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Abstract

Background: High-grade serous ovarian cancer (HGSOC) is a major unmet need in oncology. The remaining uncertainty
on its originating tissue has hampered the discovery of molecular oncogenic pathways and the development of effective
therapies.

Methods: We used an approach based on the retention in tumors of a DNA methylation trace (OriPrint) that
distinguishes the two putative tissues of origin of HGSOC, the fimbrial (FI) and ovarian surface epithelia (OSE), to stratify
HGSOC by several clustering methods, both linear and non-linear. The identified tumor subtypes (Fl-like and OSE-like
HGSOCQ) were investigated at the RNAseq level to stratify an in-house cohort of macrodissected HGSOC FFPE samples to
derive overall and disease-free survival and identify specific transcriptional alterations of the two tumor subtypes, both by
classical differential expression and weighted correlation network analysis. We translated our strategy to published
datasets and verified the co-occurrence of previously described molecular classification of HGSOC. We performed cytokine
analysis coupled to immune phenotyping to verify alterations in the immune compartment associated with HGSOC. We
identified genes that are both differentially expressed and methylated in the two tumor subtypes, concentrating on PAX8
as a bona fide marker of Fl-like HGSOC.

Results: We show that:

- OriPrint is a robust DNA methylation tracer that exposes the tissue of origin of HGSOC.

- The tissue of origin of HGSOC is the main determinant of DNA methylation variance in HGSOC.

- The tissue of origin is a prognostic factor for HGSOC patients.

- Fl-like and OSE-like HGSOC are endowed with specific transcriptional alterations that impact patients’ prognosis.

- OSE-like tumors present a more invasive and immunomodulatory phenotype, compatible with its worse prognostic
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- Among genes that are differentially expressed and regulated in FlHike and OSE-like HGSOC, PAX8 is a bona fide marker

of Fl-like tumors.

Conclusions: Through an integrated approach, our work demonstrates that both FI and OSE are possible origins for
human HGSOC, whose derived subtypes are both molecularly and clinically distinct. These results will help define a new
roadmap towards rational, subtype-specific therapeutic inroads and improved patients’ care.

Background

Ovarian cancer is the 8th most common cause of cancer
death in women worldwide, being the 18th most common
cancer worldwide and accounting for more than 200,000
new cases every year [1]. Its most prevalent form is high-
grade serous ovarian cancer (HGSOC) which accounts for
more than 70% of cases and is usually diagnosed at already
advanced stages being mostly asymptomatic earlier on [2]. In
the 30 years since the introduction of carboplatin-based regi-
mens, the cure rate has changed only negligibly, largely due
to the precocious dissemination (favored by the anatomic
continuity with the abdominal cavity) and the limited num-
ber of physiopathologically meaningful models that can re-
capitulate the pathogenesis and progression of the human
disease, an increasingly recognized need for the field as a pre-
requisite for the identification and validation of new thera-
peutic targets [3, 4]. In turn, the lack of actionable human
models is due to a significant extent to the persistent uncer-
tainty regarding the cell of origin of HGSOC, with the two
candidate originating tissues identified in the distal tract of
the fallopian tube (fimbrial epithelium, FI) and the epithelial
lining of the ovary (ovarian surface epithelium, OSE) [5]. In
recent years, growing evidence has pointed to the FI as the
main source of HGSOC, starting from prophylactic
salpingo-oophorectomy specimens from patients with in-
creased risk of ovarian cancer, which revealed how the fim-
bria is frequently affected by pre-cancerous lesions referred
to as serous tubal intraepithelial neoplasia (STIC). This sug-
gested that lesions labeled as ovarian tumors could actually
result from seeding of primary fimbrial tumors, through
trapping of STIC-derived cells in the lumen of the ovary as
inclusion cysts, favored by the ruptured stigmas of the sur-
face epithelium during the menstrual cycle. Initial transcrip-
tomic and methylomic analyses also uncovered higher
similarity between HGSOC and FI with respect to the OSE,
supporting a non-primarily ovarian origin [6, 7]. Mutational
analysis of STIC, primary HGSOC, and peritoneal metastasis
from the same patient revealed the presence of a shared mu-
tational spectrum, thus reinforcing the notion of a primary if
not exclusive fallopian origin [8]. These lines of evidence not-
withstanding, other convergent sources failed to settle this
fundamental developmental question, starting from the ob-
servation that in a significant proportion of HGSOC samples
no STIC precursor lesion can be identified. This indicates

that the fimbrial origin seeding model cannot be universally
applied to all HGSOC samples. Indeed, the reverse route of
dissemination has been also shown to be equally plausible,
with genomic studies supporting the possibility that at least a
fraction of STIC actually represent metastatic lesions of pri-
marily ovarian lesions, a model underscored by the experi-
mental finding that HGSOC-derived spheroids can implant
into the fallopian tube epithelium [9]. While it is yet to be
clarified whether also early OSE lesions can seed onto the
fimbrial surface and give rise to STIC, there thus remains
fundamental uncertainty about the developmental origin of
HGSOC, both in terms of the general distribution between
FI or OSE origins and, more importantly, in terms of
patient-tailored assays to assign developmental origin on a
case-to-case basis.

DNA methylation is the best characterized epigenetic
mark, whose tightly regulated deposition and propagation
at specific loci ensures the stable inheritance of gene ex-
pression responses across cell division. Consistent with
the key relevance of this epigenetic regulation, mutations
and/or dysregulation in the DNA methylation machinery
are a well-established feature of tumorigenesis [10]. Yet,
despite such extensive aberrations, accumulating evidence
has shown that a subset of the original DNA methylation
prints can be retained during tumor evolution, akin to the
tissue-specific traces that are acquired and maintained
throughout development [11]. Indeed, analyzing the DNA
methylome of tumor cells has allowed to track tumor
clonal evolution, to an extent comparable to genetic fin-
gerprinting. Importantly, the retention in tumor cells of
epigenetic prints of the tissue of origin has also allowed to
associate the tissue of origin to cancers of unknown pri-
mary (CUP) [12], affording for the first time a tailored
treatment and improved care for patients. Also, the defin-
ition of tumor-specific DNA methylation traits allowed to
re-classify central nervous system tumors, impacting their
routine diagnostics for these diseases [13].

Here we present a novel approach to solve the attribution
of the tissue of origin for HGSOC, grounded in the tumor
retention of a cell of origin-specific DNA methylation print
(OriPrint) that allows to robustly stratify HGSOC in FI-
and OSE-originated tumors (FI-like and OSE-like) robustly
across all available datasets. We show that both epithelia
serve as bona fide origin for this disease and that the cell of
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origin explains most of the variance existing among tumors.
We then translate these findings into a transcriptional read-
out through a particularly cost-effective, clinically relevant
transcriptomic analysis. This revealed the prognostic value
of a cell of origin-based classifier in an independent, well-
characterized retrospective cohort. Specifically, we found
that OSE-like tumors carry a significantly worse prognosis
that can be ascribed to a reduced inflammatory response,
coupled to increased survival and cell-to-cell signaling in
this specific tumor subset. Moreover, we apply our stratifi-
cation strategy to published datasets, finding a consistent
enrichment for the mesenchymal molecular subtype in
OSE-like tumors, which explains their worse prognosis. Fi-
nally, our deconvolution of developmental origin uncovers
new genes and pathways specific for OSE-like HGSOC that
open new strategies for an improved management of
HGSOC patients.

Methods

Primary cells

For all samples, the diagnosis of high-grade serous carcin-
oma was confirmed by pathology review according to the
2014 World Health Organization (WHO) classification
(Kurman). High-grade serous epithelial OC cells were de-
rived from peritoneal ascites (AS samples) or from tumor bi-
opsies of patients (HGSOC) who had primary, non-
recurrent OC and had not yet undergone chemotherapy.
Primary cells from FI and OSE were derived from non-
neoplastic fimbriae and ovaries, respectively, from patients
undergoing hystero-salpingo-oophorectomy being affected
by myomas (large and/or multiple symptomatic leiomyo-
mas) or cervical neoplasms (mainly squamous cell carcin-
oma of the uterine cervix). The isolation and culture of
primary cells were performed as described previously [14].
More in detail, primary tumor samples were cut into small
pieces using a scalpel and then minced with scissors. Sam-
ples were then digested for 1 to 4 h (depending on samples)
with Epithelia Digestion Medium (EDM) composed of
Ham’s F12 (Gibco, #31765035) and DMEM  (Sigma,
#D6429) 1:1, supplemented with 1% penicillin/streptomycin
(Gibco, #15070063), 1 pg/ml insulin (Sigma, #10516), 0.2 pg/
ml hydrocortisone (Sigma, #H0888), 10 ng/ml EGF (Pepro-
tech, #100-15), 200 U/ml collagenase (Sigma, #C2674), and
100 U/ml hyaluronydase (Sigma, #H3884). The digested tis-
sue suspensions were passed on a 40-pm cell strainer and
further sheared passing them through a P1000 tip and cen-
trifuged at 500¢ for 3 min. In case of a visible red pellet,
erythrocytes were lysed by resuspending the cell pellet in
ACK buffer (Gibco, #A1049201) for 3 min at room
temperature. Cells were then washed in PBS and centrifuged
at 500g for 3 min and plated on Collagen I-coated flasks (BD
Biosciences). For metastatic ascites, the used protocol is the
same, substituting the digestion steps with a centrifuge at
500¢ for 3min. Normal fimbria and ovary tissues were
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incubated in 1mg/ml Dispase (Stem Cell Technologies,
#07913) for 30" at 37 °C. Then, epithelial cells from the distal
portion of the fimbria and the surface of the ovary were
scraped with a scalpel and pelleted at 500¢ for 3 min, red
blood cells were lysed by ACK solution, and derived-
epithelial cells were plated as for solid tumors.

