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Abstract

Background: Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in
this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic
leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead
to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage
differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow,
and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic
intervention.

Methods: We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-
sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we
benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in
healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo
during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion.
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Results: We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have
high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for
regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed
elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide
association study hit ELK3. The accompanying gene expression changes associated with natural killer cell
inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the
abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes
during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program
and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell
viability and resolved pathways contributing to this using scRNA-seq.

Conclusions: Our data provide a detailed picture of the transcription factor activities characterizing both normal B-
lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment
strategies targeting the immune microenvironment and the active regulatory network in leukemia.

Keywords: Cell differentiation, Leukemia, Gene regulation, Single cell genomics

Background
Failures in lymphoid cell differentiation underlie the
emergence of acute lymphoblastic leukemia (ALL) that
peaks in incidence in childhood [1]. Recently, 35 poten-
tial cell states in hematopoiesis were resolved using sin-
gle cell RNA-seq (scRNA-seq) data based on eight
healthy bone marrow (BM) donors profiled by the Hu-
man Cell Atlas (HCA) groups, comprising approximately
100,000 cells [2]. Understanding normal B cell differenti-
ation in BM forms the basis to characterize the aberrant
cell states in cancers that originate from lymphoid pro-
genitor cells. Previous work has identified tight regula-
tory loops that orchestrate B cell fate [3]. However, their
activity along the single cell resolution trajectory in hu-
man B-lineage has not been studied in detail.
The genetic basis of ALL initiation and progression is

mechanistically linked to alterations in key lymphoid
transcription factors (TFs) [1]. The most common trans-
location t(12;21) generates a fusion between two TFs:
the repressive domain of ETV6 is fused with RUNX1,
retaining the RUNT-DNA-binding domain. This confers
cells with functional properties that sustain self-renewal
and survival [4]. We and others have shown that the ab-
errant ETV6-RUNX1 (E/R) TF fusion can silence key
genes and regulatory regions [5–9]. In effect, cells be-
come arrested at a lymphoid progenitor state [7, 10],
whereby additional DNA lesions can accumulate, which
especially in E/R leukemias are driven by a
transcription-coupled mechanism that results in off-
targeting of the recombination activating gene (RAG)
complex [11, 12]. However, the emerging cell state het-
erogeneity that manifests at diagnosis and during
chemotherapy within the bone marrow remains poorly
characterized.
In the clinics, the accumulated knowledge regarding

initiating genetic lesions has been implemented into

diagnostic screens that inform choices between chemo-
therapy regimes that differ in intensity. However, almost
half of relapses occur in children presenting initially with
good-risk cytogenetic features such as E/R [13], thus
raising the question what underlies their resistance. Epi-
genetic changes driven by TF, coregulator, and chroma-
tin modifier activities in the blast cells contribute to the
blast cell phenotype [14, 15]. The epigenetic plasticity of
leukemic cells may support resistant states [16, 17] and
allow conversion into quiescent stem-like states or
lineage switching to escape the cytotoxic agents [18–22].
This poses a challenge in the design of drug therapy and
urges the development of new therapies informed by
characterization of the cancer cells and their cross-talk
with the microenvironment.
Single cell genomics holds promise to resolve the

leukemic gene regulatory programs even in small cell
populations, based on mRNA, chromatin, and DNA pro-
files [23]. Computational analysis can resolve TF activity
and transcriptome dynamics and capture changes in
gene expression distributions between cell states ana-
lyzed [24–26]. Here, we set out to elucidate cell states
and TF activities characteristic of normal B-lineage dif-
ferentiation from hematopoietic stem cells (HSCs) and
to compare these to the E/R+ ALL cases at diagnosis
and during standard chemotherapy.

Methods
Patient samples
This study was approved by the Regional Ethics Com-
mittee in Pirkanmaa, Tampere, Finland (#R13109), and
conducted according to the guidelines of the Declaration
of Helsinki. A written informed consent was received by
the patient and/or guardians. All the patients were posi-
tive for the E/R-fusion transcript based on clinical RT-
qPCR and FISH analysis (further confirmed using bulk
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WGS data). Their age ranged between 1 and 10 years,
and all cases received standard induction therapy ac-
cording to the NOPHO ALL-2008 protocol, with pred-
nisolone 60mg/m2/day p.o. days 1–28; vincristine 2.0
mg/m2 i.v. days 1, 8, 15, 22, and 29; doxorubicin 40mg/
m2 i.v. days 1 and 22; and methotrexate i.t. days 1, 8, 15,
and 29 [27]. Leukemic blast percentages in the bone
marrow during diagnosis, at day 15, and at day 29 are
shown in Table 1. All the samples were CD19+, CD22+,
CD10+, TdT+, cyCD79a+, and CD34+ (ALL9 and ALL3
heterogenously), as measured by flow cytometry at diag-
nosis (Additional file 1, Fig. S4e). Mononuclear cells
(MNCs) were extracted from fresh bone marrow (BM)
using Ficoll-Paque Plus (GE Healthcare, #17-1440-02).
Bone marrow MNCs were also extracted from two pa-
tients (ALL10 and ALL12) during the induction therapy
at day 15 after initiation of therapy. MNCs were viably
frozen in 15% DMSO/40% FBS in RPMI in liquid nitro-
gen. In addition, nuclei from samples ALL7 and ALL13
were isolated for global run-on sequencing (GRO-seq) as
described in [5], snap-frozen, and stored at − 80 °C in a
freezing buffer containing 40% glycerol.

Cell line samples
The E/R+ REH cell line (ACC-22, DSMZ, Germany) was
maintained in RPMI 1640 (Gibco, Thermo Fisher) sup-
plemented with 10% FBS (Gibco, Thermo Fisher), 2 mM
L-glutamine (Gibco, Thermo Fisher), penicillin (100 U/
ml), and streptomycin (100 mg/ml) (Sigma-Aldrich).
Mycoplasma status was defined negative for all cell lines
by PCR (PCR Mycoplasma Test Kit I/C, PromoCell
GmbH, Germany), and cell lines were authenticated by
Short Tandem Repeat genotyping (Eurofins Genomics,
Ebersberg, Germany).

scRNA-seq
Single cell gene expression was studied to characterize
leukemic bone marrow cell populations (for datasets an-
alyzed, see Additional file 2, Table S1). Cells from pri-
mary BM samples (n = 6 diagnostic, n = 2 post-

