25–27]. In addition, the
predicted number of MHC-I-associated neoantigens has
been shown to be low in certain tumors suggesting
immune-mediated elimination [28], and the anti-tumor
activity of ICB is dependent on MHC-I presentation of
specific tumor-derived peptides [29, 30].
Marty et al. developed a residue-centric patient MHC-

I presentation score (termed the Patient Harmonic-
mean Best Rank (PHBR) score) that describes a person’s
ability to present specific cancer mutations to CD8+ T
cells, and found that PHBR scores correlated with the
likelihood of mutations to emerge in a patient’s tumor
[31]. Poor presentation of a mutation across patients
was correlated with higher frequency among tumors.
These results support that MHC-I genotype-restricted
immunoediting shapes the mutational landscape of
malignancies.
It has been suggested that the presence of a high-

quality neoantigen is required for response to therapy
[32] while a high burden of neoantigens has been associ-
ated with impaired anti-tumor immune activity [33];
thus, we focused on neoantigen quality over quantity by
using patient minimum PHBR score (i.e., best-presented
mutation) to predict whether mutations observed in a
patient’s tumor are likely to generate effectively pre-
sented neoantigens. We assessed the ability of PHBR
and TMB to predict response to ICB in diverse solid
tumors.

Methods
Patient selection
Three hundred and twenty-eight patients with diverse
solid tumors treated with ICB (4/2010–5/2018) at a sin-
gle institution were reviewed. Patients with melanoma,
tumors that were not sequenced by Foundation Medi-
cine (FM), and patients without an identified missense
alteration by NGS were excluded. We excluded patients
without next-generation sequencing or those with se-
quencing, but no identified missense alterations, because
PHBR cannot be calculated in those cases; we omitted
melanoma because melanoma patients have dispropor-
tionately high TMBs and high response rates to im-
munotherapy as compared to the majority of other
cancers. All patients were treated with anti-PD-1/L1
monotherapy (or in combination with a second agent).
The validation cohort was composed of thirty-two
NSCLC patients treated with pembrolizumab (starting
from 2012 to 2013) at Memorial Sloan Kettering and the
University of California Los Angeles. All validation
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patients had consented to Institutional Review Board-
approved protocols regarding tissue collection and
sequencing.

TMB and HLA-I sequencing
Patients had NGS performed on tumor samples to deter-
mine genetic alterations, TMB, and HLA-I genotype [34].
Formalin-fixed paraffin-embedded tumor samples were
submitted for NGS to FM [clinical laboratory improve-
ment amendments (CLIA)-certified lab]. The Foundatio-
nOne assay was used (hybrid-capture-based NGS; 236 or
315 genes; http://www.foundationone.com/). The methods
have been previously described [34]. Average sequencing
depth of coverage was greater than 250X, with > 100X at
> 99% of exons. For TMB, the number of somatic muta-
tions detected on NGS (interrogating 1.2 mb of the gen-
ome) is quantified and that value extrapolated to the
whole exome using a validated algorithm [35]. Alterations
likely or known to be bona fide oncogenic drivers and
germline polymorphisms are excluded. TMB was mea-
sured in mutations per megabase (mb). Sequence-derived
HLA-A/B/C typing was conducted by back-converting
BAM files to fastq, then performing HLA realignment and
typing using OptiType [36].

PHBR
The Patient Harmonic-mean Best Rank (PHBR) score as
previously described [31], is a metric that represents
how well the specific HLA-I genotype of an individual
can bind and present a specific missense mutation. Each
patient was assigned the PHBR score of his or her best-
presented missense driver mutation. For patients with
two or more missense mutations, only the mutation with
the lowest PHBR score was selected. PHBR low (strong
presentation) and high (poor presentation) were defined
as < 0.5 and ≥ 0.5, respectively.

Mapping Foundation Medicine mutations to peptides
RefSeq transcript IDs from the FM variant spreadsheet
were mapped to corresponding Ensembl transcript IDs
with coding (CDS) sequences. For evaluation of missense
mutations, we replaced the native amino acid residue
with the mutated residue and selected all 38 possible
peptides of length 8–11 that covered the mutated amino
acid residue. For evaluation of in-frame insertion and
deletion mutations, bases were inserted or deleted from
the CDS sequence according to the “cds effect” column
from the FM data. The new CDS sequence was then
translated into an amino acid sequence using the Seq.-
translate function from Biopython (Bio) package [37].
We then selected any resulting novel peptides of length
8–11 for affinity analysis.

