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High-resolution temporal profiling of the
human gut microbiome reveals consistent
and cascading alterations in response to
dietary glycans
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Abstract

Background: Dietary glycans, widely used as food ingredients and not directly digested by humans, are of intense
interest for their beneficial roles in human health through shaping the microbiome. Characterizing the consistency
and temporal responses of the gut microbiome to glycans is critical for rationally developing and deploying these
compounds as therapeutics.

Methods: We investigated the effect of two chemically distinct glycans (fructooligosaccharides and polydextrose)
through three clinical studies conducted with 80 healthy volunteers. Stool samples, collected at dense temporal
resolution (~ 4 times per week over 10 weeks) and analyzed using shotgun metagenomic sequencing, enabled
detailed characterization of participants’ microbiomes. For analyzing the microbiome time-series data, we
developed MC-TIMME2 (Microbial Counts Trajectories Infinite Mixture Model Engine 2.0), a purpose-built
computational tool based on nonparametric Bayesian methods that infer temporal patterns induced by
perturbations and groups of microbes sharing these patterns.

Results: Overall microbiome structure as well as individual taxa showed rapid, consistent, and durable alterations
across participants, regardless of compound dose or the order in which glycans were consumed. Significant
changes also occurred in the abundances of microbial carbohydrate utilization genes in response to polydextrose,
but not in response to fructooligosaccharides. Using MC-TIMME2, we produced detailed, high-resolution temporal
maps of the microbiota in response to glycans within and across microbiomes.

Conclusions: Our findings indicate that dietary glycans cause reproducible, dynamic, and differential alterations to
the community structure of the human microbiome.
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Background
Dietary glycans are known to alter the growth and activ-
ity of microbes in the human gut, and certain dietary
glycans have been shown to have a beneficial effect on
health without being directly digested by the host [1, 2].
While beneficial health outcomes have been linked to a
wide range of glycan compounds, the mechanisms
through which they affect the gut microbiome and how
this leads to an alteration of host physiology remains un-
clear. Moreover, how the microbiome changes in com-
position and function with glycan administration, and
the consistency and temporal patterns of these re-
sponses, remains poorly understood. Characterizing
these responses to different compounds and across indi-
viduals, with frequently sampled timepoints, is thus an
important priority for microbiome research to further
understanding of diet-induced responses [3]. Such stud-
ies have the potential to provide predictive insights into
how glycans and other dietary compounds can be used
to improve health or treat disease.
Previous work has shown shifts in the composition of

the microbiome with individual dietary glycans in small
clinical studies [4]. Generally, these studies either focus
on certain bacterial taxa, a small number of timepoints,
or a single dose and often only include a limited assess-
ment of the variability in response across participants.
Nonetheless, these studies have been instrumental in
demonstrating the potential for dietary glycans to drive
meaningful shifts in the microbiome and have provided
evidence that these shifts are linked to functional out-
comes (e.g., [5]).
The human gut microbiome is inherently temporally

dynamic, due to various factors including dietary intake
[6, 7]. Metabolism of dietary glycan compounds in the
gut can be a complex process mediated by many differ-
ent organisms that can interact synergistically over time
[8]. For example, bacterial cross-feeding interactions
have been shown to occur in the gut, whereby one bac-
terial species performs primary degradation of polysac-
charides and then another bacterial species grows
abundantly on the resulting secondary products [9].
Characterizing the dynamic responses of the microbiome
to glycans has direct relevance to the effective use of
these compounds to improve human health. Necessary
factors to understand include the onset, duration, and
durability of their effects on the microbiome.
To characterize temporal dynamic responses of the

microbiome to glycans in detail, we conducted a set of
temporally dense and high-taxonomic resolution studies.
This investigation was comprised of three studies of
consuming two different glycans (fructooligosaccharides
[FOS] and polydextrose [PDX]). Participants’ micro-
biome compositions from fecal samples were profiled
using shotgun metagenomic sequencing, with multiple

samples collected before, during, and after the intake of
each glycan (~ 4 samples/week) over the course of 10
weeks (Additional file 1: Figure S1). We assessed the im-
pact of glycan dose on responses by delivering different
doses of compounds to cohorts. We additionally per-
formed a crossover study between FOS and PDX (Add-
itional file 1: Figure S1) to investigate the effect of prior
glycan consumption on microbiome responses.
The two glycans we investigated differ substantially in

their chemical structures and are thus likely to result in
different response patterns in the microbiome. FOS, a
mixture of fructose units linked by beta-1,2-bond and a
degree of polymerization (DP) between 2 and 8, was one
of the earliest described nondigestible food ingredients [1]
and is widely used in food products including infant for-
mulas due to advantageous chemical properties and po-
tential benefits to health [10]. It is fermented in the colon
[11], and human studies have shown FOS to increase Bifi-
dobacterium growth [12–14]. In contrast, PDX is a mix-
ture of nondigestible polysaccharides comprised of
varying lengths of glucose monomers linked with diverse
glycosidic bonds and small amounts of sorbitol and citric
acid with an average DP of 12 [15, 16]. In human partici-
pants, administration of PDX has been shown to alter the
composition of the gut microbiome by increasing the Bac-
teroides to Firmicutes ratio and shifting the proportions of
specific taxa, including decreases in Eubacterium, Rose-
buria, Ruminococcus, Dorea, and Lachnospiraceae and in-
creases in Parabacteroides [5, 17]. PDX has been shown to
have physiological effects on the host including a reduc-
tion in appetite, shift in lipid metabolism, and an improve-
ment in immune function [15].
To analyze the rich time-series data collected from our

studies, we developed MC-TIMME2, an improved ver-
sion of our earlier Microbial Counts Trajectories Infinite
Mixture Model Engine (MC-TIMME [18]), which simul-
taneously infers temporal patterns induced by perturba-
tions and groups of microbes sharing these patterns
from microbiome data, using a nonparametric Bayesian
technique [19, 20]. MC-TIMME has been successfully
applied to gain biological insights into the responses of
the microbiome over time to antibiotics [18], infection
[21], and diet [22]. In contrast to other techniques for
microbiome time-series analysis (e.g., [23–25]), MC-
TIMME detects differences within a single participant’s
microbiome, enabling personalized response
characterization. To address the dense time-series data
collected and our interventional experimental design, we
made several key extensions to the original MC-TIMME
model and algorithm, including: (a) stochastic dynamics,
to model unmeasured sources of temporal variation that
occur in diverse human microbiomes; (b) an explicit
model of the perturbing substance, to account for
pharmacokinetics of the compound and differing doses
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administered; (c) a tailored measurement error model
for metagenomics sequencing data including nonpara-
metric overdispersion; and (d) a multi-level clustering
model, to allow for characterization of shared growth
kinetic properties due to phylogenic relationships and
shared responses to the compound that may be due to
common metabolic capabilities in phylogenetically dis-
tant bacteria.
We analyzed the data from our studies using both

standard statistical/ecological approaches and MC-
TIMME2. Overall, we observed consistent effects of the
glycans across individuals, in terms of changes in the
composition of the microbiota and specific taxa, and dis-
tinct effects between structurally dissimilar glycans. Fur-
ther, we saw significant changes in abundances of
microbial genes that encode carbohydrate-active en-
zymes. Detailed temporal modeling of these responses
reveals consortia of bacteria that respond at different
rates and with distinct trajectory patterns, highlighting
complex but consistent temporal responses to glycans.