treatment) were processed for scRNA-seq in the Finnish
Functional Genomics Center, Turku, Finland, in 4
batches: (1) ALL3, (2) ALL1, (3) ALL10 and ALL10-d15,
and (4) ALL8, ALL9, ALL12, and ALL12-d15. Before ap-
plying the cells into the Chromium cartridge, their via-
bility was checked using Trypan blue. PI-negative (live)
cells were selected from sample ALL3 using FACS. Sam-
ples ALL1, ALL10, and ALL10-d15 were processed dir-
ectly after thawing the MNC fraction without further
processing. The diagnostic samples from these were also
analyzed using flow cytometry to compare the detected
leukemic cell fraction in the thawn ampoules and in the
final scRNA-seq data matrix (see Additional file 2, Table
S1). The CD19+ cell percentages in samples that were
FACS-sorted (ALL03 batch 1), processed directly after
thaw (ALL01 batch 2), or processed with dead cell re-
moval kit (ALL10 batch 3) were highly concordant be-
tween scRNA-seq and Amnis flow cytometry. Excess
dead cells were depleted from samples ALL8 and ALL9
using bead-based Dead Cell Removal Kit (#130-090-101,
MACS Miltenyi Biotech), increasing the percentage of
viable cells from 43 to 72% and from 63 to 78%, respect-
ively. For samples ALL12 and ALL12-d15, enrichment of
leukemic cells was carried out by depleting non-B cells
using streptavidin beads (BD Streptavidin Particles Plus,
BD Biosciences, Franklin Lakes, NJ, USA) and biotinyl-
ated antibodies against human CD16 (clone 3G8), CD14
(HCD-14), CD11c (3.9), CD56 (HCD56), CD3 (UCHT1),
and CD66 (G10F5) (Biolegend), all with final concentra-
tions of 2 μg/ml, following the manufacturer’s instruc-
tions. Depletion efficiency was estimated by flow
cytometry using CD3 (BV421, BD Biosciences, #56287,
RRID:AB_27378607) and CD19 (Thermo Fisher Scien-
tific, #25-0199-41, RRID:AB_1582279) antibodies, with a
viability dye (eBioscience, Fixable Viability Dye eFluor™
506, #65-0866-14). Depletion decreased the proportion
of T cells (CD3+) from 30 to 2%, increased the propor-
tion of B cells (CD19+) from 23 to 50%, and increased
the percentage of viable cells from 50 to 80% in a test
BM sample.

Table 1 Leukemic blast percentages in clinical bone marrow samples of the E/R-positive patients during induction therapy
determined by flow cytometry

Sample ID Leukemic blast percentage at diagnosis Leukemic blast percentage at day 15 Leukemic blast percentage at day 29

ALL1 94 10 0.3

ALL3 95 74 0.16

ALL8 93 0.93 0.02

ALL9 79 0.17 0.01

ALL10 65 10 0.08

ALL12 90 59 0.2

ALL7 27 0 0

ALL13 80 0.04 0
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scRNA-seq was performed using the 10X Genomics
Chromium technology, according to the Chromium
Single-Cell 3′ Reagent Kits V2 User guide Rev B. In
brief, cells were combined with reverse transcriptase
Master Mix and partitioned into Gel Bead-In EMulsions
(GEMs) using 10X GemCode Technology, where the
poly-A transcripts are barcoded with an Illumina R1 se-
quence, a 16-bp 10X barcode and a 10-bp Unique Mo-
lecular Identifier (UMI). Eleven to 12 cycles of PCR was
used to amplify the cDNA. Sequencing was performed
using the Illumina HiSeq 3000. Primary BM samples
were sequenced to an average depth of ~ 50,000 reads
per cell.
For the analysis of drug treatment at single cell level,

REH cells were seeded into 6-well plates (0.6 million/ml
concentration) and treated with XRP44X (Sigma-Al-
drich) (1 μM), TK216 (MedChemExpress, NJ USA) (800
nM), or DMSO for 72 h. After treatment, cells were col-
lected and their viability was checked using Trypan blue
with Cellometer Mini Automated Cell Counter (Nexce-
lom Bioscience) and Dead Cell Removal Kit (#130-090-
101, MACS miltenyi Biotech) was used per the manufac-
turer’s protocol. Viable cells were eluted by rinsing twice
with 1 ml binding buffer. Cell viabilities were increased
from DMSO 95%, XRP44X 79%, and TK216 76% to
97%, 94%, and 96%, respectively. Subsequently, 0.42–0.5
million cells were methanol fixated according to 10X
Genomics Methanol Fixation of Cells for Single Cell
RNA Sequencing protocol User guide CG000136 Rev E,
using a mix of two RNAse inhibitors (RNase Inhibitor,
Thermo Fisher, Carlsbad, CA, USA, and RNasin® Plus
RNase Inhibitor, Promega, Madison, WI, USA) and DTT
(Thermo Fisher, Carlsbad, CA, USA). scRNA-seq was
performed using the 10X Genomics Chromium technol-
ogy, according to the Chromium Single Cell 3′Reagent
Kits v3 User guide CG000183 Rev C with loading con-
centration of 2100–2200 cells/μl. Sequencing was per-
formed in Novogene (UK) Company Limited,
Cambridge, UK, with a PE150 NovaSeq sequencer, aim-
ing at 50,000 reads per cell.

HCA bone marrow scRNA-seq data processing and cell
state annotation
Characterization of normal bone marrow B-lymphoid
cell states was performed using data from healthy donors
(n = 8), available from the HCA data portal. Raw fastq
files corresponding to 10X Genomics Chromium single
cell data were downloaded from [28]. Data was aligned
with Cell Ranger 3.0.2 to human reference (hg19) ver-
sion 3.0.0 with default parameters, and the filtered count
matrix was taken for downstream analysis (for Cell Ran-
ger quality control summaries, refer to Additional file 2,
Table S1). Scanpy [29] (version 1.4) was used for initial
characterization of cells [30] as follows: Genes were first

filtered to include only genes present in more than 100
cells. Then, bad quality cells were removed if (i) UMIs
arising from mitochondrial genes in a cell accounted for
more than 10% of total UMI count, while possible dou-
blets were excluded based on (ii) total number of UMIs
50,000 or more, or (iii) the number of genes expressed
in a cell 6000 or more. Next, genes were filtered once
more to include only those expressed in minimum 400
cells. UMI count data was then normalized to relative
counts per cell by dividing by the total count per cell
and then scaling by a factor of 10,000. Highly variable
genes (HVGs) were defined as genes with minimum
mean expression 0.0125, maximum mean expression 3,
and minimum dispersion 0.5, resulting in 2046 genes
with the rest of the genes filtered out from the data for
downstream analyses. To reduce undesired technical ef-
fects in data analysis, we regressed out the effect of the
number of UMIs and the percentage of UMIs arising
from mitochondrial genes to gene expression in each
cell. Mutual nearest neighbor (MNN) correction [31]
(mnnpy [32] version 0.1.9.5) was used to combine data
across the eight donors for clustering and cell state iden-
tification. Principal component analysis (PCA) was then
calculated using the processed data (Scanpy version 1.4).
Top 50 principal components (PCs) were used to calcu-
late a neighborhood graph (the number of neighbors
was set to 30) that was used as input for Uniform Mani-
fold Approximation and Projection (UMAP) [33], where
the effective minimum distance between embedded
points was set to 0.5, and Louvain clustering [34] with
resolution set to 1.0, which was enough to characterize
major cell type clusters from the data. Wilcoxon’s test
was used to find marker genes for each cluster which
were used to characterize the found clusters in concord-
ance with known marker genes. Cell cycle states (G1, S,
G2/M) of cells were annotated by scoring gene sets with
Scanpy using annotated cell cycle genes from [35].
To focus on B-lineage cell differentiation, a subset of

cells from clusters containing hematopoietic stem cells
and B cell lineage cells was re-analyzed in an iterative
manner, each time running the basic workflow again
with additional filtering steps. Initially, genes expressed
in less than 100 cells were removed when analyzing this
subset. When choosing highly variable genes, we re-
quired the minimum dispersion to be 1, compared to
the previous 0.5 to obtain a smaller set of HVGs in at-
tempt to identify potential outliers. Small clusters con-
taining high expression of markers for T cells, NK T
(natural killer T) cells, monocytes, and erythroid precur-
sor cells were still present after the first iteration and
were filtered out. In the second iteration, we required
the minimum mean expression to be 0.1 and the mini-
mum dispersion 0.5 for choosing highly variable genes.
In the neighborhood graph calculation, the number of