Affinity analysis
We calculated the allele-specific binding affinities of the
previously described mutated peptides using NetMHC-
pan4.0 [38]. Conventionally, a NetMHCpan4.0 binding
affinity percentile rank less than 2 indicates weak
peptide-MHC binding, while a binding affinity percentile
rank less than 0.5 indicates strong peptide-MHC binding
[39]. Patient Harmonic-mean Best Rank PHBR scores
[31] were used to represent a patient’s ability to present
the mutations in their tumor. HLA-A, HLA-B, and HLA-
C alleles were obtained from FM. We evaluated the
binding affinity of each HLA allele for 38 possible pep-
tides of length 8–11 overlapping each mutation using
NetMHCpan4.0. For individual alleles, the best rank per-
centile from NetMHCpan4.0 out of the 38 possible pep-
tides was assigned. Best rank percentiles for all 6 alleles
were aggregated into the PHBR score using a harmonic
mean. High PHBR scores are indicative of poor affinity
of peptides overlapping a mutation with the patient’s
MHC-I molecules and vice versa.

Validation
Matched tumor-normal exome sequencing fastq files ob-
tained from [40] (dbGaP study accession phs000980.v1.p1.c1)
were preprocessed and mutations called according to the
GATK best practice workflow. Only mutations occurring in
the 309 genes from the Foundation Medicine gene panel
were retained. HLA typing was done in silico using the Opti-
Type software package [41]. Mutated peptides were created
using the same method as described above. Similarly, PHBR
scores were generated as described previously.

Statistical analysis
We used the Fisher exact test to assess categorical vari-
ables. P values < 0.05 were considered significant (values
< 0.10 were included in the multivariable regression ana-
lyses). Overall benefit rate (OBR) (stable disease for ≥ 6
months and partial or complete response) was deter-
mined (RECIST criteria). Median PFS and OS were cal-
culated from the start of checkpoint blockade and data
was censored at the last visit for patients still progression
free or alive, respectively, for PFS and OS. For the out-
come analysis, comparisons were made between TMB
low vs. high and PHBR low vs. high. Patients with no
TMB values were assigned to the low TMB category for
discrete analyses, and a pseudocount of 0.001 was added
to TMB for all patients. We performed a Cox propor-
tional hazards regression stratified by high (≥ 10 muta-
tions/mb) or low (< 10 mutations/mb) TMB to quantify
the specific effect of PHBR on PFS. These findings were
visualized using Kaplan-Meier curves. Statistical analysis
was performed on R version 3.5.2 and IBM SPSS Statis-
tics version 24.
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Results
Eighty-three patients with 20 different solid malignancies
were identified (Table 1, Additional file 1: Table S1, and
Additional file 1: Fig. S1, and Additional file 1: Fig. S2).
The most common malignancies in the cohort included
non-small cell lung cancer (NSCLC) (N = 26), cutaneous
squamous cell carcinoma (SCC) (N = 10), and head and
neck SCC (N = 9). Sixty-six patients were treated with
PD-1/L1 monotherapy and 17 with combination therapy.
The OBR (stable disease (SD) ≥ 6 months/partial and
complete response (PR/CR)) was 43%. Thirty-two

patients had at least one PHBR score of < 0.5 and fifty-
one patients had a minimum score ≥ 0.5 (lower scores
reflecting better neoantigen presentation) (Additional
file 1: Fig. S3). A minimum PHBR score ≥ 0.5 was signifi-
cantly associated in univariate analysis with progressive
disease (P = 0.02), non-cutaneous SCC malignancies
(P = 0.04), and a TMB < 50 mutations/mb (P = 0.05).
In univariate analysis (Table 2), only higher TMB (≥ 10

mutations/mb) was associated with a better OBR. Cau-
casian ethnicity, high TMB, and a minimum PHBR
score < 0.5 were all significantly associated with longer

Table 1 Patient demographics by PHBR score (< 0.5 vs. ≥ 0.5) (N = 83)

Variable Group N (82) PHBR < 0.5 (N = 32) PHBR ≥ 0.5 (N = 51) Relative risk (95% CI)1 P value2

Sex Male 46 22 (48%) 24 (52%) 1.77 (0.96–3.26) 0.07

Female 37 10 (27%) 27 (73%)

Ethnicity Caucasian 71 27 (38%) 44 (62%) 0.91 (0.44–1.90) > 0.99

Others3 12 5 (42%) 7 (58%)

Age4 (years) < 60 17 6 (35%) 11 (65%) 0.90 (0.44–1.82) > 0.99

≥ 60 66 26 (39%) 40 (61%)

Tumor type Head and neck SCC 9 4 (44%) 5 (56%) 1.18 (0.54–2.58) 0.73

Others 74 28 (38%) 46 (62%)

NSCLC 26 7 (27%) 19 (73%) 0.61 (0.31–1.23) 0.16

Others 57 25 (44%) 32 (56%)

