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Abstract

Identification of actionable genomic vulnerabilities is key to precision oncology. Utilizing a large-scale drug
screening in patient-derived xenografts, we uncover driver gene alteration connections, derive driver co-occurrence
(DCO) networks, and relate these to drug sensitivity. Our collection of 53 drug-response predictors attains an
average balanced accuracy of 58% in a cross-validation setting, rising to 66% for a subset of high-confidence
predictions. We experimentally validated 12 out of 14 predictions in mice and adapted our strategy to obtain drug-
response models from patients’ progression-free survival data. Our strategy reveals links between oncogenic
alterations, increasing the clinical impact of genomic profiling.
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Background

In light of the complexity and molecular heterogeneity
of tumors, clinical and histopathological evaluation of
cancer patients is nowadays complemented with gen-
omic information. Genome-guided therapy has been
shown to improve patient outcome [1, 2] and clinical
trial success rate [3], and despite some controversy [4],
prospective molecular profiling of personal cancer ge-
nomes has enabled the identification of an increasing
number of actionable vulnerabilities [5].

Cancer genome sequencing initiatives have found that
any given tumor contains from tens to thousands of mu-
tations. However, only a few of them confer a growth
advantage to cancer cells, driving thus the tumorigenic
process. The most comprehensive study of “driver”
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genes published to date has analyzed over 9000 tumor
samples, across 33 tissues of origin, and has systematic-
ally identified driver mutations in 258 genes [6].
Approximately half (142) of those driver genes were as-
sociated with a single tumor type, whereas 87 genes
seem to provide a growth advantage in several tumor
types. The number of drivers detected per tumor type
varies widely, ranging from 2 in kidney chromophobe
cancer to 55 in uterine cancer. Despite the large number
of drivers identified per tumor type, every patient has a
unique combination of mutations and copy number vari-
ants: 90% of patients show at least one putative driver
alteration, but each sample only contains a median of
three putatively altered drivers [7].

On top of identifying key alterations in tumor develop-
ment, it is fundamental to pinpoint those that can shed
light on the most appropriate therapy to treat each
tumor (i.e., biomarkers). Often, patients with similar
clinicopathological characteristics might be molecularly
different [6]; this inter-patient heterogeneity is one of
the reasons why only a subset of them will actually
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respond to a given targeted treatment. Computational
studies suggest that up to 90% of patients may benefit
from molecularly guided therapy when biomarkers of
uncertain clinical significance, as well as off-label and
experimental drugs, are used to guide treatment selec-
tion [7, 8]. Although randomized controlled trials are
still considered the gold standard in the clinics, they
cannot address all possible patient clinicopathologic and
molecular subtypes [9]. Precision medicine has
prompted the reconsideration of clinical drug develop-
ment pipelines, with the implementation of more sophis-
ticated clinical trial designs, such as umbrella, basket,
and platform trials to account for inter-patient hetero-
geneity [10]. In particular, the implementation of adap-
tive enrichment strategies allows for continual learning
and modification of the eligibility criteria as data accu-
mulate, with the objective of recruiting those patients
that are most likely to benefit from treatment [9-12].
However, despite the implementation of these novel ex-
perimental designs, currently, only alterations in 28
genes have accumulated enough clinical evidence to be
approved as biomarkers by the FDA [13]. Indeed, a re-
cent comprehensive analysis of 6729 pan-cancer tumors
could only identify actionable mutations with thera-
peutic options available in clinical practice (FDA-ap-
proved or international guidelines) or reported in late
phase (III-IV) clinical trials in 5.2% and 3.5% of the
samples, respectively [14]. These figures coincide with
clinical trial enrolment rates [1], where only 89 out of
1640 of patients could enter genotype-matched treat-
ment trials, the vast majority of which involved muta-
tions in four genes, namely PIK3CA, KRAS, BRAF, and
EGFR. This highlights an acute need to expand the
current repertoire of response biomarkers to cover more
drugs and patients.

The eligibility criteria of most genomically matched
basket clinical trials are based on the single-gene bio-
markers. However, most tumors do not present a single
actionable mutation but have co-occurring driver alter-
ations that might simultaneously alter key players of sig-
naling pathways connected by cross-talk and feedback
mechanisms [15, 16]. There are many documented cases
of functionally relevant co-occurring oncogenic muta-
tions, such as the concomitant inactivation of 7P53 and
RB1 [17], co-deletion of CDKN2A and CDKN2B [18],
co-amplification of MDM?2 and CDK4 [19, 20], 1p/19q
co-deletion in glioma [21], MYC amplification and TP53
mutations [22], or activating alterations in KRAS and
BRAF [5]. Indeed, although strong oncogenic KRAS and
BRAF alterations are mutually exclusive in treatment-
naive tumors, a deeper allele-specific analysis identified a
significant co-occurrence of activating RAS alterations
and BRAFP*** mutations, among other co-occurring
hotspot mutations within MAPK signaling genes (i.e.,
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MAP2K1 and upstream activating mutations in BRAF or
NRAS) [16]. Additionally, at pathway level, the concomi-
tant activation of PI3K signaling pathway with FGF sig-
naling (FGFR2 and FGFR3) or with NRF2-mediated
oxidative response has also been identified in several
tumor types [16]. In this context, a single gene-based
stratification of patients into subtypes and treatment
arms might be over-simplistic, and novel frameworks
that exploit co-mutational patterns might prove more
effective.

As in the identification of driver mutations, the discov-
ery of drug-response biomarkers requires large numbers
of patient molecular profiles matched to treatment out-
comes. Unfortunately, treatment history information of
large-scale genomics endeavors has not been systematic-
ally collected (e.g., TCGA [23]) or is not yet publicly
available (e.g.,, GENIE Consortium [24]). Even though
better data sharing policies are needed, many concerns
are raised regarding privacy, property, and the prelimin-
ary nature of confidential biomedical data. Safer alterna-
tive ways of sharing biomedical data are already on the
table [25], but until the access to systematically anno-
tated clinical records becomes a reality, the research
community largely relies on drug-response data gathered
from pre-clinical models.

Cancer cell lines are the most widely used in vitro
model system and have been fundamental tools to set
the grounds of our understanding of cancer biology and
to assess the efficacy of a broad spectrum of cancer
drugs [26]. Unfortunately, cancer cell lines have been
cultured as monolayers on plastic surfaces, and in
growth-promoting conditions, for decades. As a conse-
quence, most of them have suffered a substantial tran-
scriptional drift, and they likely represent a cell
subpopulation from the original primary tumor [27].
Those facts have fueled the debate regarding how well
cancer cell lines resemble the tumors from which they
were established and to which extent they are clinically
relevant [15, 27]. A more realistic model to bridge the
bench-to-bedside gap is the patient-derived mouse xeno-
graft (PDX) [28]. To some extent, PDXs preserve inter-
and intra-tumoral heterogeneity, and mimic the clinical
course of the disease and response to targeted therapy,
at least in certain tumor types [29-31]. Indeed, a recent
review reported a 91% (153 out of 167) correspondence
between the clinical responses of patients and their cog-
nate PDXs [32]. Although these data are more time-
intensive and expensive to generate, it is still feasible to
establish large in vivo screenings, covering a wide diver-
sity of tumor types and drugs. PDXs are thus a clinically
relevant platform for pre-clinical pharmacogenomic
studies and represent a more accurate approach to
identify predictive biomarkers compared with the use of
cancer cell lines [33].
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Here, we present a computational strategy to uncover
and exploit driver alteration co-occurrence patterns in
PDXs. By comparing the molecular profiles of responder
and non-responder PDXs to a given drug, we identify
driver co-occurrence networks and use them as a new
type of drug-response indicator, applicable much beyond
known biomarkers. We apply our strategy to the largest
panel of PDXs and drugs available to date [28] and pro-
spectively validate our findings in vivo. Finally, we adapt
our strategy to derive response predictive models dir-
ectly from continuous clinical outcome measures, such
as progression-free survival, and evaluate them on a co-
hort of breast cancer patients.

Methods

Genomic data processing

A total of 1075 PDX models were established as part of
a large pharmacogenomics screening that used the “one
animal per model per treatment” (1 x 1 x 1) experimental
design to assess the population responses to 62 treat-
ments [28]. We collected somatic mutations and copy
number alterations for 375 of them and used the Cancer
Genome Interpreter resource [14] to classify protein-
coding somatic mutations and copy number variants
into predicted passenger or known/predicted oncogenic.
In order to increase the clinical translatability, we sub-
sampled both datasets to consider those oncogenic alter-
ations covered by MSK-IMPACT [34] or by Foundation
Medicine [35] targeted gene panels to obtain DCO net-
works and TCT4U models that could be directly used
with those kind of molecular profiles, which are becom-
ing widely used in the clinical setting.