Mehtonen et al. Genome Medicine           (2020) 12:99 Page 4 of 25



principal components used was here set to 20 as we pre-
sumed the lower number of PCs is sufficient to capture
the variance between these cell types. Next, we filtered
each cluster for possible outliers by calculating cluster-
specific Median Absolute Deviance (MAD) for number
of UMIs and percentage of UMIs from mitochondrial
genes and removed cells assigned to the cluster with
MAD greater than 5 in either. This was motivated by
the large differences between clusters in these metrics.
During B cell differentiation, the cells display marked
changes in cell size (e.g., transitioning from large cycling
pre-B cells to small pre-B cells). Thus, this choice is also
motivated by biology. With the filtered subset of 20,753
cells, we ran through the workflow once again, choosing
highly variable genes with minimum mean 0.1 and mini-
mum dispersion 0.75 and setting the number of princi-
pal components in neighborhood graph calculation to
20. The final clusters were characterized as described
above.

ALL scRNA-seq data processing and cell state annotation
To perform similar analysis in leukemic BM, raw patient
data acquired in this study (n = 6 diagnostic, n = 2 post-
treatment) was processed and aligned with Cell Ranger
(version 3.0.2) with the same settings as the HCA data
(for Cell Ranger quality control summaries, refer to
Additional file 2, Table S1). Scanpy (version 1.4) was
used for initial characterization of cells following the
same approach as outlined above [30] (HCA analysis):
Genes were first filtered to include only genes present in
more than 100 cells, requiring this metric to exceed 200
in the final iteration. Cells were removed if (i) UMIs
arising from mitochondrial genes in a cell were more
than 10%, (ii) the total number of UMIs was 40,000 or
more, or (iii) the number of genes expressed in a cell
was 5000 or more. UMI count data was then normalized
to relative counts per cell by dividing by the total count
per cell and then scaling by a factor of 10,000. Highly
variable genes were defined as genes with minimum
mean expression 0.0125, maximum mean expression 3,
and minimum dispersion 0.5, resulting in 1425 genes
that were used for clustering and dimensionality reduc-
tion (50 principal components, number of neighbors 15,
resolution 1.0). The number of neighbors was set lower
than with HCA data as the total number of cells is lower
in these data. MAD filtering was used to remove outlier
cells from clusters, as described above. With the final
cell subset passing these criteria (44,746 cells), the work-
flow was repeated and clusters characterized based on
marker genes.

Pediatric BM scRNA-seq data processing
Single cell RNA-seq data from three pediatric BM do-
nors [36] was downloaded from NCBI GEO [37] and

processed similarly as the HCA BM data to enable inde-
pendent validation of results. The data was aligned with
Cell Ranger 3.0.2 to human reference (hg19) version
3.0.0 and the resulting count matrix was subject to pro-
cessing with Scanpy [29] following the exact same work-
flow as HCA. In short, low quality cells (more than 10%
of UMIs from mitochondrial genes, more than 30,000
UMIs, or more than 4000 genes expressed) were filtered
out and genes expressed in less than 40 cells were re-
moved before normalizing cells by dividing them with
the total number of UMIs and then scaling with a factor
of 10,000. Then, log-transformed normalized counts
were used to find highly variable genes with mean ex-
pression between 0.0125 and 3 with minimum disper-
sion of 0.5, resulting in 2531 HVGs. The effect of
number of UMIs and percentage of UMIs from mito-
chondrial genes per cell was regressed out before mutual
nearest neighbor (MNN) batch correction where we set
the three different donors as separate batches. After,
PCA was calculated and a neighborhood graph was cal-
culated by setting the number of PCs to 50 and number
of neighbors to 30. Louvain clustering was run with
resolution set to 1 using the neighborhood graph. Label
transfer was run, using the cell types defined in HCA
BM, and clusters corresponding to HSCs and B-lineage
cells were extracted for a second iteration of the work-
flow. Starting from raw data, the counts were normalized
and HVGs were defined as genes with mean normalized
expression between 0.0125 and 3 and minimum disper-
sion of 0.75 resulting in 1929 HVGs. The effect of the
number of UMIs and the percentage of UMIs from
mitochondrial genes per cell was again regressed out be-
fore MNN batch correction. The neighborhood graph
was calculated by setting the number of neighbors to 15
and the number of PCs to 20, to account for the smaller
subset of the data. Louvain clustering with resolution set
to 1 was calculated using the neighborhood graph. MAD
filtering was applied for each cluster of cells, filtering out
cells with MAD difference in number of UMIs per cell
or percentage of UMIs from mitochondrial genes greater
than 5. The remaining cells were used to perform down-
stream analyses.

Healthy BM CITE-seq data processing
CITE-seq data from an independent adult healthy BM
sample [38] were downloaded from NCBI GEO [39] and
processed with Scanpy (similar settings as for HCA BM
initial processing) for label transfer and UMAP
visualization of B-lineage cell states.

REH cell line drug treatment scRNA-seq
The REH cell line scRNA-seq libraries with drug treat-
ments were aligned with Cell Ranger 3.1.0 using a com-
bined human (hg19) and mouse (mm10) genome as
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reference. The human cells, corresponding to REH cells,
were extracted from filtered count matrices using the
Cell Ranger classification result. Cells that had (i) more
than 2000 and less than 6000 UMIs, (ii) less than 20% of
total UMIs arising from mitochondrial genes, and (iii)
less than 500 UMIs aligned to mouse genes were kept in
the analysis. Then, the data was log-normalized using a
scaling factor of 10,000 and the normalized data was
scored for cell cycle phases using functions in Seurat
[40] (version 3.1.1).

Differential distribution of read counts: scDD analysis
The gene expression distributions in subsequent cell
states representing B-lineage differentiation, or between
leukemic and normal cell states, were analyzed with the
scDD package [26, 30]. As an independent validatory
analysis, the matching cell clusters from the pediatric
BM were identified using label transfer (Seurat, see
below) and the same analyses repeated. The tool enables
comparisons based on differential distribution and pro-
portion of zeros between two groups of cells. Genes
were assigned into three main categories—DE, DM, and
DZ. DM and DE characterize changes in the expression
distribution in cells with non-zero count for the gene
analyzed (differential mean and differential modality, re-
spectively). DZ genes differ between the groups in pro-
portion of cells with zero read count for the gene
analyzed. In the context of differentiation, where cells
switch genes on/off to proceed in maturation, this
metric was estimated to capture the most relevant
changes.
To account for differences in the number of UMIs and