Methods
Study design
Three clinical studies were conducted to assess the ef-
fects of fructooligosaccharides (FOS) and polydextrose
(PDX) on the gut microbiome of healthy male and fe-
male human participants age 18–45 years. FOS used in
the studies is a brand of FOS called Orafti® P95 dry pow-
der manufactured by BENEO. PDX used in the studies is
a brand called Litesse® Ultra™ manufactured by Danisco.
The first two studies (K001 and K002) had similar de-
signs except that K001 used FOS as the study product,
and K002 used PDX as the study product (Additional file
1: Figure S1). Both were randomized, open-label studies
that included three cohorts, which received different
feeding amounts of the study products. Following a 2-
week baseline/run-in period, participants were random-
ized via computer-generated codes on study day 0 to
one of the three cohorts. Participants consumed the
study products during two feeding periods of 2 weeks
each (feeding1 and feeding2). There was a 4-week wash-
out period following the feeding periods during which
participants were monitored but no study product was
consumed. In K001, participants in cohort 1 were
instructed to consume 2.5 g BID of FOS per day during
feeding1 and feeding2. In cohort 2, 2.5 g BID during
feeding1 and 5 g BID during feeding2. In cohort 3, 5 g
BID during feeding1 and 10 g BID during feeding2. In
K002, participants in cohort 1 were instructed to con-
sume 7.5 g BID of PDX per day during feeding1 and
feeding2. In cohort 2, 10 g BID during feeding1 and 20 g
BID during feeding2. In cohort 3, 20 g BID during feed-
ing1 and 30 g BID during feeding2. The study products
were consumed twice daily, dissolved in water. The

study product amounts were comparatively greater in
K002 as compared to K001 due to reported higher toler-
ability for PDX than FOS [16, 26]. A third randomized,
double-blinded crossover study (K003) was conducted to
assess whether effects on the microbiome were reprodu-
cible and/or dependent on the order of dosing. Follow-
ing a 2-week run-in period, healthy participants were
randomized into one of two cohorts on study day 0. Par-
ticipants in cohort 1 received 5 g BID of FOS during the
first 2-week feeding period (feeding1), discontinued con-
sumption of FOS during the subsequent 4-week period
(washout1), received 25 g BID of PDX during the second
2-week feeding period (feeding2), and were followed for
a second 4-week period (washout2) after discontinuation
of the consumption of PDX. Cohort 2 followed an iden-
tical plan except that participants in the cohort received
the study products in the reverse order across the two
feeding periods. Study products were consumed as in
the two earlier studies. The differences between the
intended and actual consumption amount are summa-
rized in Additional file 1: Figure S2. Participants were
instructed to maintain their normal diet throughout the
study. For each study, we randomized 10 participants
per cohort. The demographic information of participants
is listed in Additional file 1: Table S1. Participants with a
major protocol deviation or completely missing data
from one of the study periods were excluded from
downstream analyses.

Sample collection and sequencing
Fecal samples were collected in order to characterize the
gut microbiome of the participants. Participants were
provided with fecal sample collection instructions.
Briefly, participants were instructed to place a stool col-
lection bowl and holder under toilet seat in the center
rear of the toilet and lower seat, to ensure that the col-
lection unit was securely in place. Participants then com-
pleted bowel movement on the toilet, into the sample
collection unit. To generate the swab sample, partici-
pants opened the red capped swab collection tube (BD
BBL CultureSwab EZ II single head foam swab), stuck
swab into the center of the stool to heavily coat swab
head, returned swab back into the collection tube, and
twisted cap back onto collection tube to seal completely.
Swab samples were then placed immediately in the
freezer or were temporarily placed in the provided insu-
lated cooler bag with four frozen freezer packs until par-
ticipants could access their freezer. To bring collected
samples back to the clinical site, participants placed fecal
swabs in the provided insulated cooler containing the
freezer packs.
Fecal microbiomes were characterized using a shotgun

DNA sequencing-based approach similar to one previ-
ously described [27]. Briefly, fecal swabs were removed
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from the collection device quickly and cut into Qiagen’s
DNeasy PowerSoil extraction plates. Extraction plates
remained on dry ice until all fecal swabs were trans-
ferred. Plates were stored at – 80 °C until analysis. Ex-
traction plates were shipped on dry ice to CoreBiome,
Inc. for downstream extraction and library preparation.
Extracts were quantified using the Quant-iT PicoGreen
dsDNA assay (Thermo Fisher). Libraries were prepared
using the NexteraXT kit and a HiSeq 1 × 150-cycle v3
kit (Illumina) was used to sequence samples. The taxa
count tables from raw sequencing data were generated
using the SHOGUN pipeline [27] and have been made
publicly available (see the “Availability of data and mate-
rials” section). The database used here was generated by
selecting up to the first 20 strains per species in RefSeq
v87 by first choosing genomes with assembly level anno-
tated as “Complete Genome,” then “Chromosome,” then
“Scaffold,” and then “Contig.” All calculations and visual-
izations were conducted on an operational taxonomic
unit (OTU) table that excluded OTUs that could not be
resolved to the species level. This table was rarefied to
10,000 without replacement and used for downstream
analyses.