Cutaneous SCC 10 7 (70%) 3 (30%) 2.04 (1.22–3.42) 0.04

Others 73 26 (34%) 48 (66%)

Others5 38 14 (37%) 24 (63%) 0.92 (0.53–1.60) 0.82

Head and neck SCC,
NSCLC, and cutaneous SCC

45 18 (40%) 27 (60%)

TMB6 (mutations/mb) < 50 65 21 (32%) 44 (68%) 0.49 (0.28–0.83) 0.048

≥ 50 12 8 (67%) 4 (33%)

< 20 56 18 (32%) 38 (68%) 0.61 (0.35–1.07) 0.12

≥ 20 21 11 (52%) 10 (48%)

< 10 38 11 (29%) 27 (71%) 0.63 (0.34–1.15) 0.16

≥ 10 39 18 (46%) 21 (54%)

PD-1/L1 Therapy Monotherapy 66 26 (39%) 40 (61%) 1.12 (0.55–2.27) > 0.99

Combination 17 6 (35%) 11 (65%)

Overall benefit rate SD ≥ 6 months/PR/CR7 36 17 (47%) 19 (53%) 1.45 (0.84–2.49) 0.25

Others 46 15 (33%) 31 (67%)

PD 32 7 (22%) 25 (78%) 0.45 (0.22–0.91) 0.02

Others 51 25 (49%) 26 (51%)
1Relative risk for PHBR < 0.5
2Calculated using Fisher’s exact test
3Others: African American (N = 2), Asian (N = 4), Hispanic (N = 5), and unknown (N = 1)
4At time of initiation of treatment with immunotherapy
5Others: adrenal (N = 1), appendix (N = 4), basal cell carcinoma (N = 3), breast cancer (N = 6), cervical (N = 1), cholangiocarcinoma (N = 1), colorectal (N = 2),
duodenal (N = 1), gastroesophageal (N = 5), glioblastoma (N = 2), thyroid (N = 1), prostate (N = 1), rectal squamous cell carcinoma (N = 1), renal cell carcinoma (N =
1), sarcoma (N = 3), urothelial (N = 4), and urethral squamous cell carcinoma (N = 1)
6TMB was performed on 77 patients
7One patient had SD, but had not reached to 6 months. Only 82 patients were evaluable for this comparison
Abbreviations: CR complete response, HR hazard ratio, NR not reached to 50%, NSCLC non-small cell lung cancer, OS overall survival, PFS progression-free survival,
PD progressive disease, PHBR Patient Harmonic-mean Best Rank, PR partial response, RR relative risk, SCC squamous cell carcinoma, SD stable disease, TMB tumor
mutational burden
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median PFS while male sex, Caucasian ethnicity, and
high TMB were associated with longer median OS. The
median PFS for low versus high PHBR scores was 5.1 vs.
4.4 months (P = 0.04) (Fig. 1). The median PFS for high
versus low TMB at various thresholds (10, 20, 50) was
6.9 vs. 4.0 months (P = 0.001), 14.1 vs. 4.2 months (P =
0.01), and 26.8 vs. 4.4 months (P = 0.03), respectively.

Using a TMB cutoff of 10 mutations/mb, the OBR,
median PFS, and median OS of TMB low/PHBR high vs.
TMB high/PHBR low were 33% vs. 78% (P = 0.006), 3.5
vs. 26.8 months (P < 0.001), and 10.1 months vs. not
reached (P = 0.008), respectively (Fig. 1 and Table 3). Re-
sults remain when we exclude patients who had un-
known TMB values (Additional file 1: Fig. S4). Patients

Table 2 Univariate analysis of factors affecting outcome for patients treated with immune checkpoint blockade (N = 83)

Rate of SD≥ 6
month/PR/CR1

PFS OS

Variable N (%) P
value2

Median,
months

HR (95%
CI)

P
value3

Median, months HR (95%
CI)

P
value3

Sex

Male (N = 46) vs. female
(N = 37)

23 (51%) vs.
13 (35%)

0.18 6.3 vs.
4.1

0.63
(0.38–1.04)

0.07 NR (MFU, 19.1) vs. 12.0 0.51
(0.27–0.95)

0.03

Ethnicity

Caucasian (N = 71) vs. others4

(N = 12)
32 (45%) vs.
4 (36%)

0.75 4.9 vs.
2.9

0.52
(0.26–1.00)

0.045 18.5 vs. 8.2 0.45
(0.19–1.06)

0.004

Age 5, years

< 60 (N = 17) vs. ≥ 60 (N = 66) 6 (35%) vs.
30 (46%)