Drug-response data

In the original dataset, a total of 62 treatment groups
were tested in 277 PDXs across six indications. Drug re-
sponse was determined by analyzing the change in
tumor volume with respect to the baseline along time.
They combined two metrics (Best Response and Best
Average Response) into a modified RECIST classification
(mRECIST) with four classes: PD (progressive disease),
SD (stable disease), PR (partial response), and CR
(complete response). For our analyses, we considered
PDXs whose tumors progressed upon treatment (PD) as
non-responders and PDXs whose tumors stopped grow-
ing (SD) or regressed (PR, CR) as responders. After
applying this binary classification, we had to exclude 9
treatments for which there were less than 5 PDXs in one
of the two response groups, lacking thus enough inter-
individual heterogeneity to model drug response. A total
of 276 PDXs were treated in at least one of the 53 treat-
ment groups considered, each treatment being tested in
29 to 246 animals, with a median of 43 (IQR 38-93).
We could obtain the molecular profile for 187 of them,
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which had been treated with a median of 18 (IQR 14—
20) drugs. The final dataset consisted on 3127 experi-
ments performed on 187 PDXs and 53 treatment
responses, across 5 tumor types: BRCA (breast cancer,
n=38), CM (cutaneous melanoma, #n=32), COREAD
(colorectal carcinoma, 7 =51), NSCLC (non-small cell
lung carcinoma, n =27), PAAD (pancreatic adenocarcin-
oma, 7 = 38), and 1 PDX without tumor type annotation.

Molecular representativity of PDXs

We used the OncoGenomic Landscapes tool [36] to ob-
tain a 2D representation of the molecular heterogeneity
of the 187 PDXs being analyzed, and compared it to that
of large reference cohorts of cancer patients. We down-
loaded the precomputed 2D projections of the following
reference cohorts from the OncoGenomic Landscapes
webserver (oglandscapes.irbbarcelona.org): PanCancer
(n=15,212), BRCA (breast cancer, n =2021), CM (cuta-
neous melanoma, n = 492), COREAD (colorectal carcin-
oma, n = 1442), LUAD (lung adenocarcinoma, #n = 1486),
LUSC (lung squamous cell carcinoma, n=352), and
PAAD (pancreatic adenocarcinoma, n=442). We
merged LUSC and LUAD samples in order to get a ref-
erence cohort for NSCLC (non-small cell lung carcin-
oma) PDXs. We selected the 2D coordinates of the
subset of TCGA and MSKCC patients of each reference
cohort and represented their distribution in the PanCan-
cer landscape as a level plot using the 2D kernel density
estimate function of the “seaborn” python library with
20 levels and a color map that represents probability
density as heat in the background. We selected the 2D
coordinates of the 187 PDXs and represented their indi-
vidual location with points, colored by tumor type.

Drug-response prediction based on Cancer bioMarkers
database

We manually mapped the set of 53 drugs and drug com-
binations tested in the cohort of PDXs to the corre-
sponding drug families in the Cancer bioMarkers
database [14] using drug target information available in
ChEMBL and DrugBank (Additional file 1: Table S1).
We successfully assigned 50 out of the 53 treatments,
spanning 29 drug family annotations. We considered
those genomic alterations showing a “complete match”
with any of the reported predictive biomarkers and col-
lapsed them at gene level. Note that we adopted a tissue
agnostic approach in the development of TCT4U, and
therefore, we did not require that the tissue of origin of
the PDX matched the tissue or lineage in which each
biomarker was identified. Nevertheless, this information
is provided in Additional file 1: Table S2 to enable other
researchers to perform stratified analyses. We consid-
ered as “approved” biomarkers those ones that are cur-
rently approved by the FDA or by the main clinical
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guidelines in the field, such as the National Comprehen-
sive Cancer Network (NCCN), the College of American
Pathologists (CAP), the Clinical Pharmacogenetics Im-
plementation Consortium (CPIC), or the European Leu-
kemiaNet guidelines. We considered the rest of
biomarkers, with varying supporting evidence, as “ex-
perimental” biomarkers. The Cancer bioMarkers data-
base usually reports more than one biomarker per drug
or drug family, and often a single patient (or PDX) har-
bors several biomarkers of response and/or non-
response for the same drug or drug family. We grouped
response and non-response biomarkers at gene level and
calculated the balanced accuracy (BAcc; average between
sensitivity and specificity) of the prediction made by
each gene in each treatment arm.

We weighted the binary predictions made by each
gene and combined them to obtain a final prediction per
treatment and PDX (wComby,,x).

wCombp, = ZiEReSpBACCi'S" - Z/eNonRespBAccj.Sj
(1)

Resp: set of genes with or without predictive
biomarkers of response (S;, binary)

NonResp: set of genes with or without predictive
biomarkers of non-response (S;, binary)

BAcc: balanced accuracy of the predictive biomarker in

a given treatment arm

Driver co-occurrence networks

Differentially altered drivers

For each treatment, we aimed at identifying differentially
altered driver genes (DiffD) across responder and non-
responder PDXs. To this end, we used methyl_diff [37],
an analytical solution to estimate the probability of the
inequality between the mutation rate of each driver gene
across response groups, modeled using beta distribu-
tions. We identified three sets of genes per treatment
arm: (i) Resp_DiffD are those genes with more than 95%
probability of showing higher alteration rate in re-
sponder PDXs than in non-responders, (ii) NonResp_
DiffD are those genes with more than 95% probability of
showing higher alteration rate in the non-responder than
in responder PDXs, and (iii) General DiffD are those
genes with more than 95% probability of showing differ-
ential alteration rate between the two response groups.
Additionally, we required that the selected genes were
altered more than once in the corresponding group, with
a minimum alteration rate of 5%.

Driver pairs
To identify pairs of driver gene alterations occurring
more often than expected in each response group of a
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given treatment arm, we compared the observed co-
occurrence rate to the random expectation under a null
model with preserved sample- and gene-wise alteration
rates. We obtained this null model by generating 1000
random permutations of the genomic alteration matrix
with the R package BiRewire [38]. We computed the
average probability that the co-alteration rate observed
in the actual dataset is larger than the co-alteration rate
observed in the permuted datasets with methyl_diff [37].
When the average probability was larger than 95%, we
considered that the pair of drivers showed a tendency
towards co-occurrence.

Additionally, we computed the probability of the dif-
ferential co-occurrence rate between responder and
non-responder PDXs. We computed the same probabil-
ity under the null model and compared its distribution
to the probability of differential co-occurrence observed
in the actual dataset. We selected the following sets of
pairs per treatment arm: (i) Resp_Ps are those pairs
showing a significant tendency towards co-occurrence in
responder PDXs and showing a 95% probability of being
co-altered more often in responder than in non-
responder PDXs; (ii) NonResp_Ps, which show a signifi-
cant tendency towards co-occurrence in non-responder
PDXs and a 95% probability of being co-altered more
often in non-responder than in responder PDXs; and
(ili) General_Ps, which show a significant tendency to-
wards co-occurrence in the whole treatment arm. Add-
itionally, we required that the selected pairs were altered
more than once in the corresponding group, with a
minimum inferred alteration rate of 5%. In the case of
Resp_Ps and NonResp_Ps, we additionally required that
the probability of differential co-occurrence rate was lar-
ger than the 95% percentile of the distribution of prob-
abilities obtained when comparing permuted samples.

Driver co-occurrence networks

The differentially altered drivers (General DiffD, Resp_
DiffD, NonResp_DiffD) and pairs of co-altered drivers
(General_Ps, Resp_Ps, and NonResp_Ps) can be
expressed in terms of co-occurrence networks, in which
nodes representing differentially altered driver genes
(DiffD) or driver genes involved in a pair of co-altered
drivers (DiP) are connected according to significant co-
occurrences (Ps). For each treatment arm, we obtained
three of such networks: (i) a general network (General_
DCO), (ii) a responder network (Resp_DCOQO), and (iii) a
non-responder network (NonResp_DCO).

TCT4U drug-response classifiers

We described the DCO networks with a matrix of Bool-
ean vectors (1: altered, 0: unaltered) encoding the alter-
ation status of differentially altered drivers and drivers
participating in co-occurring pairs in each PDX (DiffD_



Mateo et al. Genome Medicine (2020) 12:78

DiP). We put together all those vectors in the form of a
matrix and used it to train a decision tree-based gradient
boosting classifier (CatBoost [39]). We did not specify
the edges as features because CatBoost already considers
first order interactions between all pairs of features,
meaning that it natively exploits driver co-occurrences
to predict treatment outcome. We used 100 trees with a
maximum depth ranging from 1 to 7, a learning rate
ranging from 0.2 to 1, and a coefficient at the L2
regularization term of the Logloss function ranging from
1 to 10. We chose the best set of hyperparameters based
on the on the AUC obtained in the fivefold cross-
validation of 30 iterations. Please, note that we repeated
the same procedure for each treatment arm with each of
the three DCO networks described before (General_
DiffD_DiP, Resp_DiffD_DiP, and NonResp_DiffD_DiP).
We assessed the accuracy and robustness of each of the
three classifiers by performing an external leave-one-out
cross-validation (LOOCYV). We used the balanced accur-
acy of the LOOCYV as weight to combine the General
DiffD_DiP, Resp_DiffD_DiP, and NonResp_DiffD_DiP
predictions generated for each drug-PDX instance into a
final score, as described in Eq. 2.

wComb = BAcccs_Generat* (I{CBou—1) " PAZN (CBau— -1} Pr)
+BAccc_respl {CB_Resp=1} * PcB_Resp — BACCCB_Nonresp!

{CB_NonResp= -1} * PCB_NOVIRESp

CBGeneraty CBresps CBnonresp: CatBoost binary predic-
tions based on General_DCOs, Resp_DCOs, and Non-
Resp_DCOs. Values of 1 and -1 indicate response and
non-response.