Microbiome data analysis
We assessed the effects of FOS or PDX on microbiome
diversity by comparing median alpha (Shannon) diversity
values between each of the feeding periods and the base-
line/run-in period and testing the significance of differ-
ences via paired Wilcoxon signed-rank tests. P values
were false discovery rate (FDR) corrected for multiple
comparisons across periods.
To assess the overall effect of FOS or PDX on micro-

biome community composition, we first calculated Bray-
Curtis dissimilarities between every sample pair within
each participant based on the square-root transformed
relative abundances of the bacterial species. We deter-
mined whether the compositions during the feeding pe-
riods differed from the baseline/run-in period using
permutational analysis of variance (PERMANOVA) as
implemented by the “adonis” function in the vegan pack-
age [28]. Participant identity was included for the
“strata” parameter to limit permutations to within par-
ticipants. We next assessed FOS or PDX’s effect on com-
munity dissimilarity. We tested the differences between
the dissimilarities between one subject’s every sample
from baseline/run-in and every sample from another
period and the dissimilarities within samples from base-
line/run-in using Kruskal-Wallis test followed by Dunn’s
post hoc test (as implemented in the dunn.test R pack-
age [29] with Benjamini-Hochberg correction).
To evaluate whether the high-dose cohort induced

higher community shift than the lower dose cohorts, we
again looked at the pair-wise dissimilarity between every

baseline/run-in sample and every feeding-period sample
across three cohorts and tested their differences between
cohorts using a Kruskal-Wallis test followed by Dunn’s
post hoc test with Benjamini-Hochberg correction.
We assessed whether individual taxa significantly dif-

fered between feeding periods and the run-in period
using a linear mixed effect model as in [30]. Specifically,
for each taxon, we rank transformed its relative abun-
dance data and fit a linear mixed effect model (using the
lme function from nlme R package [31]) with period as a
fixed effect and participant as a random effect. The test
results for all taxa were corrected using FDR. Only taxa
with relative abundances greater than or equal to 0.1%
in either the run-in or feeding periods were examined.
All aforementioned analyses were performed using R
version 3.5.3 [32].

Differential abundance analysis of genes encoding
CAZymes
We obtained functional information for each species
using a custom annotation pipeline derived from [33].
For each species under analysis, all genomes in NCBI
corresponding to that species were downloaded. We
used the dbCAN database for CAZymes [34, 35]. The
annotation pipeline was applied to the genomes,
resulting in a map from strains to CAZymes. A map
from species to functional units was created by mer-
ging the results for all strains within each species. For
each species, we thus obtained a set of CAZymes. For
each CAZyme, the abundances of species that passed
filtering criteria (see the “Initial filtering of taxa” sec-
tion below) in each participant and annotated as hav-
ing the gene were aggregated together and log2 fold
changes (baseline versus feeding period) were calcu-
lated. Aggregated fold changes were similarly calcu-
lated for taxa not annotated to have the gene. These
fold changes were then compared using the two-sided
Wilcoxon rank-sum test (with p values adjusted for
multiple hypothesis testing using the Benjamini-
Hochberg method and FDR < 0.01.) To be precise:
Consider a CAZyme c. For each subject s, let As,i, i =
1,...Ns denote the series of Ns timepoints of aggre-
gated relative abundance of all species in subject s
that are annotated as having CAZyme c, and let Bs,i

similarly denote the time series of aggregated relative
abundance of all species in s not annotated to have
CAZyme c. Fold changes for taxa annotated as having
the gene are calculated according to the following:
FCA(s) = median(As,i for i in the feeding periods)/med-

ian(As,i for i in the baseline periods).
FCB(s) is calculated analogously. The Wilcoxon test is

then performed on the set of log2 FCA(s) versus the set
of log2 FCB(s).
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MC-TIMME2 model and software
Software
MC-TIMME2 was implemented in Python 3 using the
Scipy ecosystem and Numba [36–39]. The software and
source code to reproduce analyses in the manuscript is
publicly available under the GNU General Public License
[40]. Configuration settings for the model and inference
are specified in a text-based configuration file, and the
software is run from the command line. Data is loaded
from three files: an OTU table containing the counts for
each taxon in each sample, a Sample Info file containing
the time and participant of each sample, and a Treat-
ment Info file containing the time and quantity of each
administered dose of the compound. Additionally, a
phylogenetic tree for the taxa being analyzed must be
provided. In order to learn the parameters of the se-
quencing measurement noise model, replicate data must
be provided. This consists of another OTU table con-
taining the count data for a set of technical replicates.
Here we used 10 technical replicates of shotgun sequen-
cing from a single human stool sample. DNA was ex-
tracted using Qiagen’s PowerFecal kit and DNA
quantification, library preparation, and sequencing were
done at CoreBiome, Inc. as described earlier. Inference
for the parameters of the measurement noise model was
performed upfront and separately from the rest of the
model.
As the software performs posterior inference, it pro-

duces an output file containing the posterior samples for
all parameters in HDF5 format. Once inference is
complete, the software includes functionality to generate
output files from this file, including visualizations for
each time-series, reconstructed perturbation groups, and
text-based tables showing the carrying capacities, phar-
macokinetic parameters, onset times, and cluster mem-
berships for each time-series.

Initial filtering of taxa
Before running the model, we apply two initial filters to
remove very low abundance taxa trajectories. The first
filter removes any species which does not achieve a
mean abundance (across the trajectory) of at least 0.0005
in at least 25% of the participants. The next filter is ap-
plied to each individual trajectory and removes any tra-
jectory that does not achieve at least 15 counts in any
three consecutive timepoints.

Model details

Double Dirichlet process clustering Two levels of
Dirichlet process mixture model clustering are
employed. Individual species-participant time-series are
probabilistically assigned in the model to microbe
groups, with group assignments denoted by zso for

species o in participant s. Each microbe group k is itself
assigned either to a null perturbation effect or to a per-
turbation group in the top level of the double Dirichlet
process. Let ek denote the assignment to a perturbation
group for microbe group k. Phylogenetic information is
incorporated into clustering using a potential function
ψ:

ψðo; λkÞ ¼ expð−ζ0dðo; λkÞ þ ζ1Þ ð1Þ
Each microbe group probabilistically selects a repre-

sentative member λk. Then, the likelihood for each time-
series being assigned to the microbe group k incorpo-
rates the phylogenetic distance between that species and
the representative. Letting Ωm indicate the perturbation
parameters for perturbation cluster m, we write the
probability of assigning species o in participant s as
follows:

Pðzso ¼ kjxso; ek ; λkÞ∝Pðzso ¼ kÞPðxsojΩek Þ ψðo; λkÞ ð2Þ

Pharmacokinetic model The inputs to the model in-
clude the participant-specific doses dsi and their times of
administration asi. The level of the compound over time,
cs, is modeled using first-order pharmacokinetics, with a
participant-specific elimination rate κs.

cs tð Þ ¼
X

i
dsi exp −κs t−asið Þð ÞI t > asið Þ ð3Þ

Dynamical model We use a stochastic logistic growth
model for baseline microbial dynamics. In the absence of
a perturbation, each species is assumed to follow a sto-
chastic logistic growth model with a growth rate α, a
self-limiting term β, and a process variance σso

2 specific
to each time-series so.

