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Abstract

Background: When interpreting sequencing data from multiple spatial or longitudinal biopsies, detecting sample
mix-ups is essential, yet more difficult than in studies of germline variation. In most genomic studies of tumors,
genetic variation is detected through pairwise comparisons of the tumor and a matched normal tissue from the
sample donor. In many cases, only somatic variants are reported, which hinders the use of existing tools that detect
sample swaps solely based on genotypes of inherited variants. To address this problem, we have developed
Somalier, a tool that operates directly on alignments and does not require jointly called germline variants. Instead,
Somalier extracts a small sketch of informative genetic variation for each sample. Sketches from hundreds of
germline or somatic samples can then be compared in under a second, making Somalier a useful tool for
measuring relatedness in large cohorts. Somalier produces both text output and an interactive visual report that
facilitates the detection and correction of sample swaps using multiple relatedness metrics.

Results: We introduce the tool and demonstrate its utility on a cohort of five glioma samples each with a normal,
tumor, and cell-free DNA sample. Applying Somalier to high-coverage sequence data from the 1000 Genomes
Project also identifies several related samples. We also demonstrate that it can distinguish pairs of whole-genome
and RNA-seq samples from the same individuals in the Genotype-Tissue Expression (GTEx) project.

Conclusions: Somalier is a tool that can rapidly evaluate relatedness from sequencing data. It can be applied to
diverse sequencing data types and genome builds and is available under an MIT license at github.com/brentp/
somalier.

Background
DNA sequencing data from matched tumor-normal
pairs are critical for the detection of somatic variation in
cancer studies. However, a sample swap leads to a dra-
matic increase in the apparent number of somatic vari-
ants, confounds the genetic analysis of the tumor, and
the probability of such a mix-up increases with the size
of the study cohort. The correction for sample mix-ups,

possibly a swap with another sample in the same study,
requires a thorough evaluation of the coefficient of rela-
tionship (henceforth “relatedness”) among the entire set
of samples, as measured by the similarity of their geno-
types at polymorphic loci. This is not possible directly
on the somatic mutation predictions because somatic
variants are typically detected from comparisons of
tumor-normal pairs, and often, only somatic (not germ-
line) variants are reported [1]. Therefore, resolution of
the sample swap would require the researcher to jointly
call germline variants with a tool like GATK [2] and
then use methods such as peddy [3] or KING [4] to

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: bpederse@gmail.com; aaronquinlan@gmail.com
1Department of Human Genetics, University of Utah, 15 S 2030 E, Salt Lake
City, UT 84112, USA
Full list of author information is available at the end of the article

Pedersen et al. Genome Medicine           (2020) 12:62 
https://doi.org/10.1186/s13073-020-00761-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-020-00761-2&domain=pdf
http://orcid.org/0000-0003-1786-2216
http://github.com/brentp/somalier
http://github.com/brentp/somalier
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:bpederse@gmail.com
mailto:aaronquinlan@gmail.com


calculate relatedness across the entire set of samples.
Joint variant calling is time and resource intensive, espe-
cially when all that is needed to resolve the sample swap
is an accurate calculation of relatedness among the sam-
ples. After experiencing this inconvenience in our own
research, we developed Somalier to quickly and accur-
ately compute relatedness by extracting “sketches” of
variant information directly from alignments (BAM or
CRAM) or from variant call format (VCF) [5] files in-
cluding genomic VCFs (GVCF). Somalier extracts a
sketch for each sample and the sketches are then com-
pared to evaluate all possible pairwise relationships
among the samples. This setup mitigates the “N+1 prob-
lem” by allowing users to add new sketches as needed
and efficiently compare them to an existing set of back-
ground samples. The text and visual output facilitates
the detection and correction of sample swaps, even in
cases where there is severe loss of heterozygosity. It can
be used on any organism across diverse sequencing data
types and, given a set of carefully selected sites, across
genome builds. We show that Somalier produces similar
kinship estimates to KING [4] in much less time and
that it produces reliable measures across tissue types
and when comparing DNA samples, RNA-seq samples,
and DNA to RNA-seq samples.