PCBiGeneralr PCBfResp) PCBfNonResp: prObablhtY estimates
for the predictions.

Iicp_jy: indicator function that takes a value of 1 when
CatBoost predicts class j or a value of 0 otherwise.

BAcccp: balanced accuracy attained by a given CB clas-
sifier in the LOOCV.

We used exactly the same pipeline to obtain DCO-
based predictions, biomarker-based predictions, and pre-
dictions based on an integrated model (DCO +
biomarkers).

Model interpretation

We computed the average feature importance in the
LOOCV and excluded from the DCO networks those
driver genes that did not contribute to the predictions.
This effectively removed also a lot of pairs of co-
occurring drivers that did not contribute either. We then
quantified the feature’s local contribution to each indi-
vidual prediction by analyzing the Shapley additive ex-
planation (SHAP) values calculated within CatBoost.
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Next, we assessed the specific contribution of co-
occuring pairs of drivers to the prediction of drug re-
sponse. To this end, we ranked driver pairs by the
strength of the interaction, which is natively computed
by CatBoost and used to generate drug-response predic-
tions. For each pair of drivers A and B, we classified the
samples on the basis of the status of genes A and B. We
then computed the average SHAP value of samples
within each of the four resulting categories. We repre-
sented the results as SHAP interaction plots to uncover
what is the effect of having a driver alteration in gene A
on the SHAP value of gene B, and vice versa. We per-
formed this analysis separately for pairs of drivers lo-
cated in the same chromosome and pairs of drivers that
are far apart in the genome.

Experimental validation in PDXs

We collected all the available molecular profiles of the
VHIO collection of breast cancer PDXs. Most PDXs
were profiled using a hybridization-based capture panel
of 410 genes (MSK-IMPACT) [34]. As we did for the
training set, we used the Cancer Genome Interpreter re-
source [6] to filter out as many passenger alterations as
possible. In the same way we did for the LOOCYV, we de-
scribed the molecular profile of each PDX according to
the DiffD_DiP feature vectors associated to each DCO
network and used them to predict the response to the
53 treatments in the TCT4U collection. For each PDX,
we ranked all treatments based on the predicted re-
sponse and focused on the predictions generated by the
21 treatments that attained a balanced accuracy of at
least 0.6 in the leave-one-out cross-validation. In order
to increase the novelty of our findings, we prioritized
those predictions that were not in agreement with pre-
dictions made by known predictive biomarkers. Of the
drugs and PDXs available in our laboratories, we se-
lected 8 positive and 6 negative predictions spanning the
following treatments: MEK inhibitor (n = 2), Pi3K inhibi-
tor (n=5), taxane (n =2), Pi3K inhibitor + CDK4/6 in-
hibitor (# = 3), and CDK4/6 inhibitor (z = 2).

For each drug-PDX pair, 2 to 10 tumors were subcuta-
neously implanted in immunocompromised mice and
grown until they reached a volume of 120-150 mm?®.
Tumors were treated with either vehicle or the corre-
sponding drug or combination at a clinically relevant
dose. Tumor growth was measured at least twice per
week for approximately 20 to 40 days, when typically
tumor volume in the control group had doubled twice
or more. Caliper measurements were converted into
tumor volume estimates using the formula (/- w-w) - (7/
6), where / and w are the major and minor tumor axes,
respectively. The response was determined following the
mRECIST guidelines that were used in the PDX screen-
ing that we used as training set [28]. Basically, we
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calculated the percentage change in tumor volume from
baseline (AVol,=(V,-V;)/V;-100) and determined the
BestResponse as the minimum value of AVol, after 10 or
more days of treatment. In order to capture tumor
growth dynamics, we also calculated the BestAverageRe-
sponse as the minimum value of 1/n-Y " AVol; after
10 or more days of treatment. PDXs were classified into
response groups according to the mRECIST criteria ap-
plied in the following order:

CR: BestResp < — 95% and BestAvgResp < —40%

PR: BestResp < — 50% and BestAvgResp < —20%

SD: BestResp < 35% and BestAvgResp < 30%

PD: BestResp = 35% and BestAvgResp = 30%.

We used the R package Xeva [40] to generate the
tumor response plots shown in Fig. 5.

Adaptation of TCT4U to use continuous clinical outcome
measurements
We obtained both genomic and clinical data for a total
of 216 patients with HR+/HER2- metastatic breast can-
cer that were treated with a CDK4/6 inhibitor in com-
bination with an aromatase inhibitor in metastatic
setting [41]. All patients underwent prospective clinical
genomic profiling consisting on the identification of sin-
gle nucleotide variants, small indels, and copy number
alterations detected from matched tumor-normal se-
quence data using the MSK-IMPACT targeted gene
panels. We used the Cancer Genome Interpreter [14] to
filter out passenger mutations and CNVs and keep only
known or predicted driver mutations or copy number al-
terations. Detailed treatment history data was collected
for each patient and included all lines of systemic ther-
apy from the time of diagnosis of invasive carcinoma to
the study data lock in September 2017. The exact regi-
men, as well as the dates of start and stop of therapy,
was also recorded. For the current analysis, we consid-
ered the treatment duration time as a measure of clinical
benefit derived by patients whose biopsies were collected
prior to or within the first 60 days of therapy initiation.
We used the TCT4U model of response to ribociclib
to predicted response to CDK4/6 inhibition, as described
before. Due to the differences in clinical outcome mea-
surements between the training and the clinical cohort,
we decided to adapt the TCT4U methodology to use
continuous clinical outcome measurements as training
set, instead of binary classification of drug response
based on tumor growth. Our strategy consisted on com-
paring extreme populations both to derive the DCO net-
works and to train the classifier. We partitioned the
population into three equally sized sets and applied the
methodology described above. In this exercise, we set
the cutoffs at 4.2 months and 9.7 months. We selected as
Resp_DiffD or NonResp_DiffD those genes with more

Page 6 of 23

than 95% probability of showing higher alteration rate in
the one third of patients showing the most durable or
shortest clinical benefit, respectively, compared to the
third of patients at the other extreme of the distribution.
Additionally, we selected as General DiffD all those
genes with more than 95% probability of showing differ-
ential alteration rate between the two extreme popula-
tions. The same strategy was applied in the identification
of pairs of driver gene alterations occurring more often
than expected considering all patients (General Ps) or
separately for the one third of patients that relapsed the
latest (Resp_Ps) or the earliest (NonResp_Ps). The
remaining steps were applied exactly as described for the
binary TCT4U methodology. In this setting with only
one treatment per patient, high-confidence predictions
were selected by optimizing the threshold of the global
score to get a maximum false discovery rate of 30% in
the LOOCYV, which happened when we kept predictions
of response with a score above 0.23 and predictions of
non-response with a score below - 0.26.

Results

Driver co-occurrence networks of drug response
Although thousands of genomic profiles of patient tu-
mors are available, accurate information about pharma-
cological interventions and treatment outcome has not
been systematically collected [23] or has not been dis-
closed yet [24]. Thus, to bypass these limitations, we
compiled drug-response data obtained in PDXs, since
they preserve the overall molecular profile of the original
tumor, and maintain its cellular and histological struc-
ture [32]. In particular, we based our study on 375 PDXs
for which somatic mutations and copy number alter-
ations have been acquired, together with their response
to 62 treatments across six indications, using the “one
animal per model per treatment (1 x 1 x 1)” experimental
design [28]. As suggested by the authors, we adopted the
Modified Response Evaluation Criteria in Solid Tumors
(mRECIST) [28, 42] to assess the change in tumor vol-
ume in response to treatment. We considered “re-
sponders” those PDXs that showed a complete response
(CR), partial response (PR), or stable disease (SD), and
“non-responders” those with a progressive disease (PD)
status.

Of the 62 drugs and drug combinations tested, we se-
lected 53 treatment arms that showed significant inter-
individual heterogeneity (ie., a sufficient number of
“responder” and “non-responder” tumors) to model drug
response. In total, these data comprised 3127 experi-
ments performed on 187 PDXs [28] for which we had, at
least, 5 responder and 5 non-responder PDXs. First, we
assessed whether this set of PDXs is representative of
the genomic diversity observed in human tumors by
comparing their alterations to the oncogenomic profiles
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extracted from 13,719 cancer patients [36]. We found
that the 187 PDXs considered broadly covered the whole
oncogenomic landscape represented by the full cohort
(“PanCancer” cohort in Fig. 1). When analyzing tumor
types individually, we observed that, while the muta-
tional diversity of some of them is perfectly reflected in
the PDX samples (e.g., colorectal and cutaneous melan-
oma tumors), the distribution of mutated genes showed
clear differences in others (e.g, NSCLC). As expected,
we observe that PDXs sharing tissue of origin are more
similar between them than to other PDXs and, more im-
portantly, that the same level of similarity is maintained
between PDXs and patient samples (Fig. 1). Overall,
there are PDXs representing the most populated areas of
the PanCancer cohort, suggesting that the full collection
of PDXs may be used in downstream analyses.