μso ts;i
� � ¼ xso ts;i−1

� �þ αsoxso ts;i−1
� �

Δs;i

þ βsoxso ts;i−1
� �2

Δs;i ð4Þ

xso ts;i
� �

∼N μso ts;i
� �

;Δs;iσ2
so ts;i
� �� � ð5Þ

The process variance takes different values on and off
the perturbation period, allowing the model to capture
changes in variance which may accompany the adminis-
tration of the compound.

σ2so tð Þ ¼ cso t off perturbation
ĉso t on perturbation

�
ð6Þ

Auxiliary trajectory Inference efficiency depends on the
use of a normal distribution (not truncated) in the sto-
chastic dynamical Eq. (5). However, it is desirable to
avoid negative values for the trajectory x, which are
physically unrealistic and unstable. This is achieved
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using a relaxation method which we previously devel-
oped [41]. This method introduces a strictly positive
auxiliary trajectory which is closely coupled to the dy-
namical trajectory. The effect of this coupling is to tend
to keep x away from negative values without forcing a
computationally intractable hard constraint.

Model of dose-dependent perturbation The baseline
growth rate αso in (4) is modulated by a perturbation as
follows:

α
0
so ts;i
� � ¼ αso 1þ γ1mwsm ts;i

� �
h cs ts;i

� �
; rm

� �þ bsoγ2sopso ts;i
� �� �

ð7Þ
In (7), w is a step function specifying when the per-

turbation is active; w is defined by an on-time in days
and a duration relative to the dose administration
period. Here, h is a sigmoidal transfer function which re-
shapes the participant-specific pharmacokinetic trajec-
tories cs into a perturbation magnitude over time.

h cs tð Þ; rmð Þ ¼ 2
1þ exp −rmcs tð Þð Þ−1 ð8Þ

Each perturbation cluster also has the parameter γ1m
controlling the strength of the perturbation.
The parameters bso, γ2so, and pso allow for a persistent

effect in which the growth rate continues to be modu-
lated even after the compound is excreted. Occurrences
of persistent effects are probabilistically selected to be
on or off, and when they are selected to be on, the pa-
rameters are specific to an individual time-series. Here,
bso is the indicator variable that probabilistically selects
whether this effect is on, with the prior on bso favoring
no persistence. Here, γ2so is the magnitude of the persist-
ent effect and pso is a step function that turns on at the
last dose administration time and continues for tso

persist

days.

Measurement model The observed data are sequencing
counts y. The counts are assumed to be drawn from a
negative binomial distribution, which has been used ex-
tensively to model microbiome sequencing counts data
[42]. In order to model the noise properties of the shal-
low shotgun sequencing data used in these studies, we
used a mixture model for the replicates data (separate
from the main model of microbiome responses). The
replicates data consists of counts yio for species o in rep-
licate i, with each species assumed to have one latent
mean relative abundance μo across all replicates. Thus,
the sample-specific mean ηio equals νi multiplied by μo.
For the overdispersion, we use a Dirichlet process mix-
ture model of negative binomial components, where

each component has a single overdispersion parameter.
Therefore, conditional on indicator variables zo,

yio j zo∼NB ηio; ϵzo
� � ð9Þ

Inference is performed for this model, resulting in a
consensus set of negative binomial components, each
with an overdispersion value and a mixture weight. To
use this result in the main model, assignments to the
consensus clusters are marginalized out:

yso tsð Þ∼
X

j
πnoise

j NB ηso tsð Þ; ϵ j
� � ð10Þ

Phylogenetic tree
MC-TIMME2 takes as input a phylogenetic tree between
all species in the model. For each species in the database
used for taxonomic calling described earlier, the aligned
16S rRNA sequences for all strains corresponding to that
species were selected from RDP [43]. Several species in
the database were not present in RDP. For those species,
unaligned 16S rRNA sequences were obtained from
NCBI RefSeq [44] and aligned to the RDP alignment
using QIIME/PyNAST [45]. Using this alignment of 16S
rRNA sequences, FastTree was used to generate a phylo-
genetic tree [46].

Comparison of onset times
For comparison of onset times, we restricted analyses to
time-series with strong evidence of response (Bayes fac-
tor > 100). Additionally, for clarity, we tested only pairs
of bacterial families if each family had at least 10
responding time-series. We used the Mann-Whitney test
to compare the two sets of posterior median onset times.
P values are corrected for multiple comparisons using
the Benjamini-Hochberg procedure.

Consensus clustering
To obtain a single consensus clustering from the MCMC
samples, we used an agglomerative clustering method
similar to that used in [47]. Reconstruction was applied
to those time-series for which there was strong evidence
of a response (Bayes factor > 100). First, the microbe co-
clustering frequencies were used to form an affinity
matrix between each time-series. Agglomerative cluster-
ing up to the mode of the number of microbe groups
was performed to create a set of consensus microbe
groups. To form consensus perturbation groups, an af-
finity matrix between the consensus microbe groups is
formed, with the affinity between each pair of consensus
microbe groups given by the average of all pairwise per-
turbation co-clustering frequencies among the members
of the consensus microbe groups.
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Visualization and filtering of perturbation groups
For visualization, we applied post hoc filtering to the
consensus perturbation groups. First, we filtered species,
keeping only those species which appeared in any per-
turbation group at least 6 times (corresponding to a re-
sponse in 25% (FOS) or 23% (PDX) of participants).
Next, we filtered out perturbation groups which did not
have among their members at least 15% of participants
represented. This filtered set of perturbation groups was
used for visualization (Fig. 4). For functional enrichment
analysis (Additional file 1: Figure S6), all species that
were originally in the group were used, including those
species that were filtered out in the first step for
visualization. In Fig. 4, we applied an ordering to the
phylogenetic tree that tends to place the more frequently
responding species near the top. Each species in the tree
was associated with an importance score given by the
number of times a time-series of that species appeared
in any perturbation group. Each slot in the grid was
numbered in reverse order (the bottom slot has value 1,
the second-to-bottom slot has value 2, and so on). We
then maximized the dot product of the vector of species
importance scores and the vector of slot values over
valid configurations of the phylogenetic tree using
Monte-Carlo optimization.