0.58 3.5 vs.
5.1

1.29
(0.70–2.39)

0.41 12.0 vs. 14.9 0.86
(0.36–2.06)

0.73

Tumor type

Head and neck SCC (N = 9) vs.
not (N = 74)

4 (44%) vs.
32 (44%)

> 0.99 4.8 vs.
4.9

1.01
(0.46–2.22)

0.99 12.9 vs. 16.6 1.11
(0.43–2.84)

0.83

NSCLC (N = 26) vs. not (N = 57) 8 (31%) vs.
28 (50%)

0.15 3.0 vs.
6.0

1.67
(0.99–2.81)

0.05 9.3 vs. 16.6 1.37
(0.71–2.64)

0.34

Cutaneous SCC (N = 10) vs. not (N = 73) 7 (70%) vs.
29 (40%)

0.10 26.8 vs.
4.7

0.43
(0.17–1.08)

0.06 NR (median follow-up, 21.7)
vs. 13.9 14.9 vs. 17.1

0.43
(0.13–1.40)

0.15

Others6 (N = 38) vs. head and neck SCC,
NSCLC, and cutaneous SCC (N = 45)

17 (46%) vs.
19 (42%)

0.82 5.1 vs.
4.8

0.91
(0.55–1.52)

0.72 1.02
(0.54–1.93)

0.95

TMB7, mutations/mb

≥ 50 (N = 12) vs. < 50 (N = 65) 9 (75%) vs.
25 (39%)

0.03 26.8 vs.
4.4

0.40
(0.17–0.94)

0.03 NR (median follow-up, 17.5)
vs. 12.9

0.39
(0.12–1.27)

0.10

≥ 20 (N = 21) vs. < 20 (N = 56) 14 (67%) vs.
20 (36%)

0.02 14.1 vs.
4.2

0.45
(0.23–0.85)

0.01 NR (median follow-up, 22.4)
vs. 12.0

0.42
(0.19–0.96)

0.03

≥ 10 (N = 39) vs. < 10 (N = 38) 23 (59%) vs.
11 (29%)

0.01 6.9 vs.
4.0

0.40
(0.23–0.68)

0.001 37.1 vs. 10.1 0.42
(0.21–0.82)

0.009

PHBR

< 0.5 (N = 32) vs. ≥ 0.5 (N = 51) 17 (53%) vs.
19 (38%)

0.25 5.1 vs.
4.4

0.58
(0.34–0.99)

0.04 NR (median follow-up, 21.7)
vs. 14.9

0.66
(0.34–1.27)

0.21

PD-1/L1 therapy

Monotherapy (N = 66) vs.
combination (N = 17)

25 (39%) vs.
11 (65%)

0.06 4.1 vs.
6.3

1.17
(0.63–2.16)

0.63 17.1 vs. 11.3 0.78
(0.37–1.66)

0.51

1Thirty-six patients achieved SD with ≥ 6months/PR/CR. One patient attained ongoing SD, but has not yet reached 6-month follow-up and is therefore not
considered evaluable for this parameter; only 82 patients were evaluable for this comparison
2Calculated using Fisher’s exact test
3Calculated using the log-rank test
4Others: African American (N = 2), Asian (N = 4), Hispanic (N = 5), and unknown (N = 1)
5At time of initiation of treatment with immunotherapy
6Others: adrenal (N = 1), appendix (N = 4), basal cell carcinoma (N = 3), breast cancer (N = 6), cervical (N = 1), cholangiocarcinoma (N = 1), colorectal (N = 2),
duodenal (N = 1), gastroesophageal (N = 5), glioblastoma (N = 2), thyroid (N = 1), prostate (N = 1), rectal squamous cell carcinoma (N = 1), renal cell carcinoma (N =
1), sarcoma (N = 3), urothelial (N = 4), and urethral squamous cell carcinoma (N = 1)
7Seventy-seven patients with TMB were evaluable for the response rate, PFS, and OS
Abbreviations: HR hazard ratio, NR not reached to 50%, NSCLC non-small cell lung cancer, OS overall survival, PFS progression-free survival, PHBR Patient Harmonic-
mean Best Rank, SCC squamous cell carcinoma, TMB tumor mutational burden
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with high TMB had greater OBR (43% vs. 78%, P =
0.049), greater PFS (5.8 vs. 26.8 months, P = 0.03), and
greater median overall survival (17.2 months vs. not
reached, P = 0.23) when accompanied by a well-
presented mutation (low PHBR) than their counterparts
with less well-presented mutations (high PHBR) (Table
3, Additional file 1: Fig. S5).
In a multivariable regression analysis (Table 4) of fac-