We used the Cancer Genome Interpreter [14] to fil-
ter out passenger mutations from PDX profiles, and
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only worked with driver somatic mutations and copy
number alterations. For each treatment, we grouped
responder and non-responder PDXs, irrespective of
the origin of their tumors. We first identified driver
alterations that showed a differential mutation rate
between responder and non-responder PDXs. Next,
we identified pairs of driver alterations occurring
more often than expected in each subpopulation
under a null model that preserves both gene-wise and
sample-wise alteration rates. Moreover, we identified
pairs of driver alterations that show a differential co-
alteration rate between responder and non-responder
PDXs. With the overrepresented drivers (nodes) and
pairs of co-occurring drivers (edges) identified, we
built a driver co-occurrence (DCO) network that
characterizes responder PDXs, another DCO network
that characterizes non-responder PDXs, and a third

general one consisting of all drivers and co-
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Fig. 1 Molecular representativity of PDXs. OncoGenomic Landscape 2D representations of the molecular heterogeneity of the 187 PDXs
annotated with both drug-response data and oncogenic alterations, compared with that of their corresponding reference cohorts of cancer
patients from TCGA and MSKCC. The points represent the location of each individual PDX, colored by tumor type. The distribution of the 187
PDXs can be compared to the distribution of patient samples, represented as density color-scale map in the background: PanCancer, PAAD

Ol ¥

o

(pancreatic adenocarcinoma), COREAD (colorectal carcinoma), CM (cutaneous melanoma), NSCLC (non-small cell lung cancer), and BRCA (breast
cancer). The boxplots show the proximity (median Jaccard similarity coefficient) of PDXs to the 5% nearest neighbors in each comparison. On the
left, we show the clustering of PDXs based on tissue of origin by comparing the proximity of PDXs of a given tumor type among themselves and
to PDXs of other tumor types. On the right, we show the clustering of PDXs with patient samples of the same tumor type compared to patient
samples of other tumor types. Stars denote the p value of a Wilcoxon rank-sum test (*< 0.05, **< 0.01, ***< 0.001, and ****p value < 0.0001)
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occurrences associated with both treatment responses
(Fig. 2a).

DCO networks for each of the 53 drugs are detailed in
Additional file 1: Table S2 and can be visualized using
Cytoscape [43] (Additional file 2; https://doi.org/10.6084/
m9.figshare.12789068.v1). The total number of drivers
and driver co-occurrences captured in the DCO networks
varied substantially among treatments, ranging from 8 to
89 driver genes (median of 29 nodes, IQR 15-49) and 6 to
177 pairs of drivers (median of 26 edges, IQR 16-93)
overrepresented in PDXs treated with abraxane + gemcita-
bine and alpelisib (BYL719), respectively. However, when
considering individual animals, the number of altered
drivers and pairs of drivers was small and remained quite
stable across treatments, with a median of only 4 genes
(IQR 3-5) and 2 driver co-occurrences (IQR 1-3) per
PDX (Fig. 2b, Additional file 3: Fig. S1).

We next sought to assess the novelty of our DCO net-
works by quantifying their overlap with the set of anno-
tated response/non-response biomarkers for each
treatment [14] that fulfill the eligibility criteria applied to
build our DCO networks. Figure 2c shows that, although
there is some overlap, our approach vastly expands the
set of genes to be considered in downstream treatment
prioritization applications. In some treatments, we ob-
serve a significant overlap between DCO networks and
known biomarkers (i.e., LEE011+ ENCORAFENIB,
BYL719 + ENCORAFENIB, or the FGFR inhibitor
LLMS871, Additional file 1: Table S3), but in most treat-
ment arms, the counts are too low to attain statistical
significance. However, when aggregated across treat-
ments, the overall overlap is significant, with 48 out of
359 possible drug-driver associations captured among
the 1856 total drug-driver pairs covered in TCT4U, from
the universe of 30,687 eligible pairs (Fisher’s test OR
2.45, p value 1.91.1077, see Additional file 1: Table S3).
Although we do not expect to recapitulate all previously
reported drug-driver associations, finding some of them
is a good sign of functional relatedness between DCO
features and known mechanisms of action.

We are aware that without having performed a stratified
analysis, we cannot rule out the possibility that tumor
lineage might be a source of indirect associations between
some genomic features and response to treatment, and we
might miss interesting context-specific biomarkers.
However, we believe that, whenever identified, those bio-
markers that are less context sensitive and that are com-
mon across different tumor types would be of special
interest due to their wider applicability domain.

TCT4U: a collection of 53 drug-response classifiers for
genome-driven treatment prioritization

We then explored whether the sets of differentially co-
altered genes in responder and non-responder PDXs can
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be used to predict treatment outcome. For each drug,
we used the DCO networks to statistically classify PDXs
as non-responder or responder. The goal of this exercise
is to identify, among the available treatments, the best
possible option for each individual based on its oncoge-
nomic profile. We thus named the set of developed
drug-response classifiers Targeted Cancer Therapy for
You (TCT4U).

In brief, for each treatment arm, we combined the
probabilities assigned by three gradient boosting classi-
fiers (CatBoost), trained with response, non-response,
and general DCO networks, into a single prediction
score per drug-PDX pair (Fig. 3a). To increase the clin-
ical translatability of our approach, we repeated the cal-
culations considering only those alterations detectable
by the Memorial Sloan Kettering-Integrated Mutation
Profiling of Actionable Cancer Targets (MSK-IMPACT)
[34, 44] and the Foundation Medicine (FM) gene panels
[35], which contain probes to detect 410 and 287 mu-
tated genes, respectively, and are widely used in clinical
settings. Finally, we assessed the effectiveness of TCT4U
by comparing its predictive power to that of FDA-
approved and experimental biomarkers (see the
“Methods” section for details).

We collected the change in tumor volume and the
mRECIST classification for a total of 3127 experiments
with reported treatment outcome, comprising 187 PDXs
tested for response to 53 treatments. Figure 3b shows
the predictive performance of the models in a leave-one-
out cross-validation setting, whereby the genomic profile
of PDXs is used to predict response to each treatment.
We observe that TCT4U models are applicable to all
drug-PDX pairs (3127), while alterations in approved
and experimental biomarkers can only be found in about
half of them (1758). However, wherever applicable, both
methods attain a similar overall accuracy. As many treat-
ment arms do not have a balanced number of
responders and non-responders, we quantified the bal-
anced accuracy separately for each treatment and calcu-
lated their average (Fig. 3c, Additional file 1: Table S4).
TCT4U and known biomarkers attained an average
balanced accuracy of 0.58 and 0.52, respectively. The
balanced accuracy was greater than 0.6 for 21 treat-
ment arms, yielding a total of 1317 high-confidence
predictions. Although this subset of predictions only
covered 42% of all drug-PDX pairs, their average bal-
anced accuracy improved to 0.66 (Fig. 3c, Additional
file 1: Table S4).

In the case of known and experimental biomarkers,
they could only predict with a balanced accuracy higher
than 0.6 the response to 4 of those 21 treatments,
namely encorafenib, encorafenib + binimetinib, encorafe-
nib + buparlisib (BKM120), and paclitaxel. As for FDA-
approved biomarkers, they predicted drug response in
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210 of the drug-PDX pairs, spanning 59 PDXs and 13
treatments. Due to sample imbalance, the balanced
accuracy could only be calculated for a subset of
treatments, making an average of 0.56 (Fig. 3d, Add-
itional file 1: Table S4). It is also remarkable that,
even if they consider a much lower number of genes,
both MSK-IMPACT- and FM-derived models
achieved comparable prediction accuracies (Fig. 3b,
Additional file 1: Table S4).

The comparison of TCT4U to the simple combin-
ation of biomarkers showed an overall improvement
with respect to the current standard. However, given
the way we modeled the treatment decision setting, not
having a given biomarker does not contribute to the
predictions (i.e., not having NRAS alteration does not
predict for response to BRAF inhibition). In order to
maximize the information extracted from previously re-
ported biomarkers and perform a more controlled com-
parison, we decided to use exactly the same pipeline
implemented for TCT4U but training the classifiers
with the few features representing known biomarkers.
Reassuringly, the resulting predictions were strongly
correlated with the predictions based on the simple
combination of biomarkers (Spearman’s rho 0.32, p
value 1.2:107'%°, Additional file 3: Fig. S2A). Known
biomarkers were only able to predict response to 6
treatments with a balanced accuracy greater than 0.60,
even when using gradient boosting classifiers instead of
their simple combination. It is noteworthy that the six
treatments consist on encorafenib used alone or in
combination with alpelisib, buparlisib, binimetinib, and
cetuximab. Figure 3c shows that known biomarkers
outperform TCT4U in the only four treatments involv-
ing encorabenib (256 predictions in total), while
biomarker-based models did not perform much better
than random in the remaining 17 treatments (Add-
itional file 1: Table S4).

Further, we built integrated models containing both
DCO-based features and known biomarkers, which
slightly outperformed both DCO-only and biomarkers-
only models, suggesting that the two sets of features
carry orthogonal information (Fig. 3c). However, the
overall performance taking into account all treatment
arms did not change much with respect to the DCO-
based models (Additional file 1: Table S4, Additional file
3: Fig. S2B-C).