Model inference, full mathematical description, and
sensitivity analyses
MC-TIMME2 performs approximate posterior inference
using a custom Markov chain Monte Carlo (MCMC)
method. Full mathematical details of the inference algo-
rithm and model, as well as descriptions of sensitivity
analyses of hyperparameters, are given in Additional file
2: Supplemental Methods.

Results
FOS and PDX induce common structural changes in
microbiomes despite dissimilar baseline microbiomes
We expected to see the strongest and most consistent
responses in our high-dose cohorts (cohort 3, n = 8 for
both FOS and PDX), and thus present analyses of these
data first. Using standard static microbiome analysis
methods, we examined baseline microbiomes of the
study participants during the run-in periods and found
strong cross-participant variability in diversity and com-
position. Alpha (Shannon) diversity scores showed 28%
variation in the high-dose FOS cohort and 32% variation
in the high-dose PDX cohort (Additional Figure 1:
Figure S2A). Baseline abundances of the two dominant
gut phyla, Bacteroidetes and Firmicutes, varied across
participants, with Bacteroidetes ranging from 4.8 to 36%
for FOS and 0.5 to 32% for PDX cohorts, and Firmicutes
ranging from 58 to 89% for FOS and 60 to 97% for PDX
cohorts (Additional Figure 1: Figure S2B). Participants

shared a median of 40% species in the FOS high-dose
cohort and 36% in the PDX high-dose cohort. These
ranges of microbiota diversities and shared species are
consistent with prior reports and similar to the magni-
tude of variations observed across broader Western pop-
ulations [48].
Despite these substantial differences in baseline micro-

biome structure, study participants exhibited similar
changes in several measures of the gut microbiota within
the FOS and PDX high-dose cohorts. Participants ad-
ministered FOS showed significantly decreased alpha
(Shannon) diversity of their microbiomes by a median of
8.8% (adjusted p value = 0.02, Wilcoxon signed-rank test)
during the first feeding period and a median of 9.0%
during the second feeding period (adjusted p value =
0.04) (Fig. 1a). In contrast, participants administered
PDX showed modest increases in diversity (a median of
3.7% during the first feeding period and a median of
2.0% during the second feeding period). The trend of in-
creased diversity held in 6 of the 8 participants during
both feeding periods but was not statistically significant
(Fig. 1a). Interestingly, for both FOS and PDX, the ef-
fects on alpha diversity maintained the same trend even
after feeding, with alpha diversity 4.5% lower in the
washout period than during the baseline following FOS
feeding and 2.5% higher than during the baseline follow-
ing PDX feeding.
Both FOS and PDX fed participants demonstrated

significantly altered microbiome compositions as
assessed by beta diversity (Bray-Curtis dissimilarity)
analyses between baseline and feeding periods (p =
0.001 for FOS and PDX, PERMANOVA test on
period). Within-participant Bray-Curtis dissimilarities
between baseline and feeding periods were signifi-
cantly greater than the within-participant Bray-Curtis
dissimilarities between baseline samples (adjusted p
value < 0.0001 for both FOS and PDX, Kruskal-Wallis
test with Dunn’s post hoc test) (Fig. 1b). We note
that microbiome composition tended to shift during
the first feeding period and exhibited similar shifts
during the second feeding period for most partici-
pants (Fig. 1c).
Overall, FOS and PDX each induced distinct taxo-

nomic shifts across participants’ microbiomes. To
characterize these shifts, we assessed the differential
abundance of taxa between baseline and feeding pe-
riods using a statistical model (see the “Methods” sec-
tion). FOS feeding in general led to strong increases
in Bifidobacterium and Anaerostipes genera across
participants, whereas PDX feeding led to increases in
a more diverse set of genera including Parabacter-
oides, Ruminiclostridum, Alistipes, Prevotella, Bacter-
oides, and Odoribacter (adjusted p value ≤ 0.05 for all
reported genera) (Fig. 1d). A large number of genera

Creswell et al. Genome Medicine           (2020) 12:59 Page 7 of 16



significantly decreased in relative abundance with FOS
feeding whereas only Tyzzerella, Blautia, Dorea, and
Adlercreutzia significantly decreased with PDX feed-
ing. At the species level, FOS led to significant in-
creases in 6 Bifidobacterium species (Additional file 1:
Figure S4). In addition to these increases in

Bifidobacterium species, FOS also led to significant
increases in Megasphaera massiliensis and Anaeros-
tipes hadrus. PDX led to significant increases in 3
Parabacteroides species, 7 Bacteroides species, 3 Alis-
tipes species, Odoribacter splanchnicus, Eubacterium
siraeum, and Clostridium leptum.

Fig. 1 Effects of FOS and PDX on the human gut microbiome. Cohorts 3 for FOS and PDX received the highest doses of the compounds, cohorts
2 intermediate doses, and cohorts 1 the lowest doses. a Percent changes in alpha (Shannon) diversity between baseline and later periods
(feeding1, feeding2, and washout) in each cohort receiving FOS or PDX. b Within-participant Bray Curtis dissimilarity from baseline samples in
each cohort receiving either FOS or PDX. c Multidimensional scaling analysis of each participant in the high-dose cohorts receiving either FOS or
PDX. Each dot represents the microbiome as measured in a fecal sample from a participant and is colored by study period. d Genera differentially
abundant between baseline and feeding periods in each cohort receiving FOS or PDX. The boxplot summarizes taxa shifts across participants and
is colored by significance level
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FOS and PDX induce similar microbiome changes at lower
doses
We detected similar shifts in microbiome diversity and
composition in the lower dose cohorts (cohort 1 and co-
hort 2), but the magnitude of these shifts tended to be
lower than in the high-dose cohorts (Fig. 1a, b). Since
the cohorts were not significantly different at baseline
(Additional file 1: Figure S3C), these differences appear
to be attributable to the effects of different doses. Specif-
ically, microbiome compositions during the feeding
period had a significantly greater Bray-Curtis dissimilar-
ity from baseline in the high-dose cohort when com-
pared to the low-dose cohort for FOS (adjusted p
value < 0.001, Kruskal-Wallis test with Dunn’s post hoc
test) and PDX (adjusted p value < 0.001). However, there
were still significant shifts in microbiome community
structure for FOS (p = 0.001, PERMANOVA) and PDX
(p = 0.001) in cohort 1, suggesting that even relatively
low doses of these compounds have an impact. Notably,
for FOS, no genera showed significant increases in the
low-dose cohorts that did not also show significant in-
creases in the high-dose cohorts (Fig. 1d). For PDX,
Ruminiclostridium, Parabacteroides, and Bacteroides
showed consistent responses across the three cohorts.
Interestingly, we observed a moderate but significant in-
crease of several genera only in the low-dose PDX co-
hort, such as Fusicatenibacter and Akkermansia. Given
the compositional nature of the data, it is possible that
their absolute abundance still increased in the high-dose
cohort, but the major responders such as Parabacter-
oides and Bacteroides had expanded disproportionately.