tors affecting outcome for patients treated with im-
munotherapy, high TMB (P = 0.01) and treatment with
combination therapy (P = 0.006) were significantly asso-
ciated with a higher OBR. Only high TMB was signifi-
cantly associated with a prolonged median PFS (P =
0.01) and OS (P = 0.04). However, in stratified Cox re-
gression, which allows for different hazard functions
among strata [42] of PHBR in the higher TMB (≥ 10 mu-
tations/mb) patients (N = 39), we found that a low PHBR
score is significantly predictive of PFS (HR 0.39 (0.16–
0.91), P = 0.03). Multivariable regression analysis in this
cohort of 39 patients with high TMB showed that PHBR,
but not TMB, was selected as an independent factor pre-
dicting both OBR and longer PFS (P = 0.049 and 0.03,
respectively) (Additional file 1: Table S2 and Table S3).

In contrast, PHBR had no effect on PFS (P = 0.98) in pa-
tients with lower TMB (< 10 mutations/mb) (N = 38).
Plotting Kaplan-Meier curves of patients based on lower
or higher TMB and low or high PHBR found similar re-
sults in the general cohort (i.e., PHBR low versus high is
associated with significant separation of the curves in
patients with TMB ≥ 10 mutations/mb, but not in pa-
tients with lower TMBs (Fig. 1)). Finally, overall, Spear-
man correlation coefficient between TMB and PHBR
was 0.31 with a P value of 0.01, consistent with a higher
likelihood of carrying a low PHBR mutation when TMB
is high (Additional file 1: Fig. S6).
Next, we evaluated the added value of PHBR with re-

spect to TMB from another perspective. We first fit a lo-
gistic regression model relating OBR to all potential
confounders, using a backward selection process where
we removed confounders one at a time and compared
models using Akaike Information Criterion (AIC) scores
[43]. We kept all confounders for which exclusion did
not result in an increased AIC (i.e., the model better ex-
plained the data when the confounder was included).
The retained confounders included MSI status, ethnicity,
and the type of cancer each patient was diagnosed with.

Fig. 1 Kaplan-Meier PFS and OS for patients treated with immunotherapy. P values in Fig. 1 compare all four categories. They differ slightly from
P values in Table 3, which compares value to the reference. PFS (a) and OS (b) dichotomized by PHBR < 0.5 and ≥ 0.5 (N = 83). PFS (c) and OS (d)
dichotomized by TMB < 10 and ≥ 10 mutations/mb (N = 83). PFS (e) and OS (f) separated by TMB < 10 and ≥ 10 and PHBR < 0.5 and ≥ 0.5 (N =
83). For PFS (e), P = 0.005 for difference between all four curves. Curve for TMB≥ 10/PHBR < 0.5 versus TMB≥ 10/PHBR ≥ 0.5 was significantly
different (P = 0.025); TMB≥ 10/PHBR ≥ 0.5 did not differ significantly from TMB < 10/PHBR ≥ 0.5 (P = 0.19) or from TMB < 10/PHBR < 0.5 (P = 0.26);
TMB < 10/PHBR ≥ 0.5 did not differ significantly from TMB < 10/PHBR < 0.5 (P = 0.91). For OS (f), P = 0.1 for difference between all four curves.
Differences between individual curves were not statistically different
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Then, we sequentially added TMB and PHBR to the re-
gression model, using AIC once again to compare
models (Table S8). We found that with the confounders
and TMB in the model, the addition of the PHBR results
in a reduction of AIC, indicating added explanatory
power of PHBR even when TMB is included. In the final
model with all the selected confounders, TMB and
PHBR, the PHBR has a negative coefficient with a P
value of 0.08. The AUC values associated with the final
models with confounders were 0.64 for both TMB and
PHBR models alone, and 0.68 for the model with both
TMB and PHBR (Additional file 1: Fig. S7).
To investigate the generalizability of our analyses

across histologies, we revisited Kaplan-Meier analysis for
progression-free survival within tumor types with at least
5 patients (NSCLC, SCC, head and neck, breast) (Add-
itional file 1: Fig. S8) and in all tumors excluding NSCLC

and SCC, the two most common histologies (Additional
file 1: Fig. S9). In each of these analyses, we observed
that low versus high PHBR similarly stratified patients
with high TMB. In addition, when we train a logistic re-
gression classifier using the two most frequent histolo-
gies (N = 31), NSCLC and SCC, and predict response for
the remaining patients (N = 46), we observe that the
combination of PHBR and TMB better predicts OBR
(Additional file 1: Fig. S10). These results suggest that
the information provided by TMB and PHBR generalizes
beyond high mutation burden tumors such as SCC and
NSCLC.
In an external validation cohort of 32 patients with