Finally, while the coverage of approved or experimen-
tal biomarkers is mostly limited to BRAF/MEK inhibi-
tors, PIBK/mTOR inhibitors, or «cell cycle-related
treatments, the predictions made by TCT4U also cov-
ered other drug families including chemotherapies, RTK
inhibitors, and more experimental treatments targeting
Wt signaling (WNT974), or apoptosis-related pathways
(TAS266, LGW813) (Fig. 3e).
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Interpretation of DCO-based predictions

In addition to the prediction performance of each model,
it is key to evaluate their potential to uncover patterns
that can generate new hypothesis and propose novel bio-
markers. Current tree-based explanation methods allow
us to understand how the model uses input features to
make predictions. Beyond assigning the importance of
each feature to the global prediction, we can compute
the Shapley additive explanation (SHAP) values to quan-
tify the local contribution of each feature to the individ-
ual predictions (i.e, how important is each driver gene
for predicting drug response in a given PDX).

As expected, in targeted therapies that are currently
approved in biomarker-specific indications, the SHAP
values of their intended targets show that they usually
contribute to DCO-based predictions. For instance, in
most PDXs, BRAF alteration predicts for response to
binimetinib (MEK inhibitor) used alone or in combin-
ation with encorafenib (BRAF inhibitor). On the other
hand, KRAS and NRAS alterations, which are upstream
of BRAF, contribute positively when predicting response
to binimetinib but negatively when predicting response
to its combination with encorafenib (Fig. 4a). Those are
the kind of predictions that are successfully achieved by
simple biomarkers (Fig. 3c, Additional file 3: Fig. S2).
However, it becomes clear that, even when looking at an
FDA-approved biomarker such as BRAF, single driver
gene alterations do not contribute equally in all PDXs
because of the effect of their interaction with additional
driver alterations.

PIK3CA-mutant tumors are sensitive to isoform-
selective PI3K inhibitors such as alpelisib (BYL719) [45—
47]. Accordingly, we observed a higher response rate
(65%, 15 out of 23) among PDXs with oncogenic
PIK3CA alterations compared to PDXs with wild-type
PIK3CA (44%, 52 out of 117), and the average SHAP
value of PIK3CA in altered PDXs is positive (1.16, Add-
itional file 1: Table S2). However, PIK3CA-independent
mechanisms of PI3K activation (e.g., activating alter-
ations in PIK3CB or PTEN loss) often limit the response
to this treatment [48, 49]. The alpelisib DCO network
contains three proteins involved in PI3K signaling,
namely PIK3CA, PIK3RI, and PIK3C2B. Interestingly,
we found that PIK3CA-altered PDXs having no co-
occurring oncogenic alterations in the PI3K pathway
showed an even higher response rate (79%, 11 out of 14)
than those with co-occurring alterations in PIK3RI or
PIK3C2B (44%, 4 out of 9). This is reflected in the nega-
tive average SHAP values observed for PIK3RI and
PIK3C2B in altered PDXs (- 0.83 and - 0.12, Additional
file 1: Table S2). Our DCO-based model was able to cap-
ture alterations that are likely to activate PI3K signaling
in a PIK3CA-independent manner, which could limit the
response to alpelisib [49].
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diamond shapes

Fig. 4 Specific contribution of driver co-occurrences to the prediction of drug response. a Summary plot of the local feature’s contribution (SHAP
values) attributed to individual genes when predicting response to treatment with TCT4U. Each point represents the contribution of a driver gene
to the prediction of response in a given PDX. The color of the points indicates whether the given driver gene was altered or not in each PDX.
The three examples represent the five most explanatory genes when predicting response to three approved targeted therapies with biomarker-
specific indications. b SHAP interaction plots and driver co-occurrence (DCO) networks representing the oncogenic alterations and pairs of
alterations that are overrepresented in responder and non-responder PDXs. SHAP interaction plots show the effect of having driver alteration in
gene A on the distribution of SHAP values of gene B. Each point represents the average SHAP value of PDXs classified on the basis of the status
of the two drivers that tend to be co-altered. The size of the points is proportional to the number of PDXs that belong to each of the four
resulting categories. The figure represents feature interactions involving driver genes that are located far apart in the genome. We also show
some exemplary DCO networks with the driver co-occurrences represented in the accompanying SHAP interaction plots highlighted in yellow.
The size of the nodes represents the average feature importance in the LOOCY, and their color represents the probability of being
overrepresented in responder (red) or non-responder (blue) PDXs. Previously known biomarkers detected in the cohort are annotated with

We extended this analysis to systematically assess the
interaction between all co-occurring driver alterations in
the 21 treatment arms that yielded high-confidence pre-
dictions. We identified a total of 253 unique feature in-
teractions between co-occurring drivers (Additional file
1: Table S2). Topological analysis of DCO networks re-
vealed that several large, strongly connected modules
were composed of genes that tend to be co-amplified or
co-deleted as part of the same genomic segment. Al-
though in most of the cases those clusters of co-altered
drivers are probably hitchhiking with a major driver al-
teration that is positively selected, in some other cases,
the co-amplification and simultaneous overexpression of
adjacent oncogenes can provide a basis for cellular
cross-talk.

For example, the co-amplification of the two FGFR li-
gands FGF3 and FGF4 (chrl1:q13) contributes positively
to the prediction of response to alpelisib (average SHAP
1.59), while the alteration of FGF4 alone contributes
negatively (average SHAP -1.34). Similarly, the co-
alteration of MET (chr7:q31) and its downstream signal
transducer BRAF (in chr7:q34, 24 Mb away) contributes
more negatively to predict response to the inhibition of
Wnt signaling by WNT974 than any of the two alter-
ations alone (Additional file 3: Fig. S3B, Additional file 1:
Table S2). In the same direction, MET alteration has
also a negative impact on the prediction of response to
encorafenib, encorafenib + buparlisib (BKM120), and
encorafenib + binimetinib in BRAF-altered PDXs (Add-
itional file 3: Fig. S3A, Additional file 1: Table S2). On
the other hand, the same co-alteration contributes more
positively to predict response to encorafenib and encora-
fenib + binimetinib than BRAF or MET alterations alone
(Additional file 3: Fig. S3A, Additional file 1: Table S2).
Interestingly, a feedback loop between those two genes
has been shown to influence response to BRAF and/or
MET inhibitors [45].

Not surprisingly, the two aforementioned pairs of
drivers are also co-altered more often than expected in a
non-redundant set of 46,697 cancer patient samples

queried through cBioPortal [50, 51] (log2 OR 2.21 and >
3, respectively; both p values <0.001). It has been sug-
gested that the amplitude of the regions affected by copy
number changes strongly determines patient prognosis
[52, 53]. Broader amplifications are likely to modify the
dosage of multiple genes which, based on our observa-
tions, could have a different impact on drug response
than the focal alteration of a single driver gene.

However, when co-altered drivers are genomically
linked, it is very difficult to disentangle which is the spe-
cific contribution of each alteration because they would
still co-occur even if only one of them was actually con-
tributing to differential drug response. For this reason,
we decided to distinguish between interactions involving
genes located in the same chromosomal arm (Additional
file 3: Fig. S3) from those involving genes that are far
apart in the genome (Fig. 4b).

As mentioned above, BRAF-driven tumors show a
higher response rate (83%, 15 out of 18) when treated
with encorafenib + buparlisib (BKM120) than BRAF
wild-type tumors (36%, 5 out of 14), with an average
SHAP value of 1.43 in altered vs. — 2.06 in non-altered
PDXs. However, the SHAP value is even more positive
for the subset of tumors with co-alteration of PTEN and
BRAF (1.89). Indeed all tumors with this co-alteration
responded to the treatment. On the contrary, PTEN
deficiency in BRAF wild-type tumors is a negative pre-
dictor of response (average SHAP value of - 2.60). Al-
though to a lesser extent, we observed the same trend in
the encorafenib + binimetinib model (Fig. 4b). Import-
antly, PTEN and BRAF are also co-altered more often
than expected in cancer patients queried through cBio-
Portal (OR 1.86, p value < 0.001).

Another remarkable example is the interaction be-
tween HERC2 and KRAS in the prediction of response
to BINIMETINIB-3.5MPK (MEKi). This regimen was
tested on 25 pancreatic tumors, most of which were
KRAS driven (24 out of 25). Despite this fact, the down-
stream inhibition of MEK1/2 was only effective in 62.5%
of them (15 out of 24). Interestingly, HERC2 was co-
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altered with KRAS in a substantial fraction of non-
responder KRAS-driven tumors (25%, 5 out of 20).
Accordingly, HERC2-KRAS co-alteration contributes
negatively to the prediction of response (average SHAP
value - 3.22), whereas having wild-type HERC2 and al-
tered KRAS contributes positively (0.54). In patients,
HERC?2 and KRAS are also significantly co-altered (cBio-
Portal OR 1.77, p value < 0.001).

Overall, those examples illustrate how TCT4U is able
to detect and exploit interactions between driver alter-
ations to predict drug response in PDXs. Sometimes,
these interactions involve previously known biomarkers,
as illustrated by the co-alteration of BRAF and PTEN,
which would have antagonistic effects in predicting re-
sponse to the combined inhibition of BRAF and PI3K
signaling. Moreover, many of these co-occurrence
patterns are also found in patient cohorts, indicating a
potential clinical translation of these findings. We pro-
vide the full set of interactions and their impact on
SHARP values in Additional file 1: Table S2.