Implementation
Selecting and extracting informative variant sites
We have previously shown that using as few as 5000
carefully chosen polymorphic loci is sufficient for re-
latedness estimation and that this subset of informative
loci yields more accurate estimates than using all avail-
able variants [3]. A similar site-selection strategy is also
used in Conpair to estimate contamination [6]. In Soma-
lier, we utilize the observation that the optimal sites for
detecting relatedness are high-quality, unlinked sites
with a population allele frequency of around 0.5. A bal-
anced allele frequency maximizes the probability that
any 2 unrelated samples will differ. We distribute a set
of informative sites to be queried by Somalier, though
users may also create their own sites files tailored to
their application. The sites are high-frequency single-
nucleotide variants selected from gnomAD [7] exomes
that exclude segmental duplication and low-complexity
regions [8]. We also distribute a set of sites limited to
exons that are frequently (> 10 reads in at least 40% of
samples) expressed in GTeX for use in cohorts with
RNA-seq data. To minimize genotyping error, variants
with nearby insertions or deletions are excluded. In
addition, we have excluded sites that are cytosines in the
reference so that the tool can be used on bisulfite seq
data, for example, to check the correspondence between
bisulfite sequencing and RNA-seq data. The Somalier re-
pository includes the code to create a set of sites for

different organisms given a population VCF and a set of
optional exclude regions. We distribute a default set of
matched sites for both the GRCh37 and GRCh38 builds
of the human reference genome. This allows a user to
extract sites from a sample aligned to GRCh37 using our
GRCh37 sites file and compare that sketch to a sketch
created from a sample aligned to GRCh38 by extracting
the sites in our GRCh38 file. This is convenient as labs
move from GRCh37 to GRCh38 and future genome
builds. The sites files include informative variants on the
X and Y chromosomes so that Somalier can also esti-
mate a sample’s sex from the genotypes. However, only
autosomal sites are used to estimate relatedness. With
the default sites files, Somalier inspects 17,766 total sites
(these are distributed with the Somalier software), all of
which are chosen to be in coding sequence so that they
are applicable to genome, exome, and RNA-seq datasets.
In order to quickly extract data from polymorphic sites

into a genome sketch, Somalier uses the BAM or CRAM
index to query each file at each of the informative sites.
Alignments with a mapping quality of at least 1 that are
not duplicates, supplementary, or failing quality control
(according to the SAM flag) are used. Each passing
alignment is evaluated at the requested position and the
base in the alignment at that position is checked against
the given reference and alternate for the query variant.
This check considers the CIGAR operation [9] at that
base which indicates insertions, deletions, and other
events within the read. This is faster than a traditional
sequence alignment “pileup” as it looks at each read only
once and interrogates only the exact position in ques-
tion. If a VCF (or BCF or GVCF) is provided instead of
an alignment file, Somalier will extract the depth infor-
mation for each sample for requested sites that are
present in the VCF. The sketches extracted from a VCF
are indistinguishable from those extracted from align-
ment files. In order to support single-sample VCFs,
which do not contain calls where the individual is homo-
zygous for the reference allele, the user may indicate that
missing variants should be assumed to be homozygous
for the reference allele. This also facilitates comparing
multiple tumor-normal VCFs where many sites will not
be shared (however, in those cases, it is preferable to ex-
tract the sketch from the alignment files rather than
from the VCF).
Somalier tallies reference and alternate counts for each

site. Once all sites are collected, it writes a binary file
containing the sample name and the allele counts col-
lected at each of the inspected sites. For the set of sites
distributed from the Somalier repository, a sketch file re-
quires ~ 200 KB of space on disk or in memory. This
sketch format and the speed of parsing and comparing
sketch files are key strengths of Somalier. For example,
since Somalier can complete a full analysis of 2504
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sketches from the 1000 Genomes high-coverage whole-
genome samples (Michael Zody, personal communica-
tion) in under 20 s, users can keep a pool of sample
sketches to test against and check incoming samples
against all previously sketched samples.