NSCLC treated with pembrolizumab (Additional file 1:
Table S4, Table S5 and Fig. S3), the results were similar
to those in our UCSD cohort: the OBR and median PFS
of PHBR < 0.5 vs. ≥ 0.5 was 76% vs. 30% (P = 0.02) and

Table 3 Overall response rate, PFS, and OS segregated by TMB low/high and PHBR low/high among patients treated with
immunotherapy patients (N = 77 with TMB available)

Rate of SD with≥ 6
month/PR/CR1

PFS OS

Group N (%) P
value

Median
(months)

HR (95% CI) P
value2

Median
(months)

HR (95% CI) P
value2

TMB/PHBR (TMB cutoff = 10 mutations/mb)

Low/high (N = 27) vs. low/low (N = 11) 9 (33%) vs. 2
(18%)

0.45 3.5 vs. 4.2 1.01
(0.48–2.12)

0.99 10.1 vs. 12.0 0.90
(0.37–2.22)

0.82

Low/high (N = 27) vs. high/high (N = 21) 9 (33%) vs. 9
(43%)

0.56 3.5 vs. 5.8 0.76
(0.54–1.05)

0.09 10.1 vs. 17.2 0.72
(0.47–1.10)

0.12

Low/high (N = 27) vs. high/low (N = 18) 9 (33%) vs. 14
(78%)

0.006 3.5 vs. 26.8 0.62
(0.47–0.83)

< 0.001 10.1 vs. NR3 0.66
(0.47–0.91)

0.008

Low/low (N = 11) vs. high/high (N = 21) 2 (18%) vs. 9
(43%)

0.25 4.2 vs. 5.8 0.58
(0.25–1.31)

0.18 12.0 vs. 17.2 0.62
(0.23–1.69)

0.34

Low/low (N = 11) vs. high/low (N = 18) 2 (18%) vs. 14
(78%)

0.003 4.2 vs. 26.8 0.50
(0.30–0.83)

0.003 12.0 vs. NR3 0.59
(0.34–1.02)

0.049

High/high (N = 21) vs. high/low (N = 18) 9 (43%) vs. 14
(78%)

0.049 5.8 vs. 26.8 0.39
(0.16–0.91)

0.03 17.2 vs. NR3 0.53
(0.19–1.50)

0.23

TMB/PHBR (TMB cutoff = 20 mutations/mb)

Low/high (N = 38) vs. low/low (N = 18) 13 (34%) vs. 7
(39%)

0.77 4.1 vs. 4.2 0.89
(0.47–1.67)

0.71 11.1 vs. 12.0 0.81
(0.38–1.73)

0.58

Low/high (N = 38) vs. high/high (N = 10) 13 (34%) vs. 5
(50%)

0.47 4.1 vs. 3.6 0.96
(0.65–1.41)

0.82 11.1 vs. 17.2 0.76
(0.45–1.31)

0.32

Low/high (N = 38) vs. high/low (N = 11) 13 (34%) vs. 9
(82%)

0.007 4.1 vs. NR4 0.59
(0.41–0.84)

0.001 11.1 vs. NR5 0.66
(0.44–0.99)

0.03

Low/low (N = 18) vs. high/high (N = 10) 7 (39%) vs. 5
(50%)

0.70 4.2 vs. 3.6 1.06
(0.44–2.53)

0.90 12.0 vs. 17.2 0.82
(0.26–2.62)

0.74

Low/low (N = 18) vs. high/low (N = 11) 7 (39%) vs. 9
(82%)

0.052 4.2 vs. NR4 0.46
(0.24–0.86)

0.007 12.0 vs. NR5 0.60
(0.31–1.15)

0.11

High/high (N = 10) vs. high/low (N = 11) 5 (50%) vs. 9
(82%)

0.18 3.6 vs. NR4 0.16
(0.04–0.64)

0.004 17.2 vs. NR5 0.37
(0.08–1.70)

0.19

1Thirty-six patients achieved SD with ≥ 6month/PR/CR
2P values in Fig. 1 are different as they compare all four categories at the same time
3Not reached to the median (median follow-up duration, 23.0 months)
4Not reached to the median (median follow-up duration, 24.6 months)
5Not reached to the median (median follow-up duration, 27.0 months)
Abbreviations: HR hazard ratio, NR not reached to 50%, OS overall survival, PFS progression-free survival, PHBR Patient Harmonic-mean Best Rank, TMB tumor
mutational burden
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14.5 vs. 2.1 months (P < 0.001), respectively (Fig. 2, Add-
itional file 1: Table S6). Using a TMB cutoff of 10 muta-
tions/mb, the median PFS of TMB high/PHBR high vs.
TMB high/PHBR low was 8.1 months, versus not
reached, respectively (P = 0.02) (Fig. 2, Additional file 1:
Table S7). OS data was not available for analysis.
Finally, we compared our findings in an aggregated