Cells derived from all tissue sources were maintained in
culture with an epithelial-specific culture medium (EPI
medium) which is composed of a 1:1 mixture of DMEM-
F12, supplemented with 1% FBS NA (ThermoFisher,
#26140), 1% Pen-Strep, 0.2% of gentamycin (Lonza, #17-
519L), 0.2% amphotericin (Roche, #15290026), 10 mM
HEPES pH 7.5 (Gibco, #11560496), 10 pug/ml human trans-
ferrin (Sigma, #T8158), 1 pug/ml insulin, 1 pg/ml hydrocor-
tisone, 50 pM L-ascorbic acid (Sigma, #A4544), 15nM
sodium selenite (Sigma, #S5261), 0.1 mM ethanolamine
(Sigma, #E9508), 50 ng/ml cholera toxin (Sigma, # C8052),
10 ng/ml EGF, 35 pg/ml BPE (Gibco, 13028014), 10 nM T3
(Sigma, #T5516), and 10 nM [-estradiol (Sigma, #E2758).
Cells were used at passages 3 to 5.

Microarray processing and DNA methylation analyses
gDNA from cells was extracted by the DNeasy Blood and
Tissue kit (Qiagen) according to the manufacturer’s in-
structions. For each sample, 500 ng of genomic DNA was
bisulfite converted using the EZ-DNA methylation Gold
Kit (Zymo research) according to the kit's manual, except
that the final elution volume was reduced to 12 pl. Per sam-
ple, 4 pl of bisulfite-converted DNA was used in either the
Infinium Human Methylation 450k or the Infinium Methy-
lation EPIC array (both Ilumina) procedure according to
the vendor’s protocol. Arrays were hybridized according to
the manufacturer’s description and scanned on a HiScan
system (Illumina). Idat files from the IEO cohort and the
published datasets (Omaha [7, 15] and Melbourne [16, 17]
cohorts) were processed using the minfi R package [18]
(1.26.0). 450k and EPIC arrays were combined through the
combineArrays command (minfi and preprocessed
through SWAN normalization. The three datasets M values
were batch-corrected through ComBat from the SVA pack-
age, defining as batch the three datasets and modeling the
matrix around the sample types (FI, OSE, HGSOC). To
map CpGs to functional elements we used the RnBeads
package [19]. To define OriPrint [20], differential methyla-
tion analyses were performed through the limma package
[21] using adj. P.value < 0.05 and logFC > 1 as threshold.

Beta values (logit transformation of M values) were used
for the following analyses. For Pearson’s correlation-based
clustering, a distance matrix based on Pearson’s correl-
ation was computed and clustering was performed using
the hclust command, using ward.D2 as agglomeration
method.

Beta values were imported in Python as anndata object,
and we used SCANPY vs 1.3.1 [22] to plot UMAP and
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diffusion map for the data. For visualization purposes, we
used 20 n_neighbors.

Pseudotime analyses were performed with SCANPY,
and the pseudotime origin elements were selected based
on their peripheral localization in the multiple dimen-
sionality reduction graphs.

Louvain clustering [23] was calculated on the first 50
principal components, imposing (1) minimum number
of elements or (2) agglomerating the resulting clusters,
with consistent results. HDBScan [24] was performed on
diffusion map’s coordinates, imposing the number of
resulting clusters. Gaussian Mixture Model (GMM) clus-
tering was performed with the scikit-learn module, on
the first two principal components of variance defined
by OriPrint, imposing the number of Gaussians and con-
sidering the best fitter (log-likelihood) out of 2000 itera-
tions with multiple random initializations.

Targeted bisulfite sequencing

Typically, 500 ng of genomic DNA was bisulfite converted
using the EZ-DNA methylation Gold Kit (Zymo research)
according to the kit's manual. For PCR amplicons, locus-
specific primers (Table 1) were designed with an in-house
tool. PCRs were set-up in 30-pl reactions using 3 pl of 10x
Hot Fire Pol Buffer (Solis BioDyne), 4 pl of 10 mM dNTPs
(Fisher Scientific), 2.25 ul of 25 mM MgCI2 (Solis BioDyne),
0.6 ul of amplicon-specific forward and reverse primer
(10 uM each), 0.3 pl of Hot FirePol DNA Polymerase (5 U/
ul; Solis Biodyne), 1pl of bisulfite-converted DNA, and
18.25 pl of double distilled water. PCRs were run in an ABI
Veriti thermo-cycler (Thermo Fisher) using the following
program: 95°C for 10 min, then 40 cycles of 95°C for 1
min, 2.5 min of 56 °C and 40s at 72 °C, followed by 7 min
of 72°C and hold at 4°C. PCR products were cleaned up
using Agencourt AMPure XP Beads (Beckman Coulter).
All amplified products were diluted to 4 nM, and NGS tags
were finalized by a second PCR step (5 cycles) followed by a
final clean-up (Agencourt AMPure XP Beads). Finally, all
samples (set to 10 nM) were pooled, loaded on an Illumina
MiSeq sequencing machine, and sequenced for 2 x 300 bp
paired-end with a MiSeq reagent kit V3 (Illumina) to ca.
10k—20k fold coverage. The raw data was quality checked
using FastQC and trimmed for adaptors or low-quality
bases using the tools cutadapt and Trim Galore!. Paired
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reads were joined with the FLASh tool. Next, reads were
sorted in a two-step procedure by (i) the NGS barcode
adaptors to assign sample ID and (ii) the initial 15 bp to as-
sign amplicon ID. Subsequently, the sorted data was loaded
into the BioAnalyzer HT using the following settings: ana-
lyzed methylation context was set to “C,” minimal sequence
identity was set to 0.9, and minimal conversion rate was set
to 0.95. The filtered high-quality reads were then used for
methylation calls of the respective CpGs.

RNAseq processing and analyses
Total RNA from cells was extracted by the RNeasy Mini
Kit (Qiagen) according to the manufacturer’s instructions.

H&E-stained slides of all FFPE blocks were assessed
for tumor cell content, and the most suitable FFPE block
was selected for DNA extraction. For each patient, six
tissue shavings per FFPE block, cut at a thickness of
10 pm each, were submitted for RNA extraction. In cases
in which the tumor purity in the selected FFPE block
was lower than 70%, vital tumor was enriched by macro-
dissection, scratching unstained slides after the selection
of cellular areas by H&E assessment.

Total RNA from FFPE-macrodissected tissues was ex-
tracted by the RNeasy FFPE kit (Qiagen) according to
the manufacturer’s instructions on a Qiacube machine
(Qiagen).

RNA and further cDNA library quantities were measured
using Qubit 2.0 Fluorimetric Assay (Thermo Fisher Scien-
tific) while quality and size were measured by High Sensi-
tivity RNA and DNA screen tapes (Agilent Technologies).
Sequencing libraries were constructed starting from 50 to
100 ng of total RNA by optimizations of the QuantSeq 3’
mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen
GmbH). DNA libraries were equimolarly pooled at groups
of 96 samples and sequenced on a NextSeq 500 high-
output, single-end, 75 cycles, v2 Kits (Ilumina Inc.).

Sequenced reads were quality checked using fastQC for
read mapping and transcript quantification; we used Sal-
mon (v0.8.1) [25], and we use hg38 for indexing reference
transcripts. Raw counts and transcripts were normalized
with TMM using edgeR. All subsequent analyses were
conducted using normalized counts. We corrected batch
effect within FFPE and fresh sample with SVA [26] using

Table 1 Primer sequences used in this study. “X” refers to sample-specific barcode sequences

Forward primer (5'-3')

Reverse primer (5'-3')

Mapping (hg19)

PAX8 GTTTAATTTGGGAGGGAAAAGGTTGTT
region

PCR TCTTTCCCTACACGACGCTCTTCCGATCT
primer

tags

2nd PCR CAAGCAGAAGACGGCATACGAGAT

primers XXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

AATTAAAACTCAACTACCTCCCTCTTC

chr2:114036300-
114036716

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

AATGATACGGCGACCACCGAGATCTACA
CXXXXXXTCTTTCCCTACACGACGCTCTTCCGATC
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default parameters. For visualization purposes, we used
logCPM.

Differential expression analyses were performed with
edgeR, setting FDR <0.05 and logFC > 0.8 to maximize
the following analyses (causal network, downstream effect
analyses). Gene groups were identified with WGCNA con-
sidering among the module-trait relationships (MTRs)
those with high correlation with OSE-like tumors.

Survival analysis was performed considering either the
5-year span overall survival (days elapsed from surgery to
death) or the 5-year span disease-free survival (days
elapsed from surgery to relapse’s diagnosis), and calcu-
lated using the lifelines package [27]. p value was com-
puted by a standard Log rank test.

We computed the Cox proportional hazard model
using the python package lifelines (version: 0.24.4), con-
sidering the relevant metadata as categories (for continu-
ous values, we used a threshold based on quantiles).

We used a combination of causal network analysis, down-
stream effects analysis, upstream regulator analysis, and mol-
ecule activity predictor from ingenuity pathway analysis
(QIAGEN Inc. ingenuity pathway analysis at https://www.
giagenbioinformatics.com/products/ingenuitypathway-ana-
lysis) to identify the predicted functional impact of the genes
identified through differential expression or correlation net-
work analysis.

To test the robustness of the transcriptomic-based
classification, we used a machine learning approach (py-
thon 3.6, sklearn 0.21). First, we defined the training set
and test set with a 70-30% ratio, then we calculated
automatically the best parameters for the specific set of
samples and applied a bagging algorithm with patch se-
lection [28] using decision trees as classifier until the
convergence was reached.