Comparing sketches
Thousands of sample sketches can be read into memory
per second and compared. In order to calculate related-
ness, Somalier converts the reference and alternate allele
counts stored for each sample at each site into a geno-
type. The genotype is determined to be unknown if the
depth is less than the user-specified value (default of 7),
homozygous reference if the allele balance (i.e., alt-
count/[ref-count + alt-count]) is less than 0.02, heterozy-
gous if the allele balance is between 0.2 and 0.8, homo-
zygous alternate if the allele balance is above 0.98, and

unknown otherwise (Fig. 1a). A flag can amend these
rules such that missing sites (with depth of 0) are treated
as homozygous reference, rather than unknown. While
simple, this heuristic genotyping works well in practice
and is extremely fast, because Somalier looks only at
single-nucleotide variants in non-repetitive regions of
the genome. As the sample is processed, Somalier also
collects information on depth, mean allele-balance,
number of reference, heterozygous, and homozygous al-
ternate calls for each sample, along with similar stats for
the X and Y chromosomes. These data are used to cal-
culate per-sample quality control metrics. In order to
measure relatedness, the data collected for each sample
is converted into a data structure consisting of hom_ref,
het, and hom_alt bit vectors (Fig. 1b). The bit vectors
consist of 64 bit integers, enabling Somalier to store 64
variants per integer. There are 17,384 autosomal sites in

Fig. 1 Comparing genotype sketches to compute relatedness measures for pairs of samples. a Observed counts for the reference (Ref.) and alternate
(Alt.) allele at each of the tested 17,766 loci are converted into genotypes (see main text for details) to create a “sketch” for each sample. b The
genotypes for each sample are then converted into three bit vectors: one for homozygous reference (HOMREF) genotypes, one for heterozygous (HET)
genotypes, and one for homozygous alternate (HOMALT) genotypes. The length of each vector is the total number of autosomal variants in the sketch
(i.e., 17,384) divided by 64, and the value for each bit is set to 1 if the sample has the particular genotype at the given variant site. For example, four
variant sites are shown in b and the hypothetical individual has a homozygous alternate genotype for the second variant (the corresponding bit is set
to 1), but is not homozygous for the alternate allele at the other three variant sites (the corresponding bits are set to 0). c The bit vectors for a pair of
samples can be easily compared to calculate relatedness measures such as identity-by-state zero (IBS0, where zero alleles are shared between two
samples) through efficient, bitwise operations on the bit arrays for the relevant genotypes
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the default sites file used by Somalier, consuming only
6519 bytes per sample (17,384/64 bits * 3 bit-vectors/
sample * 8 bits/byte). With this data layout, Somalier
can represent all 2504 samples from the 1000 Genomes
Project in under 17 megabytes of memory. This simple
data structure also facilitates rapid pairwise comparisons
(Fig. 1c); for example, we can compute IBS0 (that is,
“identity by-state 0” or sites where zero alleles are shared
between two samples A and B) with the following logic
which evaluates 64 sites in parallel:

A: hom ref and B: hom altð Þ or B: hom ref and A: hom altð Þ

We repeat this for each of the 272 (17,384 autosomal
sites/64 sites per entry) entries in the array to assess all
of the genome-wide sites for each pair of samples. In
fact, we do not need the sites, just the count of sites that
are IBS0. Therefore, we use the popcount (i.e., the count
of bits that are set to TRUE) hardware instruction to
count the total number of bits where the expression is
non-zero in order to get the total count of IBS0 sites be-
tween the 2 samples. In addition to IBS0, we calculate
counts of IBS2 where both samples have the same geno-
type, shared heterozygotes (both are heterozygotes),
shared homozygous alternates, and heterozygous sites
for each sample. All of the operations are extremely fast
as it does not require code branching via, for example,
conditional logic; instead, the calculations are all con-
ducted with bitwise operations.
Once those metrics are calculated, the relatedness be-

tween sample i and sample j is calculated as:

shared‐hets i; jð Þ‐2�ibs0 i; jð Þð Þ= min hets ið Þ; hets jð Þð Þ

where hets is the count of heterozygote calls per sam-
ple out of the assayed sites. This metric is derived by
Manichaikul et al. [4]. In addition, the homozygous con-
cordance rate is reported as:

shared‐homozygous‐alts i; jð Þ‐2�ibs0 i; jð Þð Þ= min
homozygous‐alts ið Þ; homozygous‐alts jð Þð Þ

This measure is similar to the one described in HYSYS
[10] except that the HYSYS measure is simply:

ðshared‐homozygous‐alts i; jð Þ‐= min
homozygous‐alts ið Þ; homozygous‐alts jð Þð Þ

Our formulation has the benefit that it matches the
scale and interpretation of the relatedness estimate; un-
related individuals will have a concordance of around 0,
whereas in HYSYS they will have a value around 0.5.
This is a useful relatedness metric when severe loss of
heterozygosity removes many heterozygous calls from
the tumor sample making the traditional relatedness cal-
culation inaccurate.