genes detected in different cell types, variance stabilizing
transformation [41] (version 0.2.0) was used to correct
for these differences before differential distribution test-
ing. Sample was used as the batch interaction term, and
logarithm of UMI counts per cell was specified as the la-
tent variable to regress out. The resulting corrected UMI
counts were then used as input to scDD. When running
scDD, we noticed that for some genes, the clustering of
the expression level within scDD failed due to zero vari-
ance. To overcome this, the scDD tool was modified to
add a small random number (sampled from a uniform
distribution ranging from − 0.01 to 0.01) to counts for
genes which had this problem [42]. Cells with 3000–
3500 counts after the corrections were included in com-
paring the pre-B G1 vs. pro-B G1, and the pro-B G1 vs.
leukemic G1 cells. The following numbers of cells per
differentiation/disease state were compared: HSCHCA,
3660; early B-lymphoidHCA, 895; pro-B cyclingHCA, 794;
pro-B G1HCA, 1413; pre-B cyclingHCA, 1714; pre-B I
G1HCA, 2541; pre-B II G1HCA, 2025; diagnostic leukemic
G1, 6340; diagnostic leukemic cycling, 7054; HSCCaron,
192; early B-lymphoidCaron, 60; pro-B cyclingCaron, 98;

pro-B G1Caron, 224; pre-B cyclingCaron, 471; pre-B I
G1Caron, 725; and pre-B II G1Caron, 351.
Further filtering for scDD results was done using ad-

justed p value and fold change or difference in percent-
age cutoffs (see Additional file 1: Fig. S2a-d). p values
were adjusted using the Benjamini-Hochberg FDR
method.

Clustering genes based on differential zero proportion
Differentially distributed genes from the leukemic vs.
pro-B zero proportion comparisons, present in both G1
and cycling cell-based comparisons (90 downregulated
and 272 upregulated), were clustered based on their zero
proportion metric in ten cell states (HSC, early lymphoid
progenitors, pro-B cycling (S/G2/M), pro-B G1, pre-B
cycling, pre-B G1 I, pre-B G1 II, immature B, leukemic
cells G1, and leukemic cell cycling). K-mean centroids
were calculated using the R package flexclust [43] (ver-
sion 1.4-0) with k = 8 and correlation as distance metric
using the kccaFamily function. Initially different num-
bers of clusters were tested (k = 6 to 10) to select k that
resulted in distinct cluster centroid profiles with well-
matching profiles for assigned genes.

Pathway enrichment analysis
Gene lists were analyzed for enrichment of ontology and
pathway terms using the online web server Enrichr [44,
45] (release January 2019). The analysis was performed
based on gene sets from GO, MGI Mammalian Pheno-
type, Bioplanet, Reactome, and transcription factor (TF)
perturbations. The tool provides several significance
metrics. The combined score used for ranking here re-
fers to the combination of p value (Fisher’s exact test)
and the z-score that represents the deviation from the
expected rank. Enriched terms were selected based on
the combined score (> 150) cutoff. TF motif enrichment
results from Genome Browser PWMs were selected
based on nominal p value < 0.05 due to overall lower
scores across gene lists analyzed.

Ordering cells based on pseudotime
Pseudotime analysis can be used to find a latent trajec-
tory (pseudotemporal ordering of cells) in single cell
data, corresponding to differentiation or cell cycle. HSC
and B-lineage cells from HCA BM data were subjected
to pseudotime analysis following the best practices
workflow by Luecken and Theis [46] using Scanpy (ver-
sion 1.4.5). Non-expressed genes (zero UMIs in any cell)
were excluded, and the data was normalized with size
factors calculated using the scran package [47, 48] (ver-
sion 1.10.2) where Louvain clusters (resolution 0.5) were
used. The analysis was done two ways: using highly vari-
able genes or selecting differentially distributed genes
from our scDD analyses between HSC and B-lineage cell
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types and the cell cycle phase marker genes. Neighbor-
hood graph was calculated with the number of principal
components set to 15 and the number of neighbors set
to 15. Diffusion map representation [49] was then calcu-
lated obtaining 15 diffusion components, and a pseudo-
time ordering was calculated using diffusion pseudotime
[50] using 10 diffusion components and setting the re-
quired root cell as the HSC with the highest value in the
1st diffusion component (DC1). For visualization, the
DC1 vector was mirrored to obtain a left to right pseu-
dotime trajectory of cells. The ordering of clusters was
highly comparable with HVG or custom gene selection.
The latter is shown in figures for consistency.

RNA dynamics analysis
During differentiation, dynamic changes occur in gene
transcription that can be modeled based on newly synthe-
sized RNA (reads corresponding to unspliced mRNA) and
processed RNA (reads corresponding to mRNA). Based
on the dynamic RNA processing model, predictions of the
future transcriptome state can be obtained and visualized
together with the measured current state. Velocyto CLI
[25] (version 0.17.17) was used to calculate spliced and
unspliced counts per gene using human reference genome
(hg19) version 3.0.0 for Cell Ranger from 10X Genomics.
Expressed repetitive elements were masked using
expressed repeat annotation for hg19 downloaded from
UCSC Genome Browser [51]. scVelo package [52] (version
0.1.21) was used to analyze RNA dynamics in B cell differ-
entiation. The gene expression matrix was accompanied
with the spliced and unspliced count matrices of HSCs
and B-lineage cells from HCA BM data. The data was first
filtered by removing genes with less than 10 shared UMI
counts in both spliced and unspliced data. The matrices
were each then normalized by dividing the counts in each
cell with the median of the total counts per cell. The 3000
most variable genes were extracted based on the spliced
count matrix and the data matrices were log-transformed.
Thirty top PCs were defined based on the most variable
gene spliced count data followed by neighborhood graph
calculation, with the number of neighbors set to 30. Based
on the neighborhood connectivities, the first order mo-
ments for spliced and unspliced matrices were calculated.
The normalized unspliced and spliced count matrices
were then used to estimate the velocity of each cell using
the deterministic model. The velocities were embedded on
a UMAP embedding which was calculated with the same
pre-processing steps before calculating the diffusion map.

Regulon discovery and transcription factor activity
scoring
For the discovery of TF activities that characterize spe-
cific cell states, a modified SCENIC workflow [24, 30]
was developed based on the python implementation of

the SCENIC method [53]. In our implementation, equal
amounts of cells per cell type were sampled from the
original data to ascertain that differences in cell type
abundances do not bias the analysis. Secondly, a small
number randomly sampled from a uniform distribution
ranging from − 0.01 to 0.01 was added to zero counts to
help SCENIC identify repressive TF targets with higher
precision as the original workflow identified the targets
based on Pearson’s correlation of only cells with non-
zero counts. This could reduce the number of cells used
in the correlation calculation in worst cases close to
zero, making the results unrobust. Thirdly, the discov-
ered regulons were evaluated based on a left-out test set.
Specifically, the input matrix (equal representation of
cell types) was split into training (70% of cells) and test
(30% of cells) sets. The default SCENIC pipeline for reg-
ulon discovery was then run for the training set. The
regulons found were scored in the training and test sets,
and the average score per cell type calculated in both
sets. These mean regulon scores across cell types were
compared between training and test sets with Pearson’s
product moment correlation coefficient. Regulons with p
value > 0.001 were discarded. The discovery was re-
peated 10 times. The final set of regulons was then
scored using the whole original dataset. Because differ-
ent iterations often find regulons with the same driving
TF and a similar target gene set, the mean score of the
regulon for each cell was used in downstream analysis.
In these analyses, leukemic cells from different donors
and collection times were treated as separate cell types.
For filtering regulons, a linear model was fit 100 times
per regulon to a subset of the regulon score matrix
where 600 cells per cell type were sampled randomly
from the original dataset. In the model, the response is
the regulon score and the cell type label is the independ-
ent variable (score ~ cell type). Regulons with the mean
coefficient of determination (R2) < 0.5 were considered
to not show sufficient variation between cell types and
were therefore filtered out. Additionally, a regulon was
filtered out if the mean score in any cell type was above
70% percentile while the TF gene expression had > 96%
of zeros, indicating not enough evidence for high regu-
lon activity. Additionally, regulons with Pearson’s correl-
ation less than − 0.8 to the TF gene expression were
filtered out.