External gene expression dataset classification

To classify the two external HGSOC cohorts (TCGA
[29, 30], n =386, RNAseq, and Tothill [31, 32], n =157,
microarray), we selected the genes identified as coher-
ently differential expressed between FI-like and OSE-like
tumors in both cells and FFPE (n = 38 genes). Consider-
ing only the selected genes and considering separately
the two datasets, we used the Louvain clustering algo-
rithm for community detection [23] changing the size of
the communities to identify the most stable clusters (py-
thon package scanpy 1.4.5.post3, considered resolution
range between 0.1 and 1.5, final value for TCGA =0.3,
final value for Tothill =0.8). We annotated the clusters
identified on diffusion maps and selected the most dis-
tant clusters as the most robustly stratified samples
(TCGA n =206, Tothill »=102). To assign the correct
origin, we considered the concordance of the gene ex-
pression values in our stratified datasets.
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To apply Tothill's HGSOC molecular classification
[31] to the two datasets, we used the R package consen-
susOV (version 1.8.1).

CIBERSORT analysis was performed in absolute mode
using the online tool available at https://cibersort.stan-
ford.edu, disabling quantile normalization and using the
standard LM22 signature to deconvolve the frequency in
immune populations in the TCGA dataset. One hundred
permutations were performed. The immune cell categor-
ies were compared between FI-like and OSE-like tumors
by multiple T test with FDR correction.

IHC staining

For immunohistochemical evaluation of T-helper and T
cytotoxic lymphocyte prevalence in tumor samples,
formalin-fixed, paraffin-embedded specimens were cut
into 3-pm sections. Heat-induced epitope retrieval was
performed in PTLink Dako with an EDTA buffer (pH
9.0) for 15min. IHC staining for CD4+ and CD8+
tumor-infiltrating lymphocytes was performed using the
anti-human CD4 monoclonal mouse antibody (clone
4B12; dilution 1:300; Dako Denmark A/S, Glostrup,
Denmark) and CD8 monoclonal mouse antibody (clone
C8/144B; dilution 1:20; Dako). Both immunostains were
performed using the EnVision FLEX+ detection system
on Autostainer Link 48 (Dako).

Quantification of CD4+ and CD8+ tumor-infiltrating
lymphocyte was performed on full-face sections by an ex-
perienced pathologist, manually counting immunoreactive
cells in 10 high power fields (x 200 magnification). In par-
ticular, CD8+ and CD4+ lymphocytes were assessed both
in the stromal compartment (including connective tissues
surrounding tumor nests, fibro-vascular cores of tumor
papillae, and the stroma at the invasive edge of the tumor
mass) and in the intraepithelial compartment (lympho-
cytes in direct contact with epithelial cancer cells) and
were recorded separately. Lymphocytes present within
tumor necrosis areas were excluded from the assessment.

Since CD4 immunoreactivity is shared by different im-
mune cell species (i.e., T-helper lymphocytes, monocytes,
macrophages, and dendritic cells), only CD4-positive cells
showing morphological characteristics attributable to lym-
phocytes were recorded, while all CD8-positive cells were
included in the analysis. For each case, the average num-
ber of stromal and intraepithelial CD8+ and CD4+ lym-
phocytes per high power field was provided. For each
sample, we derived the average number of cells positive
for the considered marker across 10 fields.

For the subgrouping in CD8 high and low, we derived
the distribution of the number CD8-positive cells inde-
pendently of the condition and classified samples ac-
cording to values higher (CD8 high) or lower (CDS8 low)
than the median.
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PAXS8 expression was evaluated on Tissue Micro Arrays
(TMAs). For each case, two representative 1-mm spots
were selected, and 3 TMAs were designed and built with a
semi-automatized Tissue Microarrayer (Galileo TMA CK
3500, Olympus). TMAs were cut into 3-pm sections and
stained with the anti-human PAX8 monoclonal mouse
antibody (clone BC12, Biocare Medical, Pacheco, CA,
USA; dilution 1:100) as described above for anti-CD4 and
CD8. Cancer cell nuclear staining intensity was recorded
and classified as absent, weak to moderate, and strong.

Luminex assay

For the detection of chemokines/cytokines, custom Lumi-
nex kits (R&D) were used (Table 2). Cells were plated at
subconfluency at day 0, changing medium at day 1 and
harvesting the supernatant at day 3. Each sample was pro-
filed in duplicate using 50 pl of supernatant per replicate
according to the manufacturer’s instructions.

RT qPCR

One microgram of RNA from each sample was reverse tran-
scribed into cDNA using the Superscript VILO kit (Thermo
Fisher) according to the manufacturer’s instructions. Two
hundred nanograms of ¢DNA was analyzed by Taqman
(Thermo Fisher) qPCR probing for DDR2 (Hs01025957),
PDGFRA (Hs00998018), SEMA6D (Hs00227965), SLITRK4
(Hs00331273), MAL2 (Hs01043579), PAX8 (Hs01015257),
PMEPA1 (Hs00375306), TNS4 (Hs00262662), SCNNI1A
(Hs00168906), and GAPDH and ACTB (Hs02758991 and
Hs0160665, normalizers) using the SsoAdvanced master mix
(Biorad). qPCR was run on a LightCycler 480 (Roche) using
the standard amplification protocol for 45 cycles, and the
average of the Ct of GAPDH and ACTB was used as

Table 2 Cytokines/chemokines profiled in HGSOC samples

List of tested molecules

CCL2/MCP-1 CCL3/MIP-1 CCL4/MIP-1 CXCLYMIG
alpha beta

CCL1/eotaxin CCL13/MCP-4 CCL17/TARC CXCL10/IP-10

CCL20/MIP-3 CCL22/MDC CCL26/eotaxin-  CXCLT1/ITACA1

alpha 3

CD25/IL-2 R CX3cL/ CXCL1/GRO CXCL13/BLL/
Fractalkine alpha BCA-1

CXCL2/GRO beta CXCL4/PF4 CXCL6/GCP-2 EGF

GM-CSF HGF IFN-gamma G-CSF

IL-1 beta/IL-1F2  IL-Tra/IL-1F3 IL-2 IL-12 p70

IL-4 IL-5 IL-6 IL-13

IL-7 IL-8/CXCL8 IL-10 IL-15

IL-17/1L-17A IL-21 IL-23 PDGF-BB

TNF-alpha TRAIL CCL5/RANTES CCL8/MCP-2

FGF basic/FGF-2  IL-1 alpha/IL-1F1  IL-17E/IL-25 VEGF-A

TGF-B1 TGF-B2 TGF-B3
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normalizer. Six independent samples were analyzed in tech-
nical triplicates.

Results

In order to probe whether DNA methylation could be
used as a developmental tracker for HGSOC’s cell of ori-
gin, we derived genome-wide DNA methylation profiles of
short-term cultures of the fimbrial epithelium (FL, # = 12),
ovarian surface epithelium (OSE, n=38), solid tumor-
derived (HGSOC, #n = 11), and ascites-derived (AS, n = 13)
tumor cells. We checked in our dataset as well as in two
independent published datasets generated from frozen tis-
sues, the Omaha [7] and Melbourne [16] cohorts, whether
the global variance in DNA methylation could already
stratify tumors on the basis of their cell of origin. To this
end, we used Uniform Manifold Approximation and Pro-
jection (UMAP) visualization, a non-linear dimensionality
reduction technique that preserves the global structure of
the data [33], to capture the largest fraction of variability
in DNA methylation. We found that neither in published
datasets nor in our cohort was it possible to bipartition
tumor samples according to FI or OSE global methylation
(Additional File 1: Fig. S1), since most of the variability is
driven by the differences existing between normal and
tumor samples. We thus reasoned that, given such a dis-
tribution of variance, we could enhance the potential sen-
sitivity of DNA methylation as a cell-of-origin tracker by
first defining the specific subset of differentially methyl-
ated CpGs able to distinguish FI and OSE. We thus identi-
fied 13,926 differentially methylated sites (DMS) between
the two normal cell types in culture (Fig. 1a) (henceforth
OriPrint), composed of 8613 hypermethylated CpGs and
5313 hypomethylated CpGs in OSE, and which were
enriched for open sea CpG areas [34] and were function-
ally annotated mostly to introns and intergenic regions
(Additional File 1: Fig. S2). Next, we determined whether
this blueprint, which was derived from cells in culture,
was able to segregate correctly FI and OSE tissues (Fig. 1b).
As shown in Fig. 1c, a hierarchical clustering based on
Pearson’s correlation confirmed that the tissue samples
were correctly divided into FI and OSE, thus proving that
our culture conditions recapitulated the complexity and
preserved the essential epigenetic properties of tissues
in vivo. Indeed, the very same FI sample form the Omaha
cohort that has already been misclassified as OSE in the
original published dataset [7] behaved in the same manner
also in our classification (Fig. 1c), underscoring the ro-
bustness and sensitivity of our classifier.

To see whether OriPrint could be used to stratify
HGSOC samples, we applied the same methodology to
our cohort of tumor samples and showed that tumors
were bipartitioned through the OriPrint in two classes
that we define as Fl-like and OSE-like tumors (Fig. 1d,
Additional File 1: Fig. S3).
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Next, to verify that our approach could be translated to
independent tumor cohorts as well as to frozen biopsies,
we applied the OriPrint classifier to the Melbourne cohort
and analyzed the global variance in DNA methylation
across Fl-like and OSE-like HGSOC. Interestingly, by
principal component analysis, we could show that the
superimposition of the categories defined by OriPrint
identified two contiguous but distinguishable clusters in
the first two components of variance, thus indicating that
the cell of origin is the first responsible of the variability

existing in DNA methylation between HGSOC samples
(Fig. 1e). This distinction was also evident when using al-
ternative visualization methods (Additional File 1: Fig. S4).