Microbiome responses to FOS and PDX are reproducible
in independent cohorts and robust to feeding order
To further assess the robustness of FOS and PDX effects
on the microbiome, we ran a crossover design study, in
which each participant was given FOS and PDX in sub-
sequent feeding periods separated by a 4-week washout
period. The doses used in the crossover study were
within the range of high-dose cohorts in the previous
studies. Two independent cohorts received the two study
products in an opposite sequence (see the “Methods”
section). This study design allowed us to: (a) determine
whether the specific effects of FOS and PDX observed in
the previous studies were reproducible in an independ-
ent population and, (b) determine whether responses
were sensitive to prior elevated consumption of a sub-
stantially different glycan.
The direction of changes in alpha (Shannon) diversity

in the crossover study was consistent with the results in
the single compound feeding studies. When fed as the
first compound, FOS decreased alpha diversity by a me-
dian of 4.6% while PDX increased alpha diversity by a
median of 1.9% (Additional file 1: Figure S5A). We did

not observe any clear carryover effect on alpha diversity
for either FOS or PDX, regardless of the order of com-
pound feeding.
The specific taxonomic shifts observed in the single

compound feeding study were also largely reproduced in
the crossover study. Regardless of feeding order, FOS led
to significant increases in Bifidobacterium (Additional
file 1: Figure S5B) while PDX led to significant increases
in Neglecta, Ruminiclostridium, Parabacteroides, Subdo-
ligranulum, Fusicatenibacter, and Ruthenibacterium
(Additional file 1: Figure S5C) when comparing feeding
to baseline periods (adjusted p value < 0.05 for all re-
ported genera). We did not see evidence that these ef-
fects carried over to the subsequent administration of
the second compound in the feeding sequence. Interest-
ingly, for a few taxa, we saw possible dependence on
feeding order. For example, Ruminococcus significantly
increased during the FOS feeding period only after PDX
treatment and Faecalibacterium and Anaerotruncus sig-
nificantly increased during the PDX feeding period only
after FOS treatment.

Glycans promote taxa with diverse carbohydrate
utilization capabilities
Given the changes observed with glycan feeding in
the abundances of bacterial species in gut micro-
biomes, we hypothesized these changes could also re-
sult in alterations in the carbohydrate utilization
capabilities of the microbiomes. To investigate this
hypothesis, we analyzed changes in the abundance of
Carbohydrate-Active Enzymes (CAZymes) encoding
genes (Additional file 1: Figure S6; Additional file 3:
Table S2). For each such gene, we performed a statis-
tical test on the difference in the distributions of
fold-change (baseline versus combined feeding pe-
riods) of aggregated abundances of taxa in partici-
pants’ microbiomes with the gene and taxa without
the gene (using reference genomes to make this de-
termination.) For FOS, we found no significant
changes; for PDX we found 77 CAZyme genes were
significantly more abundant during the feeding period
and 6 CAZyme genes were significantly less abundant.
Some of the CAZyme genes showing increased abun-
dance are clearly directly related to metabolism of
PDX, such as alpha-glucanases (e.g., GH57) and dex-
tranases (e.g., GH66.) However, many of these
CAZymes are from families not known to be directly
involved in microbial metabolism of PDX and include
a diverse set of microbial genes including those cod-
ing for glycoside hydrolases, polysaccharide lyases,
carbohydrate esterases, and carbohydrate-binding
modules. These findings suggest that PDX may pro-
mote diverse shifts in carbohydrate utilization capabil-
ities in the microbiome; it is important to note that
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such shifts could be caused by either direct or indir-
ect effects, which cannot be distinguished in this
study.

MC-TIMME2 models temporal dynamics of the response
of the microbiome to perturbations and automatically
identifies putative consortia of similarly responding taxa
We extended our previous MC-TIMME model [18] to
enable robust analysis of the rich temporal data from
our studies. As with our original MC-TIMME method,
the objective of our extended method, MC-TIMME2, is
to simultaneously model temporal dynamics of individ-
ual microbial taxa in each participant while automatic-
ally discovering groups of microbes across participants
exhibiting common responses to the compound. Several
extensions were essential due to new features of our
study design and data, including a tailored model for
measurement noise of metagenomics data (our previous
model was calibrated on 16S rRNA sequencing data)
and allowance for different doses and time-varying levels
of the perturbing compound (our previous model as-
sumed single doses and on-off kinetics.) We additionally
extended the model to include capabilities expected to
improve interpretability and accuracy, including flexible
stochastic dynamics to account for complex dynamics
and non-deterministic dynamics in the human micro-
biome (our previous model assumed deterministic dy-
namics) and a multi-level model that takes into account
both phylogeny and broader relationships that can occur
with functional/metabolic similarities between distantly
related species (our original model had one level and did
not take into account phylogenetic structure).
MC-TIMME2 takes as input time-series data of micro-

bial counts (e.g., tables of counts of taxa derived from
shotgun metagenomics sequencing), time-varying com-
pound dosing data for each participant, and a bacterial
phylogenetic tree (Fig. 2a) and outputs several summar-
ies of model inferences including carrying capacities of
each taxon, subject-specific pharmacokinetics of the
compound, and groups of taxa exhibiting similar dy-
namic behaviors or responses to the compound. MC-
TIMME2 is an unsupervised machine learning method,
which automatically learns two levels of grouping using
Bayesian nonparametric techniques: at the bottom level,
groups of microbes (microbe group) with similar phyl-
ogeny and kinetic behaviors are learned, which are then
further grouped at the next level (super-groups or per-
turbation groups) to account for similar responses to a
given perturbation (i.e., feeding of the compound in this
case). Each perturbation group encodes kinetic response
parameters, including the time-window of response (in-
cluding potential time-delays from feeding) character-
ized by an onset time and duration. In addition, each
perturbation group encodes the magnitude of the

perturbation effect specific to each participant, which
takes into account a participant-specific pharmacokinetic
profile. Thus, all taxa in a perturbation group share a
common time window of activity and a common dose-
response relationship to the compound. Because
multiple microbe groups can belong to the same per-
turbation group, MC-TIMME2 can discover phylogenet-
ically heterogeneous taxa that exhibit similar kinetic
responses to a perturbation. MC-TIMME2 is fully Bayes-
ian, so results consist of posterior distributions over pa-
rameters. An advantage of our Bayesian nonparametric
approach is that inferences for individual taxa can also
“borrow strength” from other taxa and thus more ro-
bustly estimate parameters for the individual taxa [18];
see Fig. 2b for selected examples of individual taxa tra-
jectories. To characterize confidence in inferences, we
exploit standard Bayesian model interpretations, includ-
ing Bayes factors. See the “Methods” section and Supple-
mental Methods for complete details of the MC-
TIMME2 model and inference algorithm.