Cell type assignment of ALL cells with label transfer
Annotated HCA BM cells were used as a reference to
label the other non-leukemic and ALL scRNA-seq data.
This was performed with label transfer functions from
Seurat [40] (version 3.1.4) as follows: Each ALL sample
was separately normalized with CPM with scale factor of
10,000 and then log-transformed followed by extracting
top 2000 most variable genes. Then, separately for each
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ALL sample, transfer anchors between reference and
sample were calculated, where the first 30 dimensions of
CCA were used as neighbor search space. Finally, the
leukemic cells were annotated with 30 first PCs used in
the weighting procedure.

Natural killer (NK) cell scRNA-seq analysis
Clusters labeled NK and NK T cells from full HCA BM
and primary ALL data were combined and processed to-
gether starting from raw counts with Scanpy (version
1.4.5). Genes were first filtered to include only genes
present in more than 100 cells. Then, cells were re-
moved if (i) UMIs arising from mitochondrial genes in a
cell were more than 5%, (ii) the total number of UMIs
was below 500 or 3000 or more, or (iii) the number of
genes expressed in a cell was below 200 or 3000 or
more. Then, data was normalized with following the
same steps and parameters as in the pseudotime analysis
followed by extraction of 3000 most variable genes
which were used to calculate the first 50 PCs followed
by neighborhood graph calculation with the 50 PCs and
number of neighbors set to 15. Leiden clustering [54]
with resolution 1 was calculated identifying two clusters
with high expression of erythroid markers HBA1, HBA2,
and HBB which were then removed and analysis re-
peated starting from calculating the most variable genes.
UMAP embedding was calculated with the obtained PCs
and the neighborhood graph to visualize the data. Leiden
clustering was calculated again but with resolution par-
ameter set to 2 to obtain more detailed clusters. NK
clusters were identified as GNLY+ or NKG7+ clusters
(additional CD3 positivity distinguishing NK T cells).
The cell barcodes from the NK clusters were used to cal-
culate the percentage of NK cell from total MNC, or
non-leukemic MNC. Marker genes for NK clusters were
calculated with the Wilcoxon's test and discarding genes
with fold change less than 2. Top 5 genes per cluster
based on test score were extracted. Scores for NK sub-
type gene sets from [55] were calculated using the top
20 genes per gene set sorted by log-fold change (omit-
ting NK T clusters).

Bulk pro-B cell ATAC-seq analysis
For analyzing open chromatin regions in pro-B cells,
ATAC-sequencing (assay for transposase-accessible
chromatin) data of human fetal pro-B cells (n = 3) were
retrieved from NCBI SRA database, GSE122989 [56].
Data pre-processing and peak calling were done follow-
ing the ENCODE pipeline for ATAC-seq [57] (version
1.5.4) which is a tool for statistical signal processing and
produces alignment and measures of enrichment. Caper
configuration file was set up for the local server plat-
form, and parameters in the JSON file were selected
based on the example JSON file. Hg19 was used as a

reference genome in alignment. Narrow peaks were
pooled and merged from three replicates. The highest
enriched 10,000 peaks were taken to downstream ana-
lysis. Regions overlapping annotated transcription start
sites (TSS) (NCBI RefSeq and UCSC Known gene) were
discarded. TF motif discovery was performed with
HOMER [58] (version 4.9.1) findMotifsGenome.pl (-size
200 -mask) using the remaining (3923) open chromatin
regions. p values were adjusted using the Benjamini-
Hochberg FDR method.

GRO-seq assay
To study enhancer and gene region activity, primary
ALL BM samples (n = 2) were collected for global run-
on sequencing (GRO-seq). In addition, our existing data
in REH cells available via NCBI GEO (GSE67540 [59])
were analyzed. For these samples and ALL7, the nuclear
isolation and library preparation protocols were per-
formed as described in [12]. Briefly, run-on products la-
beled with BrUTP were extracted with TRIzure (Bioline,
London, UK). RNA was precipitated first for 30 min at
room temperature and then for extra 10 min on ice.
Poly-A tailing reaction was carried out and nascent RNA
collected using anti-BrUTP beads. The anti-BrUTP
beads used previously [12] were not available for the col-
lection of run-on products for ALL13, and for this sam-
ple, the libraries were performed as described in [60]
with few modifications. Bead binding was performed
using 30 μl of Protein G Dynabeads (Thermo Fisher Sci-
entific Baltics UAB, V.A. Graiciuno 8, LT-02241 Vilnius,
Lithuania) per sample with 2 μg anti-BrdU monoclonal
antibody (cat# ab6326, Abcam, Cambridge, UK). Beads
were washed four times with 300 μl of PBST wash buffer
including SUPERase In RNase Inhibitor (Thermo Fisher,
Carlsbad, CA, USA). The purified run-on RNAs were
next converted to cDNA and PCR amplified for 13 cycles
and selected to 225–350 bp length. Single-end sequen-
cing (50 bp) was performed with Illumina Hi-Seq2000
(GeneCore, EMBL Heidelberg, Germany).

GRO- and ChIP-seq data pre-processing
TF ChIP-seq was used to validate TF-target associations
obtained using SCENIC. ChIP-seq data representing
PAX5 and EBF1 (GSE126300 [61]) were available in
hg19, while BCL11A (GSE99019 [62]) read data was
processed to hg19 from raw reads. For BCL11A and
GRO-seq data, the raw sequencing reads were quality
controlled using the FastQC tool [63]. Bases with poor
quality scores were trimmed (min 97% of positions have
a min phred quality score of 10) using the FastX toolkit
[64]. Duplicate reads were collapsed from ChIP-seq files
using fastx (collapse), while reads mapping to rRNA re-
gions (AbundantSequences as annotated by iGenomes)
were discarded from GRO-seq data. The Bowtie software
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[65] (version 0.12.9 for GRO-seq, version 1.2.3 for ChIP-
seq) was then used for alignment of remaining reads to
the hg19 genome version, allowing up to two mis-
matches and no more than three matching locations.
The best alignment was reported. Reads overlapping
with the so-called blacklisted regions that include un-
usual low or high mappability as defined by ENCODE,
ribosomal and small nucleolar RNA (snoRNA) loci from
ENCODE, and a custom collection of unusually high sig-
nal depth regions from GRO-seq were used to filter the
data. Subsequently, data was analyzed using HOMER
[58] (version 4.9.1). GRO-seq tagDirectories were gener-
ated with fragment length set to 75 and data visualized
using makeMultiWigHub.pl with strand specificity.
HOMER [58] (version 4.9.1) findPeaks tool (-style factor)
was used in peak calling from ChIP-seq against input
sample.