Together, these results show that OriPrint is able to ro-
bustly stratify HGSOC tumors into Fl-like and OSE-like
subtypes across independent clinical cohorts and sample
processing pipelines. To further confirm this finding, we
used diffusion map coupled to pseudotime analysis, which
was previously used for single-cell RNA sequencing data to
derive the developmental progression of cells and identify
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branching decisions and differentiation endpoints [35, 36],
to highlight whether an evolutionary timeline exists be-
tween tumors and the two origins. Using OriPrint and set-
ting the origin in both OSE and FI samples, we calculated
the two pseudotime lines and could show that HGSOC
samples are a mandatory step in pseudotime evolution be-
tween the two normal tissues. Moreover, we showed that
the intersection between the two paths occurs centrally in
the tumors’ distribution (Fig. 2a), thus further confirming
that both origins are plausible for HGSOC. Instead, using
the whole set of CpGs, we could not score any clear evolu-
tion between FI and OSE and HGSOC (Additional File 1:
Fig. S5), thus proving that OriPrint is necessary to stratify
tumors according to their cell of origin.

In order to determine whether the classification was solid
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additional clustering methods, Louvain [23] and HDBScan
[24], to stratify HGSOC and checked the concordance of clas-
sification by OriPrint. We could show that, overall, we could
achieve >92% concordance of classification among the three
clustering methods used, thus proving the robustness of this
approach to define FI and OSE-originated tumors (Fig. 2b).
Next, we sought to determine whether, by this
method, the same conclusions could be drawn directly
from the full set of CpG or if OriPrint was necessary
to define the classification into FI-like and OSE-like
tumors. We applied Gaussian Mixture Model (GMM)
clustering to the entire set of CpG in the space derived
from the first two components of variance (i.e., the
components accounting for the highest variance in the
system) and were able to derive two probability distri-

and not bound to the clustering method used, we applied two ~ butions for samples. We then overlaid the
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classification derived from OriPrint and could show
that the two clustering methods are mostly superim-
posable (Fig. 2c). Thus, we could show that HGSOC
cell of origin is one of the main determinants of the
differences in DNA methylation existing among
HGSOC samples.

Stratification of a retrospective HGSOC cohort

In order to check whether the two subtypes had a different
impact on patients’ prognosis, we decided to stratify a
well-characterized FFPE cohort of HGSOC (n = 150 inde-
pendent patients, Istituto Europeo di Oncologia (IEO) co-
hort) (Additional File 2: Table S1). Since FFPE fixation
compromises bisulfite-based DNA methylation analysis,
we concentrated our effort on analyzing transcriptomic
profiles that we obtained from our cohort of samples in
culture and from macrodissected FFPE tissues. We then
used the differentially expressed genes between FI-like
and OSE-like tumors, previously assigned to either of the
two tissue of origin through DNA methylation (n =3 FI-
like, n = 8 OSE-like), to stratify the cohort and to perform
survival analysis (Fig. 3a). Using this method, we found
that the patients affected by OSE-like tumors had a worse
prognosis, as assessed by overall survival analysis (differ-
ence at median survival 1.6 years, p value <0.0007). In-
stead, we could not score an impact on the disease-free
survival of patients (difference at median recurrence 0.3
years, p value <0.07) (Fig. 3b), indicating that both sub-
types are equally prone to recurrence in vivo. Additionally,
we performed Cox multivariate analysis, showing that the
tissue of origin of HGSOC is the main determinant of pa-
tients’ survival (Fig. 3¢, Additional File 2: Table S2).

To check whether the difference in overall survival was
due to the presence of subtype-specific mutations, we ana-
lyzed the mutational status of BRCAI and BRCA2
(BRCA1/2), which has been shown to positively correlate
with patient’s survival [29], in a subset of samples from pa-
tients who underwent genetic testing as part of their clin-
ical evaluation and family history. We could show that
BRCA1/2 mutations are present in both subtypes with no
difference in frequency in the two groups, thus indicating
that the mutational status of these genes is not responsible
for the difference in survival existing between the two
groups (Fig. 3d).

To test the robustness of the RNA-based stratification
method, we used a machine learning approach [28, 37]
aimed at defining the samples that are consistently classi-
fied as FI-like and OSE-like. More in detail, we permuted
1000 times the genes used for the generation of the model
that was then applied to the test set to derive the classifi-
cation into our categories. We then shuffled 1000 times
the samples to be used for the training set and test set and
reiterated the stratification method. The samples that
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cumulatively did not reach 75% classification consistency
across iterations were classified as “uncertain” (n =22,
14.5%). We then compared the overall survival curves of
the newly defined FI-like and OSE-like tumors (88% con-
sistent with the previous stratification method) and could
confirm a significantly worse prognosis in patients affected
by OSE-like tumors (Additional File 1: Fig. S6A), thus
showing the robustness of our approach.

Next, we used transcriptomic data to apply our stratifica-
tion approach to two published datasets, the TCGA cohort
[29] and the Tothill cohort [31]. Specifically, the TCGA co-
hort entails FFPE samples profiled at the transcriptomic
(RNAseq) and DNA methylation level but limited to the
27k array platform resolution, which does not provide suffi-
cient coverage for the application of OriPrint. Tothill’s co-
hort, instead, provides only microarray expression data.
Thus, in order to define the most universal and robust tran-
scriptional signature to be translated across sample prepar-
ation (i.e., whole slice FFPE versus macrodissected
specimens) and transcriptomic profiling methods (RNAseq
versus microarrays), we derived a new signature defined by
genes that were differentially expressed between FI-like and
OSE-like tumors, in both cells and FFPE samples. We then
applied the Louvain algorithm to cluster our samples and
used diffusion maps to reveal the most separated subsets of
samples in both cohorts (TCGA and Tothill) and thereby
identify FI-like and OSE-like tumors (TCGA cohort: FI-like
172, OSE-like 34, uncertain 180; Tothill’s cohort: FI-like 58,
OSE-like 44, uncertain 55). Next, we performed survival
analysis independently on both datasets and found that pa-
tients affected by OSE-like tumors show a consistently
worse trend in overall and disease-free survival (Additional
File 1: Fig. S6B-C, Additional File 2: Table S3). In addition
to this, by multivariate analysis, we found that the main risk
factor for adverse prognosis in the TCGA cohort is OSE-
derived HGSOC (Additional File 1: Fig. S6D-E, Additional
File 2: Table S2), thus corroborating our findings from the
IEO cohort. Also, by performing overall and disease-free
survival analysis on the union of the three datasets, we
found a statistically significant difference in both parame-
ters over the course of the entire follow-up (overall survival:
difference at median 8.5 months, p value = 0.0006; disease-
free survival: difference at median 5.2 months, p value =
0.0002) (Fig. 3e, Additional File 2: Table S3). Finally, we
performed multivariate analysis using the common factors
available for the three datasets and could confirm OSE-
derived HGSOC as one of the main risk factors for HGSOC
patients (Fig. 3F and Additional File 2: Table S2). Taken to-
gether, these findings confirm the tissue of origin as a main
determinant for patient’s prognosis.

Finally, we checked in the TCGA cohort whether there
were differences in terms of mutational landscape be-
tween the two tumor subtypes, but could not find any
statistically ~different frequency in mutated genes
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(Additional File 2: Table S4). Interestingly, we found that  Definition of subtype-specific transcriptional signatures
the two tumor subtypes carried differential copy number  To gain insight into the specific transcriptional features
burden (fraction of the genome altered), with OSE-like  that characterize the most detrimental HGSOC, i.e., OSE-
tumors being less impacted by copy number gain/loss like tumors, we performed Weighted Gene Correlation
(Additional File 1: Fig. S7). This result is possibly indica-  Network Analysis (WGCNA) on all sample categories (FI,
tive of a less impacted DNA damage response in OSE-  6: Fl-like, 3; OSE, 8; OSE-like, 8 samples) and identified
like tumors resulting in a worse response to carboplatin/ 1378 genes whose levels of expression correlate specific-
paclitaxel treatment [38]. ally in OSE-like tumors.
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In order to identify the upstream regulator pathways
that could account for the specific gene expression pat-
tern of these tumors, we performed IPA causal network
analysis on WGCNA genes. Through this approach, we
identified 6 pathways that were regulating 80 genes spe-
cific for OSE-like tumors (TNF, BRD4, EOMES, BMP15,
AIF1, SLPI). Specifically, the TNF pathway is predicted
to be deactivated in OSE-like HGSOC, suggesting a re-
duced inflammatory response elicited by these tumors,
while the other pathways are predicted to be activated
and associated to extracellular matrix remodeling and
WNT/B-catenin activity (Fig. 4a).

To understand the effect of the genes identified by
WGCNA on OSE-like tumors’ fitness, we performed
IPA disease and function analysis. This highlighted a
consistent inactivation of the cell death-related categor-
ies, with a concomitant activation of the cell survival-
related genes, and the activation of categories related to
cell-to-cell signaling and interaction and cell movement
(Fig. 4b, c). Taken together, these data suggest higher fit-
ness and survival for OSE-like tumors.

Thus, in order to probe the consequences of the path-
ways’ alterations identified in FI-like and OSE-like tumors,
we proceeded to a differential expression analysis between
these two subtypes. This uncovered 146 differentially
expressed genes (72 downregulated genes and 74 upregu-
lated genes in OSE-like tumors) that distinguished the two
categories, consistently associated with decreased inflam-
matory response in OSE-like tumors, thus confirming our
observations in WGCNA (Fig. 4d).

To further dissect the molecular features that characterize
these two tumor subtypes, we took advantage of the pub-
lished molecular classification for HGSOC by Tothill and
colleagues [31] that identified four molecular subclasses
(Cl1—mesenchymal, C2—immunoreactive, C4—prolifera-
tive, C5—differentiated). We used the minimal signature of
validated classifier genes [39] that were expressed in our
dataset and found that OSE-like tumors resembled mesen-
chymal tumors, while skewing away from the immunoreac-
tive phenotype (Fig. 5a, b). Moreover, we checked whether
also the stratified TCGA and Tothill’s cohort showed an en-
richment for any of the molecular subclasses and found
that, consistently with our cohort, OSE-like tumors are
strongly enriched in the C1 mesenchymal category (p =
1.89e-26 and 4.24e-15 hypergeometric test, respectively)
(Fig. 5¢), thus further corroborating our findings.