MC-TIMME2 analyses reveal differing kinetics of
individual taxa in the gut microbiome responses to FOS
and PDX
MC-TIMME2 allows us to quantitate kinetic parame-
ters of the response to the compounds, namely the
onset time and duration of responses. In general, we
found that responses to both compounds were rela-
tively rapid. For those species that responded across
≥ 25% of participants (Bayes factor > 100), we found a
median onset time of 1.49 days for FOS (25th per-
centile, 0.39 days; 75th percentile, 4.90 days) and 1.29
days for PDX (25th percentile, 0.43 days; 75th per-
centile, 1.93 days). The distributions of onset times
for each compound are shown in Additional file 1:
Figure S7. Similarly, responses to both compounds
were generally sustained throughout the feeding
period. We found that 83% of the species that
responded across ≥ 25% of participants (Bayes factor >
100) had a perturbation duration lasting at least 70%
of the feeding period for FOS and 88% for PDX.
We found that some taxa differed significantly in their

onset times in response to the same compound. For
clarity, we analyzed taxa showing increases only, since
this behavior was overall more consistent than taxa
showing decreases. We examined both genus and family
level behavior and found results were clearest at the
family level. For FOS, we observed significantly faster
onset times (Mann-Whitney test, p < 0.05) for Bifidobac-
teriaceae as compared pairwise to Ruminococcaceae,
Clostridiaceae, Bacteroidaceae, and Rikenellaceae
(Fig. 3a). For PDX, Bacteroidaceae onset times were sig-
nificantly slower (Mann-Whitney test, p < 0.05) com-
pared to Clostridiaceae and Ruminococcaceae (Fig. 3b).
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Fig. 2 (See legend on next page.)
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MC-TIMME2 identifies phylogenetically heterogeneous
groups of microbes with similar kinetic responses to FOS
and PDX
MC-TIMME2 finds super-groups of microbes, termed
perturbation groups, with similar kinetic responses;
these super-groups automatically identify phylogenetic-
ally diverse groups of microbes with a similar response
to the compound and provide a temporally organized,
global map of such responses. For FOS (Fig. 4a), there
were Bifidobacterium species in multiple perturbation
groups, including both the earliest and latest groups of
species exhibiting increases. However, the two most

sustained perturbation groups (group 2 and group 3)
exhibiting increases were dominated by Bifidobacterium
species. Interestingly, these groups also contained spe-
cies phylogenetically distant from Bifidobacterium in-
cluding Bacteroides caccae in perturbation group 2 and
Anaerostipes hadrus in perturbation group 3. Groups of
organisms exhibiting decreases showed less clear trends
along phylogenetic lines, although perturbation group 14
(a group exhibiting decreases and an early onset time)
contained Clostridial species Dialister invisus, Blautia
obeum, Coprococcus comes, and Ruminococcus torques.
Regarding the duration of responses, we saw

(See figure on previous page.)
Fig. 2 Overview of MC-TIMME2 computational model and representative individual taxa trajectories inferred from the model. a MC-TIMME2 is an
unsupervised Bayesian nonparametric machine learning method that takes as input time-series data of microbial counts (e.g., tables of counts
derived from shotgun metagenomics sequencing), dosing of the compound for each participant, and a microbial phylogenetic tree. Two levels of
clustering are simultaneously learned to: (1) discover groups of common kinetic parameters (microbe groups, incorporating phylogenetic
information) and common responses to the compound (perturbation groups). Microbe groups are characterized by common growth rate and
carrying capacity parameters. Perturbation groups are characterized by a time-period of activity (including possible time-delays) and a magnitude
of the perturbation, modulated by inferred participant-specific compound levels passed through a nonlinear transfer function. Microbe groups
are super-clustered into perturbation groups. MC-TIMME2 produces several outputs, including carrying capacities (estimated steady-state levels on
and off perturbations), inferred participant-specific compound concentrations over time, and maps of perturbation response clusters. b
Trajectories of individual taxa inferred by MC-TIMME2, selected to highlight model capabilities. Ruminococcaceae bacterium cv2 in subject 201-021
shows a strong positive perturbation effect that ends before the end of the feeding period. Bifidobacterium longum and Bifidobacterium
adolescentis in subject 101-018 demonstrate a delayed positive response that does not start until about 10 days after the start of compound
administration. Tyzzerella nexilis in subject 201-024 shows a strong negative response. Clostridium leptum in subject 201-028 shows an increase in
the magnitude of the response as the dose of the compound was increased

Fig. 3 Pairs of bacterial families exhibiting significant differences in onset time of perturbation effects in response to the same compound. a FOS
and b PDX. All pairs of bacterial Families that achieved significance are visualized (Mann-Whitney test, Benjamini-Hochberg corrected p < 0.05).
Posterior medians were used to compare onset times
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heterogeneity of durations, although in general this was
driven by delayed onset times with most responses last-
ing until the end of the feeding period with the excep-
tion of perturbation groups 1, 6, and 7.
For PDX (Fig. 4b), MC-TIMME2 found more per-

turbation groups overall. Among groups exhibiting
increases, several contained multiple Bacteroidiales
species including Bacteroides caccae, B. stercoris, B.
vulgatus, B. thetaiotaomicron, Parabacteroides dista-
sonis, and Parabacteroides merdae. As with FOS,
groups exhibiting decreases showed less clear trends
along phylogenetic lines. For PDX, we observed less
heterogeneity in onset time and duration than with
FOS.

Discussion
To our knowledge, our study represents the highest tem-
poral and microbiological resolution characterization of
microbiome responses to dietary glycans in human par-
ticipants to date. Overall, we found consistency of re-
sponses to glycans across human participants, in terms
of alterations in microbiome ecological diversity and
community structure as well as changes in specific taxa,
even at lower doses of compounds or in crossover stud-
ies with two compounds. Our results are consistent with
prior studies that show FOS can promote Bifidobacter-
ium spp. [49, 50] and PDX can promote Bacteroides and
Parabacteroides species [5], but provide greater insight
into additional responding species as well as the detailed
kinetics of their responses.