high-TMB melanoma cohort [44–47] and a low TMB
kidney cancer cohort [48]. While minimum PHBR score
did not significantly stratify melanoma patient overall or

progression-free survival across all patients (Fig. 3a, b),
we did find, when also considering sex and age, that
lower PHBR scores (i.e., better presented mutations)
were significantly associated with better overall and
progression-free survival outcomes in high-TMB pa-
tients (Table 5), consistent with our reported findings.
As expected in the low TMB kidney tumors, there was
no correlation between mutation burden and increased
progression-free or overall survival (Fig. 4a, b). Interest-
ingly, while we did not see significant survival stratifica-
tion with min-PHBR (Fig. 4c, d), we did find that
responders tended to have lower PHBR scores (i.e., bet-
ter presented mutations) than non-responders, although
the trends did not reach statistical significance (Fig. 5).

Discussion
In a cohort of 83 patients with diverse solid tumors, we
demonstrate that both TMB and efficient neoantigen
presentation (defined by at least one PHBR score < 0.5)
predict better response (as defined by SD ≥ 6 months/
PR/CR rate) and longer PFS and OS after treatment with
ICB. This finding was confirmed in an independent co-
hort of 32 patients with NSCLC treated with PD-1
blockade. Further, by incorporating the PHBR score, we
were able to identify a group of higher TMB tumors (≥
10 mutations/mb) that are less likely to benefit from
ICB. Specifically, patients with tumors that poorly
present driver neoantigens are less likely to respond to
ICB, even in tumors with a higher mutational load. Nu-
merous studies show that a significant proportion of pa-
tients with a higher TMB do not respond to ICB and
there is a need to better identify this group of patients
[15, 16, 19].
Chowell et al. demonstrated that HLA-I homozygosity

and somatic loss of heterozygosity (LOH) are predictive
of poor outcomes in two independent cohorts treated
with ICB [49]. In addition, McGranahan et al. observed
that 40% of early-stage NSCLC tumors had HLA loss of

Table 4 Multivariable regression analysis of factors affecting
outcome for patients treated with immunotherapy (N = 77 with
TMB available)

Group OR (95% CI) P value

Rate of SD ≥ 6month/PR/CR

Cutaneous SCC versus others 3.96 (0.69–22.64) 0.12

TMB ≥ 10 mutations/mb versus < 10 4.51 (1.40–14.61) 0.01

PD-1/L1 monotherapy versus combination 0.15 (0.04–0.58) 0.006

Progression-free survival

Male versus female 0.94 (0.53–1.68) 0.83

Caucasian versus others 0.69 (0.33–1.43) 0.32

NSCLC versus others 1.52 (0.86–2.67) 0.15

Cutaneous SCC versus others 0.71 (0.22–2.26) 0.56

TMB ≥ 10 mutations/mb versus others 0.47 (0.26–0.86) 0.01

PHBR < 0.5 versus ≥ 0.5 0.75 (0.41–1.38) 0.36

Overall survival

Male versus female 0.64 (0.33–1.26) 0.20

Caucasian versus others 0.68 (0.27–1.72) 0.42

TMB ≥ 10 mutations/mb versus < 10 0.48 (0.24–0.970) 0.04

Variables with P value of ≤ 0.1 in univariate (Table 2) were included in the
multivariable regression analysis
Abbreviations: CR complete response, HR hazard ratio, NSCLC non-small cell
lung cancer, OR odds ratio, PHBR Patient Harmonic-mean Best Rank, PR partial
response, SCC squamous cell carcinoma, SD stable disease, TMB tumor
mutational burden

Fig. 2 PFS for patients treated with immunotherapy in the validation dataset (N = 32). P values in the figure compare all four categories. a PFS
dichotomized by PHBR < 0.5 and ≥ 0.5. b PFS dichotomized by TMB < 10 and ≥ 10 mutations/mb. c PFS separated by TMB < 10 and ≥ 10 and
PHBR < 0.5 and ≥ 0.5
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heterozygosity [32]. It was hypothesized that patients
homozygous in at least one HLA-I locus would be pre-
dicted to present a smaller and less diverse tumor-
derived neoantigen repertoire to CD8+ cytotoxic T cells
and that the diversity of HLA molecules in a given pa-
tient influences the selection and clonal expansion of T
cells following ICB [50].