OSE-like tumors have an immunomodulatory phenotype

In order to further investigate the OSE-like immunomod-
ulatory transcriptional phenotype (Figs. 4 and 5) in rela-
tion to its worse prognosis, we first performed IHC
staining for cytotoxic (CD8+) and T-helper (CD4+) lym-
phocytes for the full cohort of FFPE samples. We observed
an increased amount of CD8+ cells in OSE-like tumors as
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compared to FI-like tumors in both the stromal and intra-
tumor compartment, while we could not detect any differ-
ence in the CD4+ population amounts among the two
groups (Fig. 6a, b). As the tumor-immune crosstalk for
HGSOC is still largely uncharted, these results prompted
us first to understand whether a higher amount of cyto-
toxic T lymphocytes could impact patients’ prognosis,
subdividing FlI-like and OSE-like groups into CD8+ high
and low and performing overall survival analysis. We did
not score any difference in survival at 5 years, while at 3
years, we found that higher amounts of CD8+ cells in
OSE-like tumors correlated with an initial positive impact
on patients’ prognosis (Fig. 6¢). Hence, while OSE-like tu-
mors are able to attract CD8+ cells, the extent of their re-
cruitment does not account for the patients’ overall worse
prognosis, despite suggesting that OSE-like tumors shape
their immune microenvironment.

To further investigate a possible re-wiring of the im-
mune compartment by OSE-like tumors towards immune
suppression, we applied the CIBERSORT algorithm [40]
to TCGA samples to deconvolute the immune compos-
ition of HGSOC. By comparing Fl-like and OSE-like tu-
mors, we found increased amounts of memory resting T
cells and M2 polarized macrophages in OSE-like tumors
(Additional File 1: Fig. S8), the latter previously associated
to immune suppression in several types of cancers [41].

Finally, to understand whether OSE-like and FI-like tu-
mors were also characterized by differential immune sig-
naling, we performed Luminex assay screening for 51
cytokines/chemokines in the supernatant of cultured cells.
Among those, we were able to identify 9 proteins that
were able to distinguish between the two groups (Fig. 6d).
While CCL3 and IL10 (upregulated in FI-like tumors)
have been described as molecules able to elicit antitumor
response [42, 43], the molecules upregulated in OSE-like
tumors have all been associated with the induction of im-
munosuppressive response and increased tumor invasive-
ness [44—48]. These results confirm that OSE-like tumors
have an immune secretory landscape that is compatible
with the suppression of immune response and with a
negative impact on patients’ prognosis.

PAX8 is differentially regulated according to the origin of
HGSOC

Last, we probed the correlation between gene expression
and DNA methylation across FI-like and OSE-like to test
whether, beyond its cell-of-origin-based classifying func-
tion, the epigenetic traces from OriPrint could also re-
veal further biological insight about the two tumor
types. We found 38 genes that were both differentially
expressed and methylated at the promoter level between
FI-like and OSE-like HGSOC and validated their expres-
sion by qPCR (Additional File 1: Fig. S9A-B). Among
them we focused on the paradigmatic case of PAXS,
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the difference in expression of the signature in the two groups. b Boxplot of the z-score relative to the expression of the mesenchymal (top) and
immunoreactive (bottom) signatures in Fl-like (purple) and OSE-like (orange) tumors. ¢ Frequency stacked barplot for the proportion of Tothill's
molecular classes in Fl-like and OSE-like tumors considering TCGA cohort (left panel) and Tothill's cohort (right panel). The distribution in the
entire considered dataset is reported on the rightmost bar of each panel (TCGA and Tothill, respectively)
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given its historical record as a defining marker for
HGSOC [7, 49, 50] whose expression is shared with the
fimbrial epithelium. Indeed, this latter feature has been
proposed as one of the demonstrations of the Miillerian
origin of HGSOC. However, precisely since not all
HGSOC samples express PAX8, we sought to determine
whether PAXS8 expression could be related to the cell of
origin of this disease.

We indeed found that PAXS is expressed in FI but not
in OSE samples and remains differentially expressed be-
tween FlI-like and OSE-like tumors, thus recapitulating
the expression pattern from the tissues of origin. To
understand whether this pattern of expression was
reflected also at the regulatory level, we analyzed the
level of methylation of its promoter in our samples.
Consistent with the differences in gene expression,

PAXS8 was differentially methylated among FI and OSE
samples and, also, between FI-like and OSE-like tu-
mors, in an anticorrelative fashion with gene expression
(r =-0.85) (Fig. 7a, b). We validated these findings
through qPCR and targeted bisulfite sequencing (Add-
itional File 1: Fig. S9C-D), thus confirming a differential
regulation for this gene aligned to the cell of origin of
this disease. To verify that this difference was true also
at the protein level, we performed immunohistochemis-
try analysis on a tissue microarray encompassing 142
samples from our cohort of FFPE samples. As expected,
we found that FI-like tumors were enriched in tumors
expressing high levels of PAX8 (Fig. 7c) when com-
pared to OSE-like tumors.

Finally, we checked also in the TCGA cohort the
levels of DNA methylation of the 38 differentially
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Fig. 6 OSE-like tumors show an immunomodulatory phenotype. a Dotplot showing the number of CD8+ cells (top panels) and CD4+ cells (bottom
panels) in stromal and intratumoral regions. Mann-Whitney U test was used to derive statistical significance (*p < 0.05, **p < 0.01, ns = non-significant).
b Immunohistochemistry staining for CD8 and CD4 in Fl-like and OSE-like tumors. Representative pictures are shown. Red arrows: stromal positive cells.
Black arrows: intratumoral positive cells. Scale bar= 100 um. ¢ Kaplan-Meier overall survival curves for Fl-like and OSE-like affected patients, subdivided
in CD8 high and low. The dashed line is set at 3-year survival. Log rank test results for significance are shown in the bottom table. d Heatmap of the

level of protein expression of cytokines/chemokines segregating Fl-like (purple) and OSE-like (orange) tumors. Distance = Euclidean

expressed/methylated genes (Additional File 1: Fig.
S10) originally identified in our in-house cohort by
OriPrint. Only 19 of them were covered in the TCGA
27k array and showed the same pattern of differential
methylation between FI-like and OSE-like, a difference
that reached statistical significance for 9 of them. Of
note, PAX8 was differentially methylated between FI-
like and OSE-like tumors also in this setting, showing
a consistent difference between the two subtypes

(Fig. 7d) that confirms PAX8 as an origin-specific
marker for FI-like tumors.

Discussion

High-grade serous ovarian cancer (HGSOC) is a major
unmet need in oncology. The lack of suitable human ex-
perimental systems that recapitulate the pathogenesis of
the tumor is a well-recognized cause of the negligible
progress over the last decades [3, 4], with virtually no
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improvement in patients’ outcome since the introduc-
tion of cis-platin as first-line treatment in the 1980s [3,
4]. In this regard, the persistent uncertainty regarding
the tissue of origin represents a particularly conspicu-
ous hurdle for the elucidation of the molecular patho-
genesis as a rational basis for the development of
targeted therapies.

In contrast to the previously widely accepted “incessant
ovulation” hypothesis [51], according to which tumors
could arise in ovaries as the result of the continuous break/
repair of the ovarian surface epithelium, more recent evi-
dence had been increasingly emphasizing the role of the
distal tract of the fallopian tube as the most likely tissue of
origin of HGSOC, largely as a result of the identification of
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STIC carrying a core subset of mutations present in both
primary and metastatic tumors from the same patient [8].
To this respect also, the incessant ovulation hypothesis has
been revisited, with emphasis on the possible role of the fol-
licular fluid in creating a pro-inflammatory environment in
the tuba during oocyte capture [51]. Additionally, the con-
tinuous break/repair cycle of the ovarian surface epithelium
could favor the implant of tumor cells shedding from the
fimbria, which in turn could further develop inside the
ovary as primary inclusion cysts and, in a second moment,
as full-fledged HGSOC. Concomitantly, however, phylogen-
etic mutational analysis from different studies posited that a
significant fraction of STIC (25%) could actually represent
metastatic rather than primary lesions [9]. Along with clear
evidence from murine models showing that genetic alter-
ations in both fallopian tube and ovarian surface epithelia
can drive tumorigenesis, this contributed to an enduring
uncertainty about the relative oncogenic contribution of ei-
ther epithelium, a situation unlike that of virtually any other
solid tumor thanks to the molecular progress of the last
decade [52-58]. Here we tackled and solved this problem
by analyzing DNA methylation, given recent evidence
pointing to its conservation across normal tissues and their
corresponding tumors that warranted its use as a develop-
mental stratifier in multiple contexts [12, 13]. We thus de-
rived DNA methylation profiles for both normal (FI and
OSE) and tumor (HGSOC and AS) samples. While a global
DNA methylation analysis, as in approaches adopted by
previous more limited studies [7], was not able to segregate
tumors in a tissue of origin-consistent manner (capturing
instead solely the differences between normal and tumor
samples), we demonstrate that a strategy based on the prior
identification of differentially methylated sites between FI
and OSE (OriPrint) allows the robust bipartition of
HGSOC, in both cultured cells and whole frozen tissues.
Moreover, the identified categories reflect the global vari-
ability of HGSOC, thus assigning for the first time a role
for the cell of origin in determining the heterogeneity
among different tumor samples.