Experimental validation of TCT4U drug-response
predictions on a prospective PDX dataset

In addition to the in silico benchmarks, we sought to
prospectively evaluate the performance of the TCT4U
models in new tumors. To this aim, we selected, from
our VHIO collection of molecularly characterized breast
cancer PDXs, a subset of 14 drug-PDX pairs, with 8 tu-
mors predicted to respond and 6 predicted not to re-
spond, namely alpelisib, an isoform-selective PI3Ka
inhibitor (BYL719, n = 5); ribociclib, a CDK4/6 inhibitor
(LEEO11, n=2); the combination of both (alpelisib +
ribociclib, 7 = 3); the MEK inhibitor binimetinib (7 = 2);
and paclitaxel, a taxane (n=2). This is a particularly
challenging set of drug-PDX pairs since, except in one
case, the anticipated TCT4U outcome did not agree with
approved or experimental biomarkers, either because the
individual genomic profiles did not have any biomarker
altered (n = 8), or because the TCT4U predictions were
opposed to those suggested by known biomarkers (n =
5).

We subcutaneously implanted the tumors in immuno-
compromised mice and let the tumors grow until they
reached a volume of 120—150 mm?>. We then treated the
PDXs for 15-57 days and measured their response to
the administered drugs following the mRECIST guide-
lines (see the “Methods” section for details). The
complete results of our study, including TCT4U predic-
tions, known biomarkers, treatment setting (drug dose,
duration, etc.), and tumor response (tumor growth,
mRECIST classification, etc.) for every PDX, can be
found in Additional file 1: Table S5 and are summarized
in Fig. 5.

Page 14 of 23

We treated five PDXs with alpelisib, three of which
(PDX131, PDX293, and PDX156) were predicted as re-
sponders to the drug by TCT4U models, and two as
non-responders (PDX191 and PDX153). The three PDXs
predicted as responders showed a co-amplification of
the FGF3-FGF4-CCND1 triplet, located in the 11ql3
genomic segment. In our DCO models, this triplet hap-
pened more often in responder than in non-responder
PDXs, with an alteration rate of 7.46% and 1.37%, re-
spectively. The three genes contributed positively to the
prediction of response in these PDXs, with average
SHAP values of 0.72, 1.86, and 0.26 (Additional file 1:
Table S5). It is worth noting that our model, which was
derived from 140 PDXs of different tumor types (i.e., 38
BRCA, 42 COADREAD, 25 NSCLC, and 35 PDAC), did
not show a significant tendency towards co-occurrence
of PIK3CA and the 11q13 amplicon (OR 2.69, p value
0.26). Dysregulation of FGFR signaling can lead to
downstream activation of PI3K/AKT pathway, and in-
deed, a recent study reported that 73% of patients (8 of
11) with both an alteration in the PI3K/AKT/mTOR
pathway and FGF/FGFR amplification experienced clin-
ical benefit when treated with therapy targeting the
PI3K/AKT/mTOR pathway, whereas only 34% of pa-
tients (12 of 35) with PI3K/AKT/mTOR alterations
alone did so [54]. However, the implication of FGF sig-
naling with respect to the clinical benefit of PI3K/AKT/
mTOR blockage remains controversial. The retrospect-
ive analysis of a large subset of patients enrolled in the
BOLERO-2 trial [55] showed that alterations in FGF sig-
naling had a negligible impact (FGFRI) or slightly de-
creased (FGFR2) the clinical benefit of everolimus
treatment. In line with these findings, ER+/ERBB2-
metastatic breast cancer patients with FGFRI and
FGFR2 amplification did not derive a clinical benefit
from alpelisib + letrozole [56]. Accumulating evidence
suggests that FGF signaling induced by FGFR1/2 ampli-
fication attenuates the response to PI3K blockage in
PIK3CA-mutant breast cancer. However, the impact of
FGF signaling in response to alpelisib in PIK3CA wild-
type tumors originated from breast, as well as from
other tissues, has yet to be determined.

In our dataset, the three PDXs responded to the treat-
ment. In particular, in PDX293, we observed a partial re-
sponse (PR) after 18 days of treatment, with a reduction
of 65% in the initial tumor volume. PDX131 and
PDX156 showed a stable disease (SD) after 20 and 11
days of treatment, respectively. On the other hand,
PDX191 was predicted to be non-responder because, in
addition to the aforementioned 11q13 amplicon, it had
driver alterations in FGFR1, MYC, and GNAS that were
contributing negatively to the prediction of response
(SHAP values of - 1.81, — 1.04, and - 0.73). In agreement
with our prediction, the tumor increased its volume by
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Fig. 5 Experimental validation of TCT4U predictions. a The waterfall plot summarizes the results of 14 in vivo experiments comprising 5 PDXs
treated with the alpelisib (BYL719) isoform-selective PI3K inhibitor (PI3Ki), 2 PDXs treated with ribociclib (LEE0T1) CDK4/6 inhibitor (CDKi), 3 PDXs
treated with the combination of both (PI3Ki+ CDKi), 2 PDXs treated with binimetinib MEK inhibitor (MEKi), and 2 PDXs treated with paclitaxel. The
heatmap below shows the predictions based on TCT4U compared to previously known biomarkers. b—e Exemplary tumor response curves and
features in the DCO network explaining TCT4U predictions. The size of the nodes represents the average feature importance in the LOOCV. The
color of the nodes represents the contribution of each feature to the prediction of response in the given tumor (SHAP values). Previously known
biomarkers detected in a given tumor are annotated with diamond shapes. The complete results of our study are provided in Additional file 1:

80% after 13 days of treatment (PD) (Additional file 1:
Table S5). PDX153 was the only PDX with an oncogenic
PIK3CA mutation (p.K111E) reported to confer sensitiv-
ity to the treatment [14], and indeed, we observed a
significant reduction of 83% in the tumor volume after
35days of treatment (i.e., a PR outcome). Our model
classified this PDX as non-responder because it also had
other alterations overrepresented among non-responder
PDXs, such as MAP2K4 (SHAP value - 2.85) or NCORI
(SHAP value - 1.68). The DCO networks also consid-
ered PIK3CA status, which tends to be more frequently
altered in responder PDXs (22.29%) than in non-
responder PDXs (11.40%; SHAP value 1.86). However,
the final prediction was driven by additional oncogenic

alterations that together showed a stronger statistical as-
sociation than PIK3CA status, although they proved to
be less informative.

We administered ribociclib, a CDK4/6 inhibitor, to
PDX4 and PDX244_LR1, with the TCT4U prediction
that the two tumors would not respond to the drug.
PDX4 did not present any known biomarker of drug re-
sponse, and the most influential feature in the ribociclib
DCO model was GNAS amplification. While the co-
alteration of GNAS and AURKA is usually predictive of
response to ribociclib (average SHAP value 0.461), the
alteration of GNAS in the absence of additional alter-
ations in this specific PDX contributed negatively to the
prediction, with a SHAP value of - 0.88 (Additional file
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1: Table S5). On the other hand, we also treated
PDX244_LR1, which is a model of acquired resistance to
ribociclib derived from a responder parental tumor
(PDX244). Accordingly, PDX244_LR1 simultaneously
showed known biomarkers of response (CDKN2A-
CDKN2B  co-deletion) and non-response (7TP53
p.C176R) to the treatment [14]. TP53 was not included
in the ribociclib DCO network because we did not find
it to be differentially altered between responders and
non-responders (44.65% vs. 48.39%). In line with what
has been reported, CDKN2A-CDKN2B co-deletion was
slightly more common in responder than in non-
responder PDXs (32.78% vs. 25.34) and contributed
positively to the prediction with SHAP values of 0.116
and 0.249 (Additional file 1: Table S5). However,
PDX244 LR1 presents an oncogenic mutation in RBI
(p-M695Nfs*26), which showed a strong association with
lack of response to CDK4/6 inhibition in the DCO net-
works (4.29% vs. 12.65%) and is the most negative ex-
plainer in this model, with a SHAP value of — 1.226. RBI
is the primary target of CDK4/6, and its status is a key
determinant of CDK4/6 inhibition efficacy [57]. Accord-
ingly, RBI overexpression is reported to confer sensitiv-
ity to CDK4/6 inhibition in prostate cancer, although its
loss or deletion is not currently reported as a non-
response biomarker [14]. Our experiments showed that,
and in agreement with TCT4U predictions, the tumors
increased their volume between 45 and 215%, being thus
cataloged as PD.

We also treated three PDXs (PDX173, PDX98, and
PDX39) with the same PI3Ka and CDK4/6 inhibitors in
combination (alpelisib + ribociclib). The three of them
had oncogenic mutations in 7P53 (p.R249S, p.R249S,
and p.V157I), which are associated with non-response to
CDK4/6 inhibition [14]. However, DCO networks found
additional response-associated genomic features (i.e.,
MYC in PDX98 with SHAP value of 0.558, or H3F3A in
PDX39 with SHAP value of 0.321, Additional file 1:
Table S5), and thus, TCT4U models predicted them to
respond to this drug combination. We found that, in-
deed, all three tumors responded to the combination
treatment: PDX173 became completely tumor free (CR),
PDX39 showed a reduction of 47% (SD), and PDX98 of
25% (SD).