ChIP-seq peak analysis
The peak data was ranked based on peak calling statis-
tics (lowest rand corresponding to best peak) and the
rank annotated in each peak name. Next, peaks were as-
sociated with nearby genes using the approach described
in [66]. The data was summarized by gene, recording the
number of associated peaks, the peak ranks, and the
peak distances to gene TSS.

Bulk RNA-seq
RNA was extracted from diagnostic BM samples col-
lected in PAXgene blood RNA tubes using PAXgene
Blood RNA kit (cat #762174, Qiagen GmbH, Hilden,
Germany), following the version 2 instructions for man-
ual purification. In order to have high detection of both
coding and non-coding transcripts, samples were proc-
essed with Globin-Zero Gold rRNA Removal Kit (Illu-
mina) and directional libraries were prepared using
NEBNext Ultra Directional RNA Library Prep kit (New
England Biolabs). The library preparation and paired-
end (150 bp) sequencing were performed by Novogene
(HK) Company Limited (Hong Kong, China) using Illu-
mina Novaseq 6000 aiming at 70 million read pairs per
sample. Sequencing quality was controlled using the
FastQC tool, and reads were aligned to hg19 using
STAR 2.5.1b, providing an annotated genome reference
(Gencode v32lift37). The splice junctions discovered in
each run were combined across samples analyzed and
used to update the genome reference for 2-pass align-
ment. The aligned reads were visualized using IGV as
coverage tracks and Sashimi plots.
To compare E/R+ cases to other ALL subtypes based

on bulk RNA-seq data, the Pan-ALL dataset [67] con-
sisting of 1988 samples representing various ALL sub-
types was downloaded as regularized log-transformed
values. A two-sided Wilcoxon rank sum test was

calculated between the E/R subtype and the rest of the
samples on selected genes, and the p values were cor-
rected with the Benjamini-Hochberg FDR method.

Immunofluorescence stainings and flow cytometry
For studying cell surface CD19 and RNA probe inten-
sities in leukemic bone marrows, 0.2–0.5 million viably
frozen mononuclear cells were first blocked using FcR
Blocking Reagent (Miltenyi Biotech, #130-059-901, lot
5170502354) for 5 min. Staining with anti-CD19
(PECy7-conjugated, Invitrogen, Thermo Fisher, # 25-
0199-42, lot 4329888) was performed for 30 min at +
4 °C in a 100-μl volume. The cells were then stained
with Fixable Viability Dye eFluor 506 (eBioscience, 1:
1000, 100 μl/sample) for 30 min at + 4 °C for selecting vi-
able cells. The subsequent steps, including fixation and
permeabilization, target probe hybridization with RNA-
specific probes, and signal amplification using bDNA
constructs, were done as instructed in the PrimeFlow
RNA Assay protocol v. 12 July 2017 (Invitrogen, Thermo
Fisher). Cells were washed with flow cytometry staining
buffer in between stainings and centrifuged 550×g 5 min
at + 4 °C. Fluorescence minus one samples (FMOs) were
included for all fluorophores. Stained single cells were
detected using Amnis FlowSight flow cytometry and vi-
sualized using IDEAS v. 6.2 software (Merck, Darmstadt,
Germany). For all the samples, single round live cells
were gated before the analysis based on (1) brightfield
channel 1 and IDEAS aspect ratio M01 vs. area M01, (2)
area M01 vs. brightfield channel 9 area M09 (to remove
additional doublets), and (3) intensity of viability dye
below threshold based on an FMO control. Positive sig-
nal for all probes was deduced using FMO signals as
thresholds. RNA flow analysis was performed with
Amnis® FlowSight® imaging flow cytometer (Luminex
Corporation, TX, USA).
For the analysis of immunophenotypes in the E/R

leukemic bone marrows, archived collected flow cytome-
try data .fcs files of diagnostic bone marrow biopsies
were used. Flow cytometry was performed using Beck-
man Coulter Navios ten color cytometer. Instrument
settings and staining process were done according to
EuroFlow SOP [68]. By using the Infinicyt software
(Cytognos S.L.), leukemic blasts were gated according to
their light scattering characteristics and immunopheno-
type using two different antibody panels. The first panel
included antibodies for TdT, MPO, cyCD3, CD33,
CD19, cyCD79a, CD34, CD117, CD7, and CD45, and
the second panel for CD66c, CD58, CD10, CD22, CD19,
CD123, CD34, CD38, CD20, and CD45. The fluores-
cence intensities for the antibodies in single events were
tabulated and visualized using R/ggplot2. In addition,
clinical reports were examined for expert comments on
the positivity of each marker (+/−/heterogenous).
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For the analysis of NK cell percentages in the diseased
bone marrows, flow cytometry was performed during
routine diagnostic procedure as above and lymphoid
cells were gated and analyzed. The proportions of nor-
mal B cells (CD19+, cyCD3−, CD7−), T cells (CD19−,
cyCD3+, CD7+), and NK cells (CD19−, cyCD3−, CD7+)
from the total normal lymphoid population (utilizing
CD45, CD34, and TdT expressions to differentiate from
leukemic blasts) were determined from the six E/R-posi-
tive patients and from six patients representing other
pre-B ALL subtypes (TCF3-PBX1 n = 1, high hyperdi-
ploid n = 2, B-other n = 3 that by transcriptome clustered
to BCR-ABL1-like, and DUX4/ERG subtype). On aver-
age, 98,564 (min 96,714–max 101,419) live cells were
studied in total, including on average 4391 normal lym-
phocytes in the E/R group samples (1323–10,251) and
5061 (1247–17,101) in the other group.

Cell proliferation and viability
Effect of drugs targeting TF activities that were found to
be high in E/R+ leukemia was studied in the
glucocorticoid-resistant REH cell line. The experiments
were performed in three biological replicates. TK216
(ERG/FLI1 inhibitor) was acquired from MedChemEx-
press and XRP44X (Ras-Net-Elk-3 inhibitor) from
Sigma-Aldrich. The drugs were reconstituted in DMSO.
MTS assay was used to determine viable cells in prolifer-
ation upon drug treatments with increasing concentra-
tions at 72 h time point. REH cells (10,000 cells/well)
were seeded with drugs into 96-well plates with a final
volume of 100 μl. Following drug treatment, cell prolifer-
ation was measured using CellTiter 96® AQueous One So-
lution (Promega). Twenty microliters of CellTiter 96®
AQueous One Solution reagent per well was added, and
cells were incubated for 3 h in a humidified (atmosphere
95% air/5% CO2) incubator at 37 °C. Absorbance was
measured at 492 nm by a spectrophotometer (Thermo
Scientific, Multiskan Ex). The background signal (no
cells) was subtracted, and the average signal from three
technical replicate wells was used in calculations. In par-
allel, cell viability and count were measured based on
Trypan blue (Sigma-Aldrich) staining using Cellometer
Mini Automated Cell Counter (Nexcelom Bioscience).
Relative proliferation and cell amounts were calculated
by normalizing to DMSO as a control sample.

Visualization tools
Scatter plots and gene set score heatmaps were gener-
ated with Scanpy [29] and scVelo [52]. Regulon activity
heatmaps were generated with ComplexHeatmap [69].
Illustrations were created with BioRender [70]. Motif
logos were generated with HOMER [58]. Track plot
from gene loci was generated from UCSC Genome

Browser [51] and IGV [71]. Other plots were generated
using ggplot2 [72] and base R graphics [73].