The a priori epigenetic stratification in FI-like and OSE-
like HGSOC allowed us to interrogate a larger retrospect-
ive cohort to define differentially expressed genes between
these two categories. Specifically, to interrogate the clin-
ical relevance of our stratification, we resorted to RNAseq
profiling of a retrospective cohort of macrodissected FEPE
HGSOC samples, employing a shallow 3'-UTR RNAseq
approach that allowed us to reduce the library preparation
and sequencing costs down to the range of 100 € per sam-
ple, thus demonstrating the feasibility of such a stratifica-
tion for clinical translation. In particular, this approach
allows the cost-effective transcriptomic characterization of
tumor subtypes through the detection of ~ 15,000 genes,
thus avoiding the reduced sensitivity/specificity bound to
the restriction to minimal signatures usually employed for
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classification [59]. By this approach, we found that OSE-
like tumors have a negative impact on patients’ prognosis,
a finding confirmed also on the TCGA and Tothill’s co-
horts and consistent with previous reports [57, 58]. While
the differences in survival between patients affected by FI-
like and OSE-like HGSOC are mostly not statistically sig-
nificant when considering the datasets separately, we can
attribute this to the more heterogeneous composition of
HGSOC samples in these two cohorts (i.e., whole slice
FFPE vs. macrodissected tissues) and to the alternative
transcriptomic profiling platform used in Tothill’s cohort
(i.e., gene expression microarrays). Moreover, our gene ex-
pression signature has been applied without performing
any batch correction among datasets, further reinforcing
the universality of our strategy. Future studies aimed at
the identification of common features existing between
different sample types and profiling approaches based on
deep learning should allow the integration of several data-
sets to better investigate the effect of the tissue of origin
on patients’ prognosis. Interestingly, we also found that
there is a specific enrichment/skew, in FI-like versus OSE-
like tumors, of previously described molecular subtypes of
HGSOC [31]. In particular, we identified the C1 mesen-
chymal category, which has been previously described as
encompassing more aggressive cases with poor outcome,
as being the main subtype within OSE-like tumors. This
evidence is in line with the survival status of patients in
our cohort, with similar trends in TCGA and Tothill’s co-
hort, and with previous reports on integrated publicly
available microarray data, linking the OSE origin to a
more mesenchymal phenotype [57]. In contrast with this,
two other studies previously linked the mesenchymal cat-
egory to Fl-derived tumors [55, 56]. The most parsimoni-
ous understanding of this discrepancy can be attributed to
the fact that these studies were neither aimed at the gener-
ation of a univocal classifier (i.e., a statistical or computa-
tional method to assign from a probability score
exclusively either one or the other origin to samples) nor
at evaluating its prognostic significance, being rather
based on a scoring system determining the similarity of
each sample to either the two tissues of origin. Also, while
our strategy is based on the differential expressed genes
between previously DNA methylation-stratified FI-like
and OSE-like tumors, thus directly reflecting the specific
expression features of the two tumor subtypes, these
studies were heavily relying on genes differentially
expressed between normal tissues. The different strati-
fication outcome could be thus reflecting the overriding
differences existing between the normal tissues rather
than between the two tumor subtypes. Regardless, con-
sistent with previous findings, our stratification strategy
confirmed the heavy shift in ratio between FI- and
OSE-like tumors in published datasets towards FI-
derived tumors. This is contrasting with the higher
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representation of OSE-like tumors in the IEO cohort
and highlights a cohort-dependent incidence of tumors
derived from each origin. Extended studies, aiming at
the stratification of tumors in datasets derived from dif-
ferent geographical areas, will shed light on the possible
epidemiological features that result in such diverse inci-
dence of these two tumor subtypes.

BRCA1/2 mutations have previously been linked to in-
creased survival of patients with HGSOC [29]. To check
whether the increased survival of FI-like HGSOC affected
patients could be due to the co-occurrence of BRCA1/2
mutations, we analyzed the occurrence of these mutations
on a subset of either tumor subtype, which were derived
from patients who underwent genetic testing as part of
their clinical evaluation and family history. Despite the
higher rate of BRCA1/2 mutation in this subset, which is
likely due to the specific subset we considered, we found
that BRCA1/2 mutations occur in both types of tumors,
thus excluding that these genes are mutated exclusively in
the FI-like subtype. Another important aspect linked to the
DNA damage response (DDR) is the emerging concept of
“BRCAness,” according to which tumors can be character-
ized by mutations/gene inactivation/gene expression pat-
terns whose outcome is similar and closely related to the
mutational status of BRCA1/2 [60]. While we cannot ex-
clude that our phenotype segregates with the BRCAness
phenotype in its full extent, the comparable distribution of
BRCA1/2 mutations among FI-like and OSE-like HGSOC
should orient future studies towards the dissection of the
role that other alterations in the DDR pathway may poten-
tially contribute to the difference in survival between pa-
tients affected by two tumor subtypes that we identified. To
further investigate potential differences in the mutational
landscape of FI-like and OSE-like tumors, we checked in
the TCGA cohort whether any difference could be found in
the genetic profiles of these two tumor subtypes. Compat-
ible with a common developmental ancestor, whose influ-
ence on the epigenetic landscape could result in a similar
permissiveness to genetic insult, we found that there was
no statistically significant difference in terms of frequency
of mutations. Interestingly, we found a differential copy
number burden between Fl-like and OSE-like tumors, the
former presenting higher FGA. This could be further cor-
roborating the hypothesis that DDR could be more im-
pacted in FlI-like tumors, thus increasing genomic
instability and conferring better response to platinum ther-
apy in patients affected by this tumor subtype. Indeed, re-
cent in vivo studies are showing better response to
carboplatin/paclitaxel treatment for FI-derived tumors [55,
61]. This is consistent with the better prognosis of patients
affected by FI-like tumors in the IEO cohort, the latter be-
ing characterized by patients treated homogeneously with
standard carboplatin/paclitaxel regimens.
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In order to gain deeper insight into the molecular fea-
tures of OSE-like tumors, we analyzed both WGCNA
genes and genes that were differentially expressed between
Fl-like and OSE-like tumors. We identified reduced in-
flammatory response, higher cell viability, increased cell-
to-cell signaling, and motility as paradigmatic features of
OSE-like tumors. In particular, this is supported by recent
evidence showing that the amount of tumor-infiltrating
lymphocytes (TILs) directly correlates with patients’ prog-
nosis [62]. Moreover, the reduced cell death coupled to in-
creased viability and higher cell movement are fully
compatible with a more aggressive phenotype in these tu-
mors. We validated these results by cytokine/chemokine
profiling, T lymphocyte staining, and CIBERSORT ana-
lysis, showing that OSE-like tumors present, indeed, an
immune-modulatory phenotype. Specifically, our analysis
shows that CD8+ lymphocytes are recruited to the tumor
site and this mitigates the worse prognosis OSE-like tu-
mors in the short term, consistently with the published lit-
erature [62]. At the 5years’ benchmark, the worse
prognosis of OSE-like tumors remains however unaffected
by the extent of CD8+ infiltrate, pointing to the possibility
that active immunosuppression could eventually set in
and contribute to the worse outcome of this specific
tumor type. This is consistent also with our inference, in
the TCGA dataset, of increased recruitment of M2 macro-
phages that are well-known repressors of the host’s im-
mune response against the tumor [41] and with the
expression of immunosuppressive cytokines that we
scored from OSE-like samples. Taken together, these re-
sults can now pave the way to a systematic, tissue-of-
origin tailored analysis of the HGSOC-immune system
crosstalk, hopefully informing the rational application of
immune-checkpoint therapies [63, 64] in the context of
our refined stratification of HGSOC patients.

Finally, among differentially expressed genes between FI-
like and OSE-like tumors, we identified 38 genes that are
also differentially methylated at the promoter level, in an
anticorrelative fashion. These genes represent a first glimpse
into origin-specific molecular targets for HGSOC. Among
them, we concentrated on PAXS, a well-known marker of
HGSOC and several tumors of Miillerian origin. Of note, its
expression and promoter methylation follow the trend exist-
ing in normal tissues, suggesting that its expression in tu-
mors could be used as a surrogate lineage tracer, rather
than a target for therapy. Nonetheless, evidence shows that
the knockdown of PAX8 in HGSOC results in increased
apoptosis and reduced proliferation and migration in cancer
cell lines [65]. Moreover, the knockdown/overexpression of
this gene did not result in tumorigenesis in normal tissues
[49, 65], thus suggesting that PAXS8 interference could be a
potential specific target for HGSOC. Our results build upon
this knowledge, allowing to assign PAX8 as a FI-like
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HGSOC-specific target that could be investigated for im-
proved treatment of this tumor subtype.

Conclusions

In conclusion, our results demonstrate that both fimbrial
and ovarian surface epithelium originate HGSOC in
humans, supporting also the adoption of the more appro-
priate nomenclature high-grade serous tubo-ovarian car-
cinoma (HGSC), and establish the feasibility of adopting
the OriPrint-based classification for a rational stratifica-
tion of patients. This novel epigenetically guided classi-
fication has prognostic relevance and illuminates
subtype-specific molecular features to define a rational
roadmap towards new therapeutic targets and improved
patients’ care.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513073-020-00786-7.

Additional file 1: Figure S1. The variance in global DNA methylation
does not allow to classify HGSOC according to its cell of origin. Figure
S2. OriPrint CpGs map preferentially to intergenic regions. Figure S3.
OriPrint allow stratification of tumor samples. Figure S4. The cell of
origin is the main determinant of global variance in DNA methylation for
HGSOC. Figure S5. Diffusion pseudotime on global DNA methylome
does not allow to derive an evolutionary line from FI and OSE to tumors.
Figure S6. Survival curves are consistent after machine learning and
show similar results in published cohorts. Figure S7. OSE-like tumors
show a reduced copy number burden. Figure $8. OSE-like tumors
present an increased fraction of Memory Resting T cells and M2 macro-
phages. Figure S9. Validation of DEGs between Fl-like and OSE-like tu-
mors. Figure $S10. DNA methylation of promoters in Fl-like and OSE-like
tumors. (PPTX 6504 kb)

Additional file 2: Table S1. Description of the FFPE cohort’s clinical
data. Table S2. Multivariate analysis on IEO, TCGA, Tothill cohorts. Table
S3. Summary table of Log Rank Tests performed to determine statistical
significance of the differences in survival and progression between Fl-like
and OSE-like groups in the considered cohorts. Table S4. Mutation Fre-
quency in the TCGA cohort stratified as Fl-like and OSE-like HGSOC.