Two PDXs were treated with the MEK inhibitor bini-
metinib, with TCT4U models predicting PDX270 to be
non-responder and PDX288 to respond to the drug.
Both PDXs presented RBI loss (a loss-of-function muta-
tion p.Y321* and a deletion, respectively), which is over-
represented in the non-responder DCO network (5.50%
vs. 17.46%) and contributed negatively to the prediction
(SHAP value of - 0.549 in both cases). Additional alter-
ations necessarily contributed to the divergent prediction
of these PDXs. Alterations in CCND3 and MYC
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contributed to the prediction of non-response in
PDX270, with SHAP values of —2.147 and - 0.330. MYC
was also altered in PDX288, but in this case, it was co-
altered with SOX17. This co-alteration is distinctive of
responder PDXs, with an observed co-occurrence rate of
13.76% in responders and 7.55% in non-responders.
FGFRI alteration also contributed to the prediction of
response. In this case, neither tumor presented known
biomarkers of response to MEK inhibition. When
treated with binimetinib, PDX270 was classified as non-
responder (PD), as the tumor volume had increased by
144%, even more than in untreated animals (117%). On
the contrary, and validating the TCT4U models,
PDX288 responded well to treatment (SD), and tumors
did not show any significant growth. Interestingly, an in-
tegrative genomics screen performed in 229 primary in-
vasive breast carcinomas identified the co-amplification
of MYC and the 8pl1-12 cytogenetic bands, together
with aberrant methylation and expression of several
genes spanning the 8q12.1-q24.22 genomic region [58].
This observation coincides with our DCO network de-
rived from whole exome sequencing data, where we
could detect the co-amplification of a large cluster of
genes located in the 8pll-pl2 (HOOK3, FGFRI) and
8q11.23-q24.22 genomic regions (TCEAI, SOX17,
CHCHD7, NCOA2, COX6C, MYC, NDRGI) in
responder PDXs, but not in non-responder ones
(Additional file 1: Table S2, Additional file 3: Fig. S3).
Finally, we explored the TCT4U prediction capacity in
cytotoxic chemotherapy, where specific oncogenic char-
acteristics should be less related to treatment efficacy.
We selected PDX222 and PDX39 to be treated with pac-
litaxel. While PDX222 did not present any known bio-
marker of response, PDX39 sowed an MCLI
amplification, which has been reported to promote re-
sistance to anti-tubulin chemotherapeutics [14, 59]. Al-
though PDX222 showed alterations that are slightly
more common in non-responder than in responder
PDXs (SOX17 and TP53, SHAP values —0.177 and -
0.208), it also presented an ERBB2 amplification that in
our model contributed positively to the final prediction
(SHAP value 2.885). Regarding PDX39, TP53 and
H3F3A alterations were the main negative contributors
to the prediction of response. When treated with pacli-
taxel, both PDXs showed a progressive disease (PD).
Overall, TCT4U models correctly predicted the out-
come of 12 of the 14 treatments tested whereas known
biomarkers only predicted correctly 2 of the 14 treat-
ment outcomes. In particular, one of the TCT4U
misclassified responses was correctly predicted by
known biomarkers, while the rest were either incorrect
(4 of 6) or missing (8). In PDXs treated with alpelisib,
we correctly classified 3 out of 4 responders and 1 out of
1 non-responders, which makes a balanced accuracy of
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0.875. We could not estimate the average balanced ac-
curacy across treatments due to the limited sample size
and the imbalanced number of responder and non-
responder PDXs per treatment arm. Therefore, the pre-
dictions presented and the associated genomic features
remain hypothesis in need for further validation.

Bringing TCT4U from the workbench to the clinics

To explore the clinical potential of TCT4U method-
ology, we analyzed a cohort of 216 metastatic breast can-
cer patients being treated at the Memorial Sloan
Kettering Cancer Center [41], and for which we have re-
corded information of their oncogenomic profile and
clinical outcome (Additional file 1: Table S6). These
metastatic patients had received between 1 and 17
rounds of treatments (median of 2) before being selected
for a trial to test a combination of CDK4/6 and aroma-
tase inhibitors. Each tumor was genetically profiled,
using the MSK-IMPACT panel, and the clinical outcome
of the treatment was recorded as progression-free sur-
vival (PES). In this study, one third of the patients did
not derive a clinical benefit and relapsed before 5
months. At the other extreme of the distribution, one
third of the patients could be treated for more than 10
months and were considered to present a durable clin-
ical benefit. We are aware that a threshold of 10 months
might not be relevant in a first line treatment setting,
where this drug combination has shown to achieve a
median PFS of 24 months [60]. However, the PFS de-
creases in subsequent lines of therapy, and in a meta-
static setting where over half of patients have received
prior therapies, a PFS of more than 10 months might
still be a good surrogate measure of the clinical benefit.

We did not have PDXs treated with a combination of
CDK4/6 and aromatase inhibitors, and the closest
TCT4U model for it was derived in response to CDK4/6
inhibition (ribociclib), based on 71 responder and 100
non-responder PDXs. Using this model, only 22.7%
patients (49 out of 216) were predicted to respond to
treatment and the remaining 77.3% were predicted as
non-responders. The majority of patients (78%) relapsed
within the first year of treatment, but unfortunately, we
have no data in this clinical series as to whether these
tumors regressed, at least initially. It thus seems that the
outcome measure used to train the TCT4U model
(mRECIST), based on relative tumor growth, is not ap-
propriate in most clinical settings.

Without a model for this specific drug combination,
and with the aforementioned differences in outcome
measures, we decided to adapt our methodology to clas-
sify patients based on the duration of the treatment be-
fore cancer relapsed. For this, we divided the cohort in
three groups and considered the 40 patients for which
the tumors relapsed before 4.2 months after the start of
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the treatment as non-responders, and the 40 for which
the time to progression was longer than 9.7 months as
responders. The resulting DCO networks for this treat-
ment, which are relatively small compared to TCT4U
DCO networks, contain a total of 7 drivers and 6 co-
occurrences (see Fig. 6a).

We then used the DCO networks to derive the corre-
sponding TCT4U models, which should be able to pre-
dict whether a given patient will obtain a significant
clinical benefit. In a leave-one-out cross-validation,
TCT4U models yielded confident scores for 95 out of
the 216 patients in the cohort (see the “Methods” sec-
tion). Of these, we predicted that 50 patients would re-
spond and 45 would not respond to the treatment. A
Kaplan-Meier analysis of the cross-validation showed
that patients predicted to relapse early, with a median
time to progression of 5.4 months, derived little clinical
benefit compared to the 50 patients predicted to relapse
later, whose median time to progression was significantly
longer (13.5 months, log-rank test p value 0.002, Fig. 6b).
We obtained consistent results when fitting a Cox pro-
portional hazards regression model (correlation coeffi-
cient -0.61, p value 0.002), indicating that TCT4U
scores are negatively associated with risk of relapse. The
performance of TCT4U models clearly surpasses that of
known biomarkers for this drug combination. Although
54% (116 of 216) of patients had at least one annotated
biomarker, which is a good coverage compared to other
treatments, we could not find a significant association
between observed and predicted outcomes, at least in
terms of PFS (Fig. 6b).

As for the interpretation of the DCO-based model,
MYC and MAP3KI alteration were the strongest ex-
plainers of TCT4U predictions of response, with average
SAHP values of 3.94 and 2.84 in altered patients. Note-
worthy, MYC alteration was in common between this
model and the ribociclib model derived from PDXs. On
the other hand, ESRI and CCNDI were the strongest
negative contributors to the predictions, with average
SHAP values - 1.46 and - 0.98 (Fig. 6¢). Oncogenic mu-
tations in ESRI are common in metastatic and pre-
treated breast cancer, emerging as a mechanism of
acquired resistance to endocrine therapies that can ul-
timately result in a lack of response to the combinational
therapy [61].

Interestingly, the concomitant alteration of FGF3 and
FGF4 with CCND1 (11q13 amplicon) has a positive im-
pact on the SHAP value of CCNDI-altered patients,
which goes from -1.13 to — 0.94 (Fig. 6d). This positive
interaction is even stronger when the amplification
spans PAKI gene (in 11q14), reaching an average SHAP
value of - 0.75. Indeed, the FGF3-FGF4-CCNDI1 triplet
tends to be significantly co-altered with PAKI only in
patients that relapsed late (p values of 0.037, 0.038, and
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Fig. 6 Application of TCT4U to predict treatment outcome in a clinical cohort of HR+/HER2— metastatic breast cancer patients. a Driver co-
occurrence (DCO) networks representing the oncogenic alterations and pairs of alterations that are overrepresented in patients that relapsed early
(non-responders) or in patients that derived a durable clinical benefit (responders) from CDK4/6 inhibition combined with an aromatase inhibitor.
The size of the nodes represents the average feature importance in the LOOCV. The color of the nodes represents the probability that alterations
in a given gene are overrepresented in responders (red) or non-responders (blue). Previously known biomarkers detected in the cohort are
annotated with diamond shapes. b The Kaplan-Meier analysis of progression-free survival (PFS). TCT4U high-confidence predictions are better able
to discriminate between patients that would experience early and late relapse than known biomarkers, with a median time to progression of 5.4
and 13.5 months, respectively. ¢ Summary plot of the SHAP values attributed to individual genes. Each point represents the contribution of a
given feature to the prediction of response in a given patient. The color of the points indicates whether a given driver gene was altered or not in
each patient. d SHAP interaction plot showing the positive effect of the co-alteration of FGF3, FGF4, and PAKT with CCNDT (all in chr11g13-14).
The size of the dots is proportional to the number of patients in each category

0.027, Additional file 1: Table S2). It is noteworthy that
CCND1 amplification is one of the biomarkers that has
been previously associated to response to CDK4/6 block-
ade. Based on our observations, the genomic context of
CCND1 alteration seems to be relevant in relation to
CDK4/6 inhibition and deserves further investigation.