If a pedigree file is given, Wright’s method of path co-
efficients [11] is used to calculate the expected related-
ness. These values can then be compared to the
relatedness observed from the genotypes. For somatic
samples, the user can also specify a “groups” file where
sample identifiers appearing on the same line are ex-
pected to be identical; for example, three biopsies from
each of two individuals would appear as three comma-
separated sample identifiers on two separate lines.
Finally, the output is reported both as text and as an

interactive HTML page. When using the webpage, the
user can toggle which relatedness metrics (IBS0, IBS2,
relatedness, homozygous concordance, shared heterozy-
gotes, shared homozygous alternates) to plot for the X
and Y coordinates and, if expected groups were given
(e.g., tumor-normal pairs) on the command-line, points
are colored according to their expected relatedness. This
setup means that points of similar colors should cluster
together. In addition, Somalier plots the per-sample out-
put in a separate plot with selectable axes; this function-
ality allows one to evaluate predicted vs. reported sex
and depth across samples.
Somalier requires htslib (https://htslib.org). It is writ-

ten in the Nim programming language (https://nim-lang.
org) which compiles to C and also utilizes our hts-nim
[12] library. It is distributed as a static binary, and the
source code is available at https://github.com/brentp/
somalier under an academic license.

Results
Glioma patients with 3 samples
We ran Somalier on BAM alignment files from five indi-
viduals, each with three assays: a normal sample, a gli-
oma tumor sample, and cell-free DNA, for a total of 15
samples [13]. The extraction step, which creates the gen-
ome sketch and can be parallelized by sample, requires
roughly three minutes per sample with a single CPU.
Once extracted, the relate step, which computes the re-
latedness measures for each sample pair, requires less
than 1 s. Somalier was able to clearly group samples
using the default sites provided with the software (Fig. 2).
Because the site selection is so strict, none of the sample
pairs from the same individual had an IBS0 metric above
0, indicating that those sites are genotyped correctly.
The user can specify expected groups of samples (e.g.,
from the same individual) with sample pairs expected to
be identical colored as orange. With this layout that
colors sample pairs by expected relatedness and posi-
tions them by observed relatedness (as computed from
the genotypes estimated from the alignments), it is sim-
ple for the researcher to quickly spot problems. For ex-
ample, Fig. 2a illustrates an obvious mix-up where
samples expected to be unrelated have a high IBS2 and
low IBS0. Since the plot is interactive, the user can then
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hover over points that appear out of place (in this ex-
ample, the green points that cluster with the orange) to
learn which samples are involved. After correcting the
sample manifest based on this observation, and re-
running the relatedness calculation, the updated plot
shows that all samples cluster as expected given their re-
latedness (Fig. 2b).

1000 Genomes high-coverage samples
In order to evaluate the scalability and accuracy of Soma-
lier, we used the recently released high-coverage data from
2504 samples in the 1000 Genomes Project [14]. We ex-
tracted sites for all 2504 samples from the jointly called
VCF. After extracting sketches, comparing each sample
against all other samples (a total of 3,133,756 = 2504 *
2503 * 2 comparisons) required merely 6 s, following 1.1 s
to parse the sketches and roughly 2 s to write the output.
Although the 1000 Genomes Project provides a pedigree
file, none of the samples included in the 2504 are indi-
cated to be related by that file. However, using Somalier,
we found 8 apparent parent-child pairs (NA19904-
NA19913, NA20320-NA20321, NA20317-NA20318,
NA20359-NA20362, NA20334-NA20335, HG03750-
HG03754, NA20882-NA20900, NA20881-NA20900) 4

full-sibling pairs (HG02429-HG02479, NA19331-NA1
9334, HG03733-HG038899, HG03873-HG03998) and 3
second-degree relatives (NA19027-NA19042, NA19625-
NA20274, NA21109-NA21135) (Fig. 3). These same sam-
ple pairs also have higher values (as expected) for homozy-
gous concordance. In addition, there are several pairs of
samples with a coefficient of relatedness between 0.1 and
0.2 that appear to be more distantly related. An earlier
analysis on a different subset of the 1000 Genomes sam-
ples uncovered some of these same unreported relation-
ships [15].
We also note that several samples indicated to be fe-