Results
Bone marrow B-lineage differentiation states are captured
in single cell transcriptomes
For a refined view on early B cell differentiation, we
processed bone marrow (BM) scRNA-seq data available
from HCA [74] and projected each cell into a two-
dimensional map using UMAP (see Additional file 1,
Fig. S1). A branching map centered at CD34+ HSC was
obtained, where cycling progenitor cell states led to
more differentiated cells that predominantly existed in
the G1 cell cycle state based on the cell cycle marker
gene scoring (see Additional file 1, Fig. S1a-b), while
stromal cells or mature T (CD3D+), NK (GNLY+), and
plasma B cells, which mature outside the BM, clustered
separately (see Additional file 1, Fig. S1c).
We separated the B-lineage branch for further analysis,

resulting in a reference dataset for B-lineage differenti-
ation from HSCs with 11 clusters (Fig. 1a). The first two
clusters corresponded to HSC (in G1 or cycling cell
cycle states S/G2/M). DNA nucleotidylexotransferase
(DNTT, also known as TdT) and MME (also known as
CD10) marker gene expression distinguishes the early
lymphoid progenitors (LP, cluster 3) that progress into
the CD19-expressing cycling and G1 pro-B cell states
(Fig. 1b). Furthermore, three pre-B cell clusters (lacking
DNTT expression) segregated on the map, correspond-
ing to the cycling large pre-B state, followed by pre-B I
and pre-B II cells in the G1 cell cycle state (see Add-
itional file 1, Fig. S1d). The pre-B II and the subsequent
immature B cell clusters were defined by MS4A1(CD20)
positivity [76, 77]. The pseudotemporal ordering of the
clusters, based on diffusion pseudotime analysis, is
shown in Fig. 1c. The progression between cell states
based on this analysis is in agreement with the assigned
differentiation stages. These cell state annotations had
high agreement also with differentiation state scoring
using the gene sets defined by flow-sorted B cell popula-
tions (Fig. 1d) [75]. However, these gene sets defined
from bulk transcriptomes scored highly only in the cyc-
ling cell states. Therefore, we additionally distinguished
marker genes for each cluster from the single cell ana-
lysis (see Additional file 3, Table S2) to facilitate BM B-
lineage cell state assignment in future studies. For valid-
ation, we processed two independent BM datasets: a
healthy adult donor [38] and three pediatric BM samples
[36]. From both analyses, we could reproduce the suc-
cession of B-lineage clusters observed (see Additional file
1, Fig. S1e).
To delineate the gene expression changes that

characterize the cell state transitions in early B-lineage
differentiation, we compared the cell clusters
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sequentially along the pseudotime trajectory (HSC → LP
→ pro-B → pre-B → immature B cell state). Using the
scDD tool [26], changes in mRNA detection (as propor-
tion of zeros), differences in mean expression, and mo-
dality could be distinguished for 2201 genes in total with
high concordance between HCA and pediatric BM (see
Additional file 1: Fig. S2e and Additional file 4: Table
S3). Analysis of the RNA dynamics of this gene cohort
based on RNA velocity [25, 52] allowed further resolving
the B-lineage cell state map (Fig. 1e). In this analysis,
both spliced and unspliced counts are used to estimate
the velocity of gene expression change, thus extending
the cell state representation with gene regulatory dynam-
ics (see the “Methods” section). This is illustrated by
DNTT (Fig. 1f) that is first upregulated (red tones

correspond to positive velocity, top panel) in early
lymphoid cells and further increases in mRNA expres-
sion (red tones indicating high spliced mRNA counts,
bottom panel) at the pro-B state. The pro-B G1 cell state
separates as a branch in these analyses, indicating the
possibility that this cell state is present as a progenitor
pool. Moreover, two successive cycling cell states pre-
cede the cell cycle exit into the small pre-B state: the S-
phase marker PCNA is upregulated (positive velocity) as
cells progress from early lymphoid to the first cycling
state (pro-B cycling) (see Additional file 1, Fig. S1f) and
its mRNA peaks at S-phase cells, coinciding with in-
creasing TOP2A velocity (Fig. 1g, top panel, G2/M
marker gene) that subsequently peaks in its mRNA level
at the G2/M state. The successive increases in the

Fig. 1 B-lymphoid differentiation states separate in bone marrow scRNA-seq. a scRNA-seq clusters for the B-lymphoid lineage defined from HCA
BM scRNA-seq data are shown in color on the UMAP visualization and annotated by differentiation and cell cycle stage (C: S/G2/M, G1: G1) (refer
to Additional file 1: Fig. S1 for other cell type annotations and cell cycle scoring). LP, lymphoid progenitor. b Marker gene expression level is
colored on the UMAP, where darker tones of red indicate high expression. c Diffusion pseudotime ordering of cells is shown with colors
corresponding to clusters shown in c (left) or pseudotime (right). DC, diffusion component. d Scores for gene sets corresponding to distinct B cell
differentiation states [75] are visualized as a heatmap. e Differentiation dynamics based on RNA Velocyto analysis is shown for the B-lymphoid cell
states. Arrows correspond to predicted direction of cell state transitions. f, g RNA velocities (top panel) compared to spliced mRNA counts
(bottom panel) of the early B cell marker gene DNTT and the G2/M-phase specific gene TOP2A are shown. Red tones correspond to high velocity
or mRNA level, respectively
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velocity and mRNA levels of these cell cycle state
markers indicate the direction of cells on the map and
the final exit from the cell cycle into pre-B I G1 state
(Fig. 1g, lower panel).

TF activity changes reveal the regulatory dynamics of B
cell differentiation
The cell state transitions along the B-lineage trajectory
are tightly controlled by TFs. To characterize TF, core-
gulator (CR), chromatin modifier (CM), and splicing/
transcription complex (ST) activities at fine resolution,
we performed discovery of the so-called TF regulons
with a workflow based on the SCENIC tool [24] (see the
“Methods” section for details). Significant predictors for
cell states were analyzed by linear model fitting using
regulons that were reproducibly identified across train-
ing and test set splits. The regulon activity scoring across

the B-lineage differentiation stages is shown in Fig. 2a
(see also Additional file 5, Table S4) for regulons passing
a stringent R2 cutoff (0.5). Expression levels for TFs in-
volved in the main B-lineage commitment loop (B-
lineage TFs reviewed in [78, 79]) are shown for compari-
son in Fig. 2b. EBF1, FOXO1, LEF1, and TCF4, together
with ETS-factors ERG and FLI1, displayed the highest
activity (in red) in pro-B cells in our analysis, while
TCF3 and PAX5 had similarly high activity in both pro-
and pre-B cell states. SPIB and IRF4 activity was elevated
later at pre-B cells, together with several negative regu-
lons for TFs with known repressive function such as
BCL11A and known co-repressor complex components
HDAC2 and TBL1XR1 that interact with glucocorticoid
receptor to promote terminal differentiation.
As independent validation, we first retrieved bulk