Our results suggest that the proposed methodology
could be used to derive DCO networks and train pre-
dictive models from the kind of data obtained from in-
terim analyses in oncological clinical trials. Moreover,
whenever the time to detect a clinical benefit is reason-
able, such the 10 months in this study, TCT4U models
could be derived with the first patients and used in
population enrichment strategies to establish the bases
for new recruitments in adaptive trials.

Discussion
Cancer sequencing projects have unveiled hundreds of
gene alterations driving tumorigenesis, enabling

precision oncology. Indeed, current efforts now focus on
the analyses of oncogenomic patterns to identify action-
able alterations, drugs to modulate them, and bio-
markers to monitor response. Of particular interest are
computational platforms such as OncoKB [13] or the
Cancer Genome Interpreter [14], which not only identify
oncogenic alterations and potential targets, but also esti-
mate their potential clinical applicability. Most current
strategies focus on the identification of a single vulner-
ability (i.e., driver gene) whose activity can be modulated
by a drug. However, given the complexity and hetero-
geneity in tumors, and the high connectivity between
cellular processes, every cancer might respond differ-
ently to a certain treatment, depending on its global
oncogenomic profile.

Indeed, the analysis of the mutational landscape of
cancer has also uncovered the existence of mutual exclu-
sivity and co-occurrence patterns among driver gene al-
terations [16, 62]. Many computational tools have been
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developed to identify those combinatorial patterns ex-
perimentally (i.e., via CRISPR-Cas9 screens [63, 64]) or
computationally [65-72]. Patterns of mutual exclusivity
can arise from functional redundancy, context-specific
dependencies (i.e., tumor type- or subtype-specific driv-
ing alterations), or synthetic lethality interactions. While
functional redundancy has been used to reveal unknown
functional interactions [72], the synthetic lethality con-
cept has been very successfully applied to the identifica-
tion of novel therapeutic targets [63, 64] or rational drug
combinations [64], and to the prediction of drug re-
sponse in cell lines [64] and patients [71].

Although less studied, driver co-occurrences are often
interpreted as a sign of synergy, and in some cases, they
have shown to be functionally relevant [16—22]. How-
ever, they have not yet been exploited for drug-response
prediction. With the methodology presented in this
manuscript, we compared the mutational profiles of tu-
mors that responded or did not respond to a certain
drug to define driver co-occurrence (DCO) networks,
which capture both genomic structure and putative
oncogenic synergy. We then used the DCO networks to
train classifiers to identify the best possible treatment
for each tumor based on its oncogenomic profile.

The development of tools for personalized treat-
ment prioritization based on genomic profiles is an
active field of research. Recently, Al-Shahrour and
colleagues presented PanDrugs [73], an in silico drug
prescription tool that uses genomic information, path-
way context, and pharmacological evidence to
prioritize the drug therapies that are most suitable for
individual tumor profiles. PanDrugs goes beyond the
single-gene biomarker by taking into account the collect-
ive gene impact and pathway context of the oncogenic al-
terations identified in a given patient. However, it
combines clinical evidence with in vitro drug screening
data gathered from cancer cell line panels, which have
limited clinical translatability [15, 27, 30, 74].

PANOPLY ([75] is another computational framework
that uses machine learning and knowledge-driven net-
work analysis approaches to predict patient-specific
drug response from multiomics profiles. This tool
shows a great potential, but the method strongly de-
pends on whole genome and transcriptome patient
data, which is not routinely acquired in clinical prac-
tice. Other methods like iCAGES [76] have been de-
veloped mainly to identify patient-specific driver
genes from somatic mutation profiles, which are later
used to prioritize drug treatments. However, iCAGES
only considers drugs that directly target the identified
driver alterations based on current FDA prescription
guidelines. All those methods rely on prior know-
ledge, which is incomplete and biased, and have not

been conceived to identify novel co-occurrence
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patterns from the data and to exploit them for drug-
response prediction.

With the current implementation of TCT4U, we
present a collection of drug-response predictive models
for 53 treatments belonging to 20 drug classes, including
targeted and more conventional chemotherapies. In a
cross-validation setting, our drug-response models
attained a global accuracy similar to that of approved
biomarkers, but could be applied to twice as many sam-
ples, including drug classes for which no biomarker is
currently available. Moreover, in an in vivo prospective
validation, our models correctly predicted 12 out of 14
responses to 5 drugs tested on 13 tumors. However, we
could not estimate the average balanced accuracy across
treatments due to the limited number of PDXs per treat-
ment arm and the actual imbalance between responder
and non-responders.

Obviously, our approach also suffers from some limita-
tions. Due to the lack of systematic reporting of treat-
ment history of the patients enrolled in genomic studies
[23], it is difficult to match response to a drug with indi-
vidual molecular profiles from clinical data. This practic-
ally impairs the systematic assessment of the prediction
accuracy in patients for computational frameworks like
TCT4U, PanDrugs [73], PANOPLY [75], iCAGES [76],
or other in silico drug prescription tools such as the
Cancer Genome Interpreter [14] or OncoKB [13]. Ex-
perimental validation of computational approaches is
time-intensive and very expensive. Therefore, beyond
the thorough experimental validation presented in this
manuscript, only PanDrugs and PANOPLY predictions
were experimentally validated, although on a single case
study performed on a PDX model that was treated with
5 drugs (PanDrugs) or 2 drugs (PANOPLY).

Given the limited clinical representativity of drug
screens performed on cell lines [15, 27, 74], we relied on
patient-derived xenografts (PDXs) to implement our
strategy and to identify biomarkers of drug response. Al-
though PDXs have shown a good level of agreement
with the course of disease evolution and treatment re-
sponse observed in patient tumors [30-33, 77, 78], they
present some important drawbacks, such as the eventual
loss of intra-tumoral heterogeneity [79, 80] or certain
engraftment bias [30, 81]. Additionally, we have to con-
sider that PDXs might not completely recapitulate the
influence of the tissue of origin in tumors that have been
implanted subcutaneously in immunodeficient mice and
whose stroma has possibly regressed and/or been re-
placed by mouse stroma, altering thus their subclonal
evolution and response to treatments [77, 82]. However,
our strategy can be readily adapted to derive drug-
response models from continuous clinical outcome mea-
sures, such as progression-free survival, which better
represent the data acquired during routine clinical
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practice and in clinical trials. Indeed, we derived re-
sponse models on a clinical cohort of breast cancer
metastatic patients being treated with a combination of
CDK4/6 and aromatase inhibitors, showing a good cor-
relation with progression-free survival.

Most importantly, TCT4U drug-response DCO
networks are interpretable and provide clear hints to
identify the potential mechanisms of response or non-
response present in each tumor. However, one key
challenge in interpreting driver alteration co-occurrence
patterns is that they can also emerge without necessarily
being synergistic if a pair of genes is affected by a com-
mon mutagenic process. This commonly happens when
several oncogenes are co-amplified as part of the same
genomic region, and for this reason, we have annotated
the candidate co-occurring drivers with the genomic lo-
cation of its constituent genes and distance between
them. Moreover, co-occurrence patterns can also emerge
as a result of the exposure to other mutagenic processes
that increase the mutational burden, the chromosomal
instability, or that leave specific mutational signatures
[68, 69, 83]. Context- or tumor type-specific dependen-
cies can also be a source of indirect associations with
drug response. Although those confounding factors can
obscure the biological interpretation of the DCO net-
works, they certainly provide valuable information for
drug-response prediction. Therefore, DCO networks are
a valuable asset for hypothesis generation that need to
be complemented with orthogonal sources of evidence,
and functional validation will always be needed to dem-
onstrate synergy.

We also showed that our methodology is well suited
to work with any custom gene panel, provided that the
selected genes contribute to the differences in response
to the drug being analyzed. As the cost of clinical mo-
lecular profiling continues to drop, it is very likely that
more types of data can be integratively analyzed to im-
prove drug-response prediction. However, in order to
ensure the clinical translatability of our method in the
short term, we decided to focus on well-supported
oncogenic alterations that are readily detectable by cost-
effective methods in the clinical setting. We acknow-
ledge that this is a very conservative decision, and we
accept that we might be missing biologically relevant in-
formation (i.e, non-coding alterations, methylation
events, or expression changes). Indeed, current clinical
biomarkers for patient stratification are mostly based on
the detection of histopathological, cytogenetic, and im-
munohistochemical changes that are not always detect-
able at DNA sequence level. For example, breast cancer
patient stratification strategies based on ER/PR and
ERBB2 status have proven to be very informative, both
in terms of prognosis and response to treatment [84].
Accordingly, TCT4U predictions should be regarded as
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a complementary source of information for clinical
decision-making.

Conclusions

We believe that the computational framework presented,
which goes beyond the single-gene approach by exploit-
ing co-occurrence patterns, could represent a significant
advance towards the development of effective methods
for personalized cancer treatment prioritization, with po-
tential applications in population enrichment strategies
in the context of adaptive clinical trials. Overall, our
strategy represents an opportunity to accelerate the
identification and validation of complex biomarkers with
the potential to increase the impact of genomic profiling
in precision oncology.
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