Abbreviations

AS: HGSOC from ascites; BRCA1/2: BRCAT and BRCA2 genes; CUP: Cancer of
unknown primary; DDR: DNA damage response; DMS: Differentially
methylated sites; FFPE: Formalin-fixed paraffin embedded; FGA: Fraction of
the genome altered; Fl: Fimbrial epithelium; Fl-like: HGSOC derived from
fimbrial epithelium; GMM: Gaussian Mixture Model; HGSOC: High-grade
serous ovarian cancer; OSE: Ovarian surface epithelium; OSE-like: HGSOC
derived from ovarian surface epithelium; STIC: Serous tubal intraepithelial
neoplasia; TILs: Tumor-infiltrating lymphocytes; UMAP: Uniform Manifold
Approximation; WGCNA: Weighted gene correlation network analysis

Acknowledgements

We thank for the support of TIGEM NGS and Bioinformatics Cores. We are
grateful to Prof. Pier Paolo Di Fiore who contributed to jump-start the pro-
ject, to Dr. Cristina Cheroni and Dr. Alessandro Vitriolo for discussion on data
analytical tools, to Dr. Giulia Barbagiovanni for fruitful discussion on the work,
and to Dr. Luca Marelli for the ethical compliance.

Authors’ contributions

PLR, CEV, and GT. designed the experiments and built the intellectual
framework. P.L.R. performed the experiments including cell culture, nucleic
acid extraction, and molecular biology assays. CEV. and P.LR. integrated,
analyzed, and interpreted the data. G.G. performed DNA methylation

Page 18 of 20

microarray experiments and processed the data. RL. processed FFPE samples
and performed gPCR. AM. and D.C. performed and coordinated the RNAseq
processing. AJ. performed targeted bisulfite sequencing experiments and
analyzed the data. AV. provided macrodissected FFPE samples. AB.
performed IHC staining. A\V. collected data on CD8 and CD4 IHC stainings.
AV.and AG. assembled the cohort and provided data on patients. F.C.B.
performed Luminex experiments. M.L. and U.C. provided biopsy processing
and cell culture expertise, provided some primary samples, and contributed
to the experimental discussion. P.L. downloaded and merged published
datasets and contributed to the discussion on the data analysis. V.D.
contributed to the discussion on the data analysis. JW. contributed to the
DNA methylation study design. G.G, AJ, AV, and D.C. provided the
pertinent methods paragraphs. JW, UC, LN, TM, N.C, GV, GP, and D.C.
discussed the data and revised the manuscript. P.LR, CEV, and G.T. wrote
the manuscript. P.L.R. and GT. conceived the project. G.T. supervised the
study. All authors read and approved the final manuscript.

Authors’ information
P.LR. and CEV. contributed equally to this work.

Funding

This work was supported by the Associazione Italiana per la Ricerca sul
Cancro (AIRO) (IG 2014-2017 to GT,, 1G-14622 to U.C), EPIGEN Flagship Pro-
ject of the Italian National Research Council (CNR) (to G.T), Fondazione ltali-
ana per la Ricerca sul Cancro (FIRCO) (to P.L.R), the Italian Ministry of Health
(Ricerca Corrente grant to GT,, Ricerca Finalizzata PE-2016-02362551 to U.C),
Fondazione Telethon Core Grant, Armenise-Harvard Foundation Career De-
velopment Award, European Research Council (grant agreement 759154,
CellKarma), and the Rita-Levi Montalcini program from MIUR (to D.C.), and
the Fondazione Istituto Europeo di Oncologia-Centro Cardiologico Monzino
(to M.L. and P.LR). This work was partially supported by the Italian Ministry
of Health with Ricerca Corrente and 5x1000 funds.

Availability of data and materials

The DNA methylation and RNAseq datasets generated and analyzed during
the current study are available in the ArrayExpress repository, under the
accession numbers E-MTAB-9608 [66] and E-MTAB-9605 [67], respectively.
The code relative to the generation of OriPrint can be found at https.//
github.com/GiuseppeTestalab/CellOfOrigin [20].

Ethics approval and consent to participate

The study was conducted upon approval of the Ethics Committee of the
European Institute of Oncology, Milan, following its standard operating
procedures (“presa d'atto” 12 March 2014 and 24 July 2017) and performed
in accordance with the Declaration of Helsinki. Fresh tissue samples were
obtained upon informed consent from patients undergoing surgery at the
Gynecology Division of the European Institute of Oncology. Only tissue
samples from patients who have given informed consent to (i) the collection
of samples for research purposes and their storage into the Biobank of the
European Institute of Oncology and (i) the transfer of samples to other
research institutions for cancer research purposes have been used in this
project. Collected personal data have been pseudonymized and have been
stored and processed in compliance with the applicable data protection
legislation, D. Lgs 196/2003 and, since 25 May 2018, Regulation (EU) 2016/
679 (General Data Protection Regulation).

Consent for publication
Not applicable.

Competing interests

Dr. Pasquale Laise is Director of Single-Cell Systems Biology at DarwinHealth,
Inc, New York, NY, USA. The remaining authors declare that they have no
competing interests.

Author details

'Department of Experimental Oncology, IEO, European Institute of Oncology
IRCSS, Milan, Italy. “Department of Genetics, University of Saarland,
Saarbrticken, Germany. 3Departmem of Pathology, Biobank for Translational
Medicine Unit, IEO, European Institute of Oncology IRCSS, Milan, Italy.
“Present affiliation: Department of Pathology, Fondazione IRCSS Istituto
Nazionale Tumori, Milan, Italy. *Department of Oncology and


https://doi.org/10.1186/s13073-020-00786-7
https://doi.org/10.1186/s13073-020-00786-7
https://github.com/GiuseppeTestaLab/CellOfOrigin
https://github.com/GiuseppeTestaLab/CellOfOrigin

Lo Riso et al. Genome Medicine

(2020) 12:94

Hemato-Oncology, University of Milan, Milan, Italy. °SEMM, European School
of Molecular Medicine, Milan, ltaly. Telethon Institute of Genetics and
Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics,
Pozzuoli, Italy. ®Division of Gynecologic Oncology, IEQ, European Institute of
Oncology IRCSS, Milan, Italy. ?Unit of Gynecological Oncology Research, IEO,
European Institute of Oncology IRCSS, Milan, Italy. °Present affiliation:
DarwinHealth Inc, New York, NY, USA. '"Novo Nordisk Research Center
Seattle, Inc. (NNRCSI), Seattle, WA, USA. "“Department of Translational
Medicine, University of Naples Federico II, Naples, Italy.

Received: 19 December 2019 Accepted: 30 September 2020
Published online: 30 October 2020

References

1.

10.
1.

20.

Bray F, Ferlay J, Soerjomataram |, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018,68(6):394-424.

Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review.
Cancer Biol Med. 2017;14(1):9-32.

Vaughan S, Coward JI, Bast RC, Berchuck A, Berek JS, Brenton JD, et al.
Rethinking ovarian cancer: recommendations for improving outcomes. Nat
Rev Cancer. 2011;11(10):719-25.

Bowtell DD, Bohm S, Ahmed AA, Aspuria P-J, Bast RC, Beral V, et al.
Rethinking ovarian cancer II: reducing mortality from high-grade serous
ovarian cancer. Nat Rev Cancer. 2015;15(11):668-79.

Klotz DM, Wimberger P. Cells of origin of ovarian cancer: ovarian surface
epithelium or fallopian tube? Arch Gynecol Obstet. 2017;296(6):1055-62.
Ducie J, Dao F, Considine M, Olvera N, Shaw PA, Kurman RJ, et al. Molecular
analysis of high-grade serous ovarian carcinoma with and without associated
serous tubal intra-epithelial carcinoma. Nat Commun. 2017,8(1):990.

Klinkebiel D, Zhang W, Akers SN, Odunsi K, Karpf AR. DNA methylome
analyses implicate fallopian tube epithelia as the origin for high-grade
serous ovarian cancer. Mol Cancer Res. 2016;14(9):787-94.

Labidi-Galy SI, Papp E, Hallberg D, Niknafs N, Adleff V, Noe M, et al. High
grade serous ovarian carcinomas originate in the fallopian tube. Nat
Commun. 2017 Oct 23;8(1):1093.

Eckert MA, Pan S, Hernandez KM, Loth RM, Andrade J, Volchenboum SL,

et al. Genomics of ovarian cancer progression reveals diverse metastatic
trajectories including intraepithelial metastasis to the fallopian tube. Cancer
Discov. 2016,6(12):1342-51.

Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27-56.
Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory.
Exp Mol Med. 2017;49(4).e322.

Moran S, Martinez-Cardus A, Sayols S, Musulén E, Balana C, Estival-Gonzalez
A, et al. Epigenetic profiling to classify cancer of unknown primary: a
multicentre, retrospective analysis. Lancet Oncol. 2016;17(10):1386-95.
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA
methylation-based classification of central nervous system tumours. Nature.
2018;555(7697):469-74.

Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Rakownikow Jersie-
Christensen R, et al. Phosphoproteomics of primary cells reveals druggable
kinase signatures in ovarian cancer. Cell Rep. 2017;18(13):3242-56.

Karpf AR. DNA methylome analyses implicate fallopian tube as the tissue of
origin for high grade serous ovarian cancer. Gene Expression Omnibus.
2016. https://www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE81224.
Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday
S, et al. Whole-genome characterization of chemoresistant ovarian cancer.
Nature. 2015;521(7553):489-94.