male in the manifest appear to have lost an X chromo-
some as they have lower depth and no heterozygous
sites (Fig. 4a). However, they also lack coverage on the Y
chromosome (Fig. 4); as such, we think that loss of X in
these cell-line samples is more likely than a sample swap
or manifest error. Finally, Somalier also provides other
sample metrics including mean depth, counts of each
genotype, mean allele balance, and others that are useful
for sample quality control. The user can customize the
visualization on the interactive web page by choosing
which metrics to display on the X and Y axes.

Fig. 2 Glioma samples before and after correction. a A comparison of the IBS0 (number of sites where 1 sample is homozygous reference and
another is homozygous alternate) and IBS2 (count of sites where samples have the same genotype) metric for 15 samples. Each point is a pair of
samples. Points are positioned by the values calculated from the alignment files (observed relatedness) and colored by whether they are
expected to be identical (expected relatedness), as indicated from the command line. In this case, sample swaps are visible as orange points that
cluster with green points, and vice versa. The user is able to hover on each point to see the sample pair involved and to change the X and Y
axes to any of the metrics calculated by Somalier. b An updated version of the plot in a after the sample identities have been corrected (per the
information provided by a) in the manifest after re-running Somalier
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Fig. 3 Relatedness plot for thousand genomes samples. Each dot represents a pair of samples. IBS0 on the x-axis is the number of sites where 1
sample is homozygous for the reference allele and the other is homozygous for the alternate allele. IBS2, on the y-axis, is the count of sites where
a pair of samples were both homozygous or both heterozygous. Points with IBS0 of 0 are parent-child pairs. The 4 points with IBS0 > 0 and IBS0
< 450 are siblings. There are also several more distantly related sample pairs

Fig. 4 Sex quality control on thousand genomes samples. Each point is a sample colored as orange if the sample is indicated as female and
green if it is indicated as male; all data is for the X chromosome. a The number of homozygous alternate sites on the x-axis and the number of
heterozygous sites on the y-axis. Males and females separate with few exceptions. b The number of homozygous alternate sites on the x-axis
compared to the mean depth on the Y chromosome. Males and females reported in the manifest separate perfectly, indicating that some
females may have experienced a complete loss of the X chromosome
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Comparison to KING
In order to evaluate the accuracy and speed of Somalier,
we compared its performance to KING [4]. Since KING
also has an extraction-like step, in converting VCF to
PLINK’s [16] binary format, we partition the timing into
distinct steps for data extraction (“extract”) and compu-
tation of relatedness (“relate”). We used KING version
2.2.4 and plink2 version 1.90p. We compared the speed
and output of Somalier to that of KING on the 2504
thousand genomes, high-coverage VCF. Somalier is
more flexible as it can be applied to VCF, BAMs,
GVCFs, etc., but it is also faster both at extraction
(which will only be done once) and at the relate step
which can be repeated each time new samples are added
(Table 1). Much of the speed improvement observed in
Somalier comes from the sketch, which contains only a
small subset of sites on the genome. Furthermore, kin-
ship estimates from KING and Somalier are very similar
(Additional file 1: Fig. S1).

Evaluation on GTeX RNA-seq and whole-genome seq
In order to show that Somalier can be used to find and
verify sample identity across sequencing experiments
and tissues, we applied it to a set of data from the GTeX
project [17]. We utilized 216 samples with WGS, RNA-
seq from skin (not sun exposed), and RNA-seq from
blood. We expect each of these 648 assays to have a re-
latedness of 1 to the two other samples from the same
GTeX individual. We used the per-exon, per-sample ex-
pression levels to create a set of sites that have relatively
high allele frequency in gnomAD and are commonly
expressed (> 10 reads in 40% of samples). These sites are
distributed at the Somalier repository and include 16,469
autosomal sites and 794 sites on the X chromosome. We
found that with a cutoff of relatedness of 0.5, which en-
forces that pairs of samples below this threshold are not
from the same individual, we are able to correctly clas-
sify every sample pair (out of 209,628 pairs).
In order to show the specificity of Somalier with a