Our purpose-built computational method, MC-
TIMME2, enabled us to quantitate key kinetic proper-
ties, onset time and duration, of the response to FOS
and PDX. In the case of FOS, we saw faster onset times
for Bifidobacteriaceae as compared to Ruminococcaceae,
Clostridiaceae, Bacteroidaceae, and Rikenellaceae. These
results are consistent with a role of Bifidobacteriaceae as
primary degraders of FOS, with species in the other fam-
ilies listed above responding later to metabolites (e.g.,
intermediate degradation products) or other condition-
ing effects of Bifidobacteriaceae growth in the gut. For
PDX, consistent with prior studies, we found that Bac-
teroidaceae organisms were dominant responders to the
compound. However, the onset times of Bacteroidaceae
organisms were significantly slower compared to Clostri-
diaceae and Ruminococcaceae. These results suggest that
while the response of Clostridiaceae and Ruminococca-
ceae species to PDX in the human gut is not as strong
or as consistent as for Bacteroidaceae species, Clostridia-
ceae and Ruminococcaceae species still respond to PDX
and may be able to utilize it faster. These findings have
important implications for future studies and the need
for dense temporal sampling experimental designs and
computational methods capable of analyzing such data
in detail. Endpoint studies or analyses looking only at re-
sponses of dominant taxa will miss time-varying behav-
ior and less abundant organisms that may still be
biologically relevant. Overall, the diverse response pat-
terns of taxa may be important for evaluating glycan ef-
fects on human health. For instance, knowledge of

Fig. 4 Perturbation groups inferred by MC-TIMME2 of the responses of the gut microbiome to FOS and PDX across human participants. a FOS
and b PDX. Each numbered column represents a perturbation group inferred by MC-TIMME2. For each perturbation group, the top box shows
the representative perturbation magnitude over time for that group, with the period of compound administration outlined in yellow. In the grid
below, the species which were present in each are indicated. The colors in the grid specify the proportion of a perturbation group’s total
members (with each member comprised of a time-series for a species in a participant) belonging to each species
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response rate kinetics could be important in determining
the timing and length of treatment to take into account
both faster and slower responding taxa.
Our analyses suggest that PDX may cause diverse

alterations in the metabolic potential of the micro-
biome beyond just the capacity to metabolize the
compound itself. In previous work in a well-
controlled mouse-model of microbiome perturbations
[51], we showed that bacteriophages targeting single
species caused widespread cascading changes in abun-
dances of non-targeted species with concomitant ef-
fects on the gut metabolome. Our present study
suggests similar cascading effects of taxa abundances
and thus could explain the broad changes in
carbohydrate-utilization gene abundances observed.
Another possibility is that bacteria capable of metab-
olizing PDX, a synthetic glucose polymer with ran-
domly cross-linked bond types, tend to have extensive
carbohydrate utilization capabilities that “come along
for the ride” when these organisms increase in abun-
dance with PDX feeding. However, these results must
be interpreted with caution. Our analysis method only
used taxa abundances estimated from shallow shotgun
metagenomic data and effectively inferred gene abun-
dances based on mapping to reference genomes,
meaning the mapping confirms the gene’s presence or
absence in the reference but cannot confirm the
gene’s presence or absence in strains in specific sam-
ples. Further, even if we had directly assembled genes
from metagenomic data, one cannot conclude that
the gene’s predicted function is active in the condi-
tions assayed.
A related issue is false negatives in our genomic

analyses of carbohydrate-active functions. For ex-
ample, GH32, a β-fructosidase gene, is known to be
important for metabolizing FOS. Although there was
an increase in abundance for this gene during FOS
feeding, the increase was relatively minor and did not
rise to the level of statistical significance in our ana-
lysis. We observed that GH32 is fairly common
throughout the microbiome and many taxa annotated
as encoding GH32 do not increase in abundance with
FOS feeding. This could be caused by the reasons dis-
cussed above, including strains lacking the gene even
if it is present in the reference genomes or the en-
zyme not being active despite being encoded in the
genome. Another possibility is that the enzyme was
active in the strains in question and they metabolized
FOS, but competitive interactions with other members
of the microbiome drove abundances of the strains
down. Given these complexities, studies that more
directly assess the metabolic activity of the micro-
biome through methods such as metatranscriptomics
and metabolomics will be important in elucidating

the extent of metabolic remodeling induced by
glycans.
As we have previously described, time-series

analyses can also generate hypotheses about niche
similarities among phylogenetically diverse bacteria
(MC-TIMME [18]). In the present study, we observed
co-clustering based on similar dynamics of Bacter-
oides and Parabacteroides species with Fusicatenibac-
ter saccharivorans, a species within the family
Lachnospiraceae. Little is known about F. saccharivor-
ans, although it has previously been reported as de-
creased in participants with ulcerative colitis [52]; our
finding that this organism shares a similar temporal
response pattern to Bacteroides and Parabacteroides
suggests these organisms may share functional charac-
teristics and thus could provide insights into F. sac-
charivorans biology.
From the perspective of the design of human stud-

ies around glycan interventions, several of our find-
ings suggest avenues for follow-up studies. For PDX,
we observed that the dissimilarity between micro-
biome composition during washout and run-in pe-
riods decreased, indicating microbiome composition
tended to regress toward pre-feeding composition
within a short time span. In contrast, microbiomes in
the FOS study maintained a high dissimilarity from
the initial run-in period even during the subsequent
washout period. This could either indicate lasting ef-
fects of FOS or effects due to shifting participant life-
style such as diet. To assess these alternate
explanations, future studies should monitor partici-
pants during a longer washout period and adjust for
or control for additional potentially confounding
variables.

Conclusions
Using FOS and PDX as example compounds, we
showed that glycan-based interventions can lead to
rapid, sustained, and consistent microbiome re-
sponses. Our analyses leveraging MC-TIMME2, our
purpose-built computational method for analyzing
microbiome temporal dynamics in response to pertur-
bations, characterized dynamic microbiome responses
to glycans in unprecedented detail and identified pu-
tative microbial consortia exhibiting similar temporal
behavior. Our studies thus lay the groundwork for a
detailed understanding of responses of human gut
microbiomes to glycans necessary for effective use of
these compounds to reshape the microbiota rationally.
Such capabilities would open up new avenues for the
targeted modulation of microbiomes using novel gly-
cans and predicting microbiome dynamics upon gly-
can exposure with the aim of improving human
health and treating diseases.
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