The Australian Ovarian Cancer Study Group. Whole genome characterisation
of chemoresistant ovarian cancer. Gene Expression Omnibus. 2015. https//
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65820.

Fortin J-P, Triche TJ, Hansen KD. Preprocessing, normalization and
integration of the lllumina HumanMethylationEPIC array with minfi.
Bioinformatics. 2017;33(4):558-60.

Assenov Y, Mller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive
analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11(11):
1138-40.

Villa CE, Lo Riso P. Lo Riso, Villa et al. 2020. GitHub. https://github.com/
GiuseppeTestalLab/CellOfOrigin.

21,

23.

24,

25.

26.

27.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

Page 19 of 20

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43(7):e47.

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression
data analysis. Genome Biol. 2018;19(1):15.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of
communities in large networks. J Stat Mech. 2008;2008(10):P10008.
Mclnnes L, Healy J, Astels S. hdbscan: Hierarchical density based clustering.
JOSS. 2017;2(11):205.

Patro R, Duggal G, Love M, Irizarry RA, Kingsford C. Salmon provides fast
and bias-aware quantification of transcript expression. Nat Methods. 2017;
14(4):417-9.

Leek JT. svaseq: removing batch effects and other unwanted noise from
sequencing data. Nucleic Acids Res. 2014;42(21):e161.

Davidson-Pilon C, Kalderstam J, Kuhn B, Fiore-Gartland A, Moneda L, Zivich
P, et al. CamDavidsonPilon/lifelines: v0.14.3. 2018.

Louppe G, Geurts P. Ensembles on random patches. In: Flach PA, De
Bie T, Cristianini N, editors. Machine learning and knowledge
discovery in databases. Berlin, Heidelberg: Springer Berlin Heidelberg;
2012. 346-361.

Cancer Genome Atlas Research Network. Integrated genomic analyses of
ovarian carcinoma. Nature. 2011;474(7353):609-15.

The Cancer Genome Atlas Consortium. TCGA-OV. https://portal.gdc.cancer.
gov/projects/TCGA-OV.

Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel
molecular subtypes of serous and endometrioid ovarian cancer linked to
clinical outcome. Clin Cancer Res. 2008;14(16):5198-208.

Tothill R, Tinker A, George J, Brown R, Fox S, Johnson D, et al. Expression
profile of 285 ovarian tumour samples. Gene Expression Omnibus. https.//
www.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE9891.

Becht E, Mclnnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al.
Dimensionality reduction for visualizing single-cell data using UMAP. Nat
Biotechnol. 2018;37:38-44.

Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al.
Validation of a DNA methylation microarray for 450,000 CpG sites in the
human genome. Epigenetics. 2011,6(6):692-702.

Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-
cell analysis of differentiation data. Bioinformatics. 2015;31(18):2989-98.
Haghverdi L, Bittner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime
robustly reconstructs lineage branching. Nat Methods. 2016;13(10):845-8.
Ho T. The Random Subspace Method for Constructing Decision Forests. IEEE
Trans Pattern Anal Mach Intell. 1998;20:832-44.

Despierre E, Moisse M, Yesilyurt B, Sehouli J, Braicu |, Mahner S, et al.
Somatic copy number alterations predict response to platinum therapy in
epithelial ovarian cancer. Gynecol Oncol. 2014;135(3):415-22.

Leong HS, Galletta L, Etemadmoghadam D, George J, Australian Ovarian
Cancer Study, Kébel M, et al. Efficient molecular subtype classification of
high-grade serous ovarian cancer. J Pathol 2015;236(3):272-277.

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods.
2015;12(5):453-7.

Brown JM, Recht L, Strober S. The promise of targeting macrophages in
cancer therapy. Clin Cancer Res. 2017;23(13):3241-50.

Allen F, Bobanga ID, Rauhe P, Barkauskas D, Teich N, Tong C, et al. CCL3
augments tumor rejection and enhances CD8+ T cell infiltration through
NK and CD103+ dendritic cell recruitment via IFNy. Oncoimmunology. 2018;
7(3):21393598.

Ouyang W, O'Garra A. IL-10 family cytokines IL-10 and IL-22: from basic
science to clinical translation. Immunity. 2019;50(4):871-91.

Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important
regulatory axis in the tumor microenvironment and progression. Trends
Immunol. 2010;31(6):220-7.

Tsukamoto H, Fujieda K, Miyashita A, Fukushima S, lkeda T, Kubo Y, et al.
Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual
regulation of their immunosuppressive effects in the tumor
microenvironment. Cancer Res. 2018;78(17):5011-22.

Susek KH, Karvouni M, Alici E, Lundqvist A. The role of CXC chemokine
receptors 1-4 on immune cells in the tumor microenvironment. Front
Immunol. 2018;9:2159.

Baker KJ, Houston A, Brint E. IL-1 family members in cancer; two sides to
every story. Front Immunol. 2019;10:1197.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81224
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65820
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65820
https://www.github.com/GiuseppeTestaLab/CellOfOrigin
https://www.github.com/GiuseppeTestaLab/CellOfOrigin
https://www.portal.gdc.cancer.gov/projects/TCGA-OV
https://www.portal.gdc.cancer.gov/projects/TCGA-OV
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891

Lo Riso et al. Genome Medicine

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

(2020) 12:94

Li Y-L, Zhao H, Ren X-B. Relationship of VEGF/VEGFR with immune and
cancer cells: staggering or forward? Cancer Biol Med. 2016;13(2):206-14.
Hardy LR, Salvi A, Burdette JE. UnPAXing the divergent roles of PAX2 and
PAX8 in high-grade serous ovarian cancer. Cancers (Basel). 2018;10(8):262.
Adler EK, Corona RI, Lee JM, Rodriguez-Malave N, Mhawech-Fauceglia P,
Sowter H, et al. The PAX8 cistrome in epithelial ovarian cancer. Oncotarget.
2017,8(65):108316-32.

Fathalla MF. Incessant ovulation and ovarian cancer - a hypothesis re-visited.
Facts Views Vis Obgyn. 2013;5(4):292-7.

Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM. High-grade
serous ovarian cancer arises from fallopian tube in a mouse model. Proc
Natl Acad Sci U S A. 2012;109(10):3921-6.

Kim J, Coffey DM, Ma L, Matzuk MM. The ovary is an alternative site of
origin for high-grade serous ovarian cancer in mice. Endocrinology. 2015;
156(6):1975-81.

Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al.
Transformation of the fallopian tube secretory epithelium leads to high-
grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;
24(6):751-65.

Zhang S, Dolgalev |, Zhang T, Ran H, Levine DA, Neel BG. Both fallopian
tube and ovarian surface epithelium are cells-of-origin for high-grade serous
ovarian carcinoma. Nat Commun. 2019;10(1):5367.

Lawrenson K, Fonseca MAS, Liu AY, Segato Dezem F, Lee JM, Lin X, et al. A
study of high-grade serous ovarian cancer origins implicates the SOX18
transcription factor in tumor development. Cell Rep. 2019;29(11):3726-35 e4.
Hao D, Li J, Jia S, Meng Y, Zhang C, Wang L, et al. Integrated analysis reveals
tubal- and ovarian-originated serous ovarian cancer and predicts differential
therapeutic responses. Clin Cancer Res. 2017;23(23):7400-11.

Coscia F, Watters KM, Curtis M, Eckert MA, Chiang CY, Tyanova S, et al.
Integrative proteomic profiling of ovarian cancer cell lines reveals precursor
cell associated proteins and functional status. Nat Commun. 2016;7:12645.
Ciedlik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of
clinical translation. Nat Rev Genet. 2018;19(2):93-109.

Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110-20.
Léhmussaar K, Kopper O, Korving J, Begthel H, Vreuls CPH, van Es JH, et al.
Assessing the origin of high-grade serous ovarian cancer using CRISPR-
moadification of mouse organoids. Nat Commun. 2020;11(1):2660.

Ovarian Tumor Tissue Analysis (OTTA) Consortium, Goode EL, Block MS, Kalli
KR, Vierkant RA, Chen W, et al. Dose-response association of CD8+ tumor-
infiltrating lymphocytes and survival time in high-grade serous ovarian
cancer. JAMA Oncol. 2017;3(12):e173290.

Fritz JM, Lenardo MJ. Development of immune checkpoint therapy for
cancer. J Exp Med. 2019,216(6):1244-54.

Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria J-C, Postel-Vinay S.
Mutational landscape and sensitivity to immune checkpoint blockers. Clin
Cancer Res. 2016;22(17):4309-21.

Rodgers LH, O hAinmhire E, Young AN, Burdette JE. Loss of PAX8 in high-
grade serous ovarian cancer reduces cell survival despite unique modes of
action in the fallopian tube and ovarian surface epithelium. Oncotarget.
2016;7(22):32785-32795.

Villa CE, Lo Riso P. DNA methylation profiling of fimbrial epithelium, ovarian
surface epithelium, solid and ascitis-derived high grade serous ovarian
cancer 2D cultures. ArrayExpress. https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-9608/.

Villa CE, Lo Riso P. RNA-seq of FFPE-macrodissected HGSOC tissues and
solid and ascites-derived HGSOC 2D cultures. ArrayExpress. https://www.ebi.
ac.uk/arrayexpress/experiments/E-MTAB-9605/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 20 of 20

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9608/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9608/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9605/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9605/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Primary cells
	Microarray processing and DNA methylation analyses
	Targeted bisulfite sequencing
	RNAseq processing and analyses
	External gene expression dataset classification
	IHC staining
	Luminex assay
	RT qPCR

	Results
	Stratification of a retrospective HGSOC cohort
	Definition of subtype-specific transcriptional signatures
	OSE-like tumors have an immunomodulatory phenotype
	PAX8 is differentially regulated according to the origin of HGSOC

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