smaller number of sites, we ran Somalier with 10, 20, 40,
100, 200, 400, 1000, 2000, 4000, 8000, and 16,000 of the
original 16,469 autosomal sites and demonstrate that we
are able to correctly classify all pairs with as few as 400
of the original 16,469 sites (Additional file 1: Fig. S2). If
we instead require that unrelated samples have a

calculated relatedness of less than 0.2 and related sam-
ples have greater than 0.8, then at least 1000 sites are re-
quired to reduce the false-positive rate (where unrelated
samples are classified as related because they have a re-
latedness > 0.2) to under 0.05 (Additional file 2). Further,
on inspection of the interactive Somalier plots (Add-
itional file 3), it is clear that the false positives are driven
by a few low-quality samples, each of which is involved
in 647 pairs. If those were removed, the false-positive
rates would drop.

Discussion
We have introduced Somalier to efficiently detect sam-
ple swaps and mismatched samples in diverse DNA and
RNA sequencing projects. On a set of 15 samples, we
were able to detect and correct sample swaps using the
text and HTML output from Somalier, which ran in less
than a second. In addition, Somalier can be used to pro-
vide an accurate relatedness estimate using homozygous
concordance even under severe loss-of-heterozygosity.
We have designed it to measure relatedness very quickly
despite assaying the alignments directly, and we have
shown that using a carefully selected set of sites facili-
tates accurate separation of related from unrelated sam-
ples even on a small gene panel.
We have carefully selected the sites assayed by Soma-

lier to minimize sequencing artifacts and variant calling
errors. In addition, we distribute a set of sites for gen-
ome build GRCh37 that is compatible with genome
build GRCh38. Because the sets are identical, we can
compare samples aligned to either genome build. This
becomes more important as research groups switch to
GRCh38. In fact, in comparing the recently released high
coverage 1000 Genomes samples (aligned to GRCh38)
to the Simons Diversity Project samples [18] (aligned to
GRCh37), we found several samples shared between
these projects. To our knowledge, this has not been pre-
viously reported. These findings highlight the utility and
novelty of Somalier, as it enables comparing across large
cohorts.
Previous tools such as peddy provide similar function-

ality when a jointly called, germline VCF is provided.
However, that is often not practical for cancer studies.
In addition, HYSYS can detect sample swaps in cancer
samples using homozygous concordance; however, it re-
quires a custom text format which reports germline vari-
ants that have already been called across all samples.
The sketch format used by Somalier is a simple binary
format. We provide an example in the repository that
demonstrates reading the data in a simple python script
and performing ancestry estimation using principal com-
ponents analysis. While Somalier can also utilize any
number of VCF files as input, we expect that the

Table 1 Speed comparison to KING. The extract step consists of
conversion to a sketch for Somalier and of conversion to a plink
binary bed file for KING. The relate step is the time spent
measuring kinship between all pairs of samples. Times shown
reflect the wall time required for completion

Step Somalier (wall time) KING/plink (wall time)

Extract 17 min 48 s 812 min 40 s

Relate 8 s 31 min 34 s
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simplicity and speed of using alignment files will make
that the most frequent mode of use.

Conclusions
We have introduced Somalier, a tool to rapidly evaluate
relatedness from sequencing data in BAM, CRAM, or
VCF formats. We show that it works across tissue types
and to compare RNA-seq data to WGS. It is fast and
simple to use and it simplifies analyses—such as com-
parison across cohorts and genomes builds—that were
previously difficult or not feasible.

Availability and requirements
Project name: Somalier
Project home page: https://github.com/brentp/somalier
Operating systems: Linux, OSX, Windows (a static

binary is provided for Linux systems, users on other
OSes can build the tool)
Programming language: Nim
License: MIT
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Additional file 1: Supplementary Fig. 1. Comparison of KING
estimate of kinship to that of Somalier. Supplementary Fig. 2.
Evaluation of false-positive rate of Somalier as number of assayed sites is
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Additional file 3. HTML output for GTeX analysis.
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presented in this study can be made publicly available in a data repository.
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repository unless the patient is deceased. Bam files from three glioma
patients are available in the NCBI Sequence Read Archive database under
accession PRJNA641696 [13]. For those data that are unable to be shared via
repository, please contact Ann Johnson (Ann.Johnson@hsc.utah.edu),
Director of University of Utah IRB, to request access to the data.
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