Our report differs from the Chowell et al. in several
ways. We assessed patient-specific MHC-I ability to bind
to tumor neoantigens (PHBR score), not HLA-I diver-
sity. Furthermore, by evaluating the interaction between
TMB and the PHBR score, we demonstrated that tumors
that present neoantigens efficiently respond to ICB, at
least in the case of higher TMB (≥ 10 mutations/mb).
However, in patients with lower TMB, the presentation
of neoantigens as reflected by PHBR had no association
with outcome. We hypothesize that, when there are
multiple neoantigens produced by the mutanome (i.e., in
patients with higher TMB), there is the opportunity for
MHC-I to present them (or at least one of them) in such
a way that is critical to the response. However, when
there are few neoantigens, the opportunity to present
them may be diminished to such an extent that the
PHBR is not impactful. Additional studies will be re-
quired to better understand the neoantigen landscape as
it relates to host anti-tumor immunity, in addition to the
optimal method to combine information across multiple
neoantigen for predicting response to therapy.

Fig. 3 Kaplan-Meier curves showing the effects of a TMB on overall survival, b TMB on progression-free survival, and c minimum PHBR score on
overall survival and d minimum PHBR score on progression-free survival in the combined melanoma cohort

Table 5 Cox proportional hazards regression for high-TMB
patients in combined melanoma cohorts

Variables Coefficients P value Confidence interval (95%)

Age OS − 0.01 OS 0.59 OS (− 0.04, 0.02)

PFS 0.06 PFS 0.13 PFS (− 0.02, 0.15)

Sex OS − 0.33 OS 0.40 OS (− 1.09, 0.44)

PFS − 0.10 PFS 0.90 PFS (−1.67, 1.47)

TMB OS − 0.03 OS 0.05 OS (− 0.05, 0.00)

PFS 0.03 PFS 0.24 PFS (− 0.02, 0.07)

min-PHBR OS 0.28 OS 0.03* OS (0.02, 0.54)

PFS 0.82 PFS 0.02* PFS (0.15, 1.49)
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Fig. 4 Kaplan-Meier curves showing the effects of a TMB on overall survival, b TMB on progression-free survival, and c minimum PHBR score on
overall survival and d progression-free survival in the Miao kidney cohort

Fig. 5 Boxplots showing the distribution of a TMB and b minimum PHBR score for responders and non-responders in the Miao cohort. P values
were calculated by the Mann-Whitney U test
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In our study, all data gathered to identify possible bio-
markers to ICB was obtained via one NGS test at one
time point. Prediction scores and gene signatures that
take into count numerous variables including T cell in-
filtration into tumors, mutational load, and PD-L1 level
have also been developed [51, 52]. Here we show that,
with further validation, the PHBR score and TMB ob-
tained via NGS, both of which are easy to assay, provide
the ability to deliver data in real time for clinicians to
make treatment decisions.
Our study has several limitations. It was a retro-

spective study that included a non-uniform group of
patients with different malignancies treated with dif-
ferent checkpoint inhibitors. However, similar results
were obtained in our validation cohort of NSCLC all
treated with the same therapy. Our study excluded
melanoma and included only small subsets of patients
with individual tumor types; while our specific ana-
lyses for tumor types with ≥ 5 patients and leave-one-
out analyses (Additional file 1: Fig. S8 and Fig. S9)
suggest generalizability, much larger sample sizes will
be required to determine whether these findings
generalize to specific histologies. Our study did not
assess T cell receptor (TCR) specificity and diversity.
TCR specificity for MHC-I/peptide complex is essen-
tial for CD8+ T cell cellular-mediated cytotoxicity. A
strong correlation between TCR CDR3 diversity and
TMB has been reported [50]. Finally, we only assessed
the PHBR score for MHC-I and not MHC-II. MHC-II
presentation of neoantigens is possibly an important
determinant of an immune response against a tumor.
Frequent cancer driver mutations are poorly pre-
sented by MHC-II, and MHC-II shows less inter-
patient variability but stronger selective effects than
MHC-I [53].

Conclusions
In summary, the ability of patient-specific MHC-I
complexes to bind and present neoantigens repre-
sented by the PHBR score can predict who is most
likely to respond to ICB within the subgroup of pa-
tients with higher TMB. These results need to be ex-
tensively validated prior to incorporation into routine
clinical use. Future studies are needed to clarify the
role of PHBR score in predicting response to ICB in
specific malignancies. Patients with high PHBR scores
may benefit from immunotherapies that circumvent
antigen presentation by MHC-I (e.g., chimeric antigen
receptor T cells). Finally, much effort will be needed
to decipher how to best incorporate MHC-I-related
PHBR, reflecting neoantigen presentation by HLA-I,
in the context of PD-L1 expression, TCR repertoire,
and HLA-II genotype.
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