ATAC-seq profiles from pro-B cells [80]. Significantly

Fig. 2 Transcription factor activities across B-lineage differentiation. a Regulon activity score is visualized as a heatmap (tones of red indicate high
activity). Annotated functional category for regulons: CM, chromatin modifier; CR, coregulator; TF, transcription factor; ST, splicing/transcription
complex. +/−: activating/repressive regulatory interaction. Cell cycle stage C = S/G2/M, G1 = G1. b Gene expression levels for the TFs EBF1, FOXO1,
TCF3, and PAX5 are indicated in color on the B-lineage scRNA-seq map. c Significant motifs matching pro-B active (indicated in a) TF regulons are
shown from pro-B cell bulk ATAC-seq. d Regulon activity score heatmap for pro-B active regulons in pediatric BM. e Percentage of TF regulon
target genes associated with ChIP-seq peaks is shown for EBF1(+), PAX5(+), and BCL11A(−) regulons obtained with the customized workflow.
BCL11A(−)* corresponds to the initial regulon discovered by default SCENIC run
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enriched TF motifs confirmed 9/12 TF regulons (EBF1,
FOXO1, TCF3, RFX5, IRF1, TCF4, LEF1, ERG, FLI1)
that our analysis associated with the pro-B G1 cell state
(Fig. 2c). The pro-B active regulons had a highly similar
activity profile also in the pediatric BM dataset (Fig. 2d)
(see also Additional file 1, Fig. S3a). Next, we examined
closer the regulon gene sets that include TF targets dis-
covered based on TF-to-target gene expression correl-
ation and TF-motif analysis at each target gene locus.
We categorized the predicted targets based on how
many training/test set splits supported them in the regu-
lon discovery phase. To test whether the predicted tar-
gets were bound by the TF, we retrieved ChIP-seq data
for PAX5, EBF1, and BCL11A, available in the human
cell line model Nalm-6 (see the “Methods” section). Peak
to gene associations were obtained using the tool GREA
T [66] and compared to SCENIC predictions (see Add-
itional file 5, Table S4). For PAX5 and EBF1, over 75%
of predicted targets had a ChIP-seq peak association
(Fig. 2e). The validation for the BCL11A repressive regu-
lon was initially low (< 25%). However, upon modifica-
tion of the regulon discovery strategy (see the “Methods”
section; data shown in Fig. 2a corresponds to updated
regulon discovery), we could improve this nearly two-
fold. Moreover, targets discovered across multiple train-
ing data splits (Npred, number of iterations supporting
the target) were associated with more ChIP-seq peaks
(refer to Additional file 1, Fig. S3b), including the most
prominent peaks based on ChIP peak score (refer to
Additional file 1, Fig. S3c, low ranks correspond to best
ChIP scores). The number of associated peaks and their
relative peak ranking is further illustrated for top 50
genes from the regulons (refer to Additional file 1, Fig.
S3d, targets ranked by Npred). ChIP-seq validated genes
include known PAX5 targets from confirmed regulatory
loops (EBF1, IRF4, BACH2) and B cell maturation path-
ways [81–83]. The high agreement of ATAC-seq motif
enrichment and the verified TF binding at target gene
set loci based on ChIP-seq provides evidence that the
TF activity scoring reflects bona fide active regulatory
interactions.
In summary, our analysis of healthy BM single cell

transcriptomes provides a comprehensive reference for
gene expression and TF activity changes that
characterize early B-lineage differentiation at single cell
resolution.

E/R leukemic cells resemble the pro-B cell state and
display heterogeneity in cell cycle activity
Lymphoblastic leukemias arise as a consequence of
arrested cell differentiation and often carry initiating
genetic lesions directly affecting key lymphoid TFs. To
characterize leukemic cells carrying the most common
TF fusion in ALL (E/R), we performed scRNA-seq on

six pediatric E/R+ pre-B-ALL cases, collecting from each
the diagnostic BM and from two cases BM at day 15
during induction chemotherapy (Fig. 3a, Table 1). The
leukemic cell clusters in each donor were identified
based on DNTT expression and their clear separation
from normal BM cell types (Fig. 3b) (see Additional file
1, Fig. S4a-d and clinical flow cytometry data in Fig.
S4e). The normal BM cell populations (erythroid, mye-
loid, T and NK cells) (see Additional file 1, Fig. S4c) and
cycling leukemic states clustered across donors directly,
while the similarity of G1 leukemic cells could be ascer-
tained by correcting for donor effect (see Additional file
1, Fig. S4d). Based on the B-lineage cluster-specific gene
sets, the diagnostic leukemic blasts resembled the pro-B
differentiation state (Fig. 3c). This analysis was sup-
ported by label transfer analysis using Seurat [40] (see
Additional file 1, Fig. S4c) that similarly identified pro-B
cells as the closest normal differentiation state, in agree-
ment with previous studies [4, 7, 84]. The cell cycle state
distribution differed between cases, from lowest propor-
tion of cycling cells in ALL3 to highest in ALL9 (Fig. 3d).
For the two cases (ALL10 and ALL12) with mid-
induction therapy BM profiles, the cells collected at day
15 separated as distinct cell states (Fig. 3a, d), indicating
that treatment further alters leukemic cell states.
Next, we aimed to further characterize how the diag-

nostic E/R leukemic cells differ from pro-B cells by com-
paring separately the gene expression distributions of
cycling and G1 state cells to normal pro-B cells. This
analysis was performed against both the HCA healthy
BM reference and the pediatric BM pro-B cells. For the
majority of genes, the most notable change upon normal
B-lineage differentiation was in the zero proportion (ZP)
metric that captures the fraction of cells with zero
counts for a gene of interest, as exemplified for top 50
genes up- and downregulated in pro-B to pre-B transi-
tion (see Additional file 1, Fig. S2e). Therefore, we used
ZP for clustering the 272 up- and 90 downregulated
genes found in both G1 and cycling cell state compari-
sons of E/R+ and pro-B cells from HCA (Fig. 3e) (refer
to Additional file 4, Table S3 for more extensive gene
lists from each comparison). Compared to other cell
states along the B-lineage differentiation trajectory,
about one third of the upregulated genes were at the
highest level in E/R+ cells (cluster 4), while genes in
clusters 1, 2, 5, and 6 showed expression in leukemia
and normal stem/progenitor cells (Fig. 3e). A smaller
fraction (19 genes, cluster 8) were highly expressed in
normal pre- or immature B cells, and 16 genes were
found significant only in comparison to pediatric BM
(see Additional file 4, Table S3). Considering that some
gene expression patterns resembled the pre-B cell state,
yet the leukemic cells appeared arrested at the pro-B
state, we further identified genes that are normally
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regulated in the pro-B to pre-B transition, to discover
additional genes associated with the differentiation ar-
rest. In total, 97 genes normally upregulated upon
transition to pre-B state remained at a similarly low
level as in normal pro-B cells, while 145 genes down-
regulated during differentiation remained expressed in
leukemic cells (see Additional file 4, Table S3).
Pathway enrichment analysis (see Additional file 6,

Table S5) revealed that several of the upregulated
genes were associated with cytokine, chemokine, and
growth factor pathways, in particular those involved
in the negative regulation of NK cell-mediated cyto-
toxicity. A previous study in ALL implicated elevated
TGF-β production in immune evasion [85]. Accord-
ingly, TGFB1 and three additional genes, LY6E,
TERF2, and HLA-E, that contribute to lower NK cell
recruitment and activation [86–88] were upregulated
in comparison to the expression distribution of E/R+
G1 cells to pro-B G1 cells (Fig. 3f).

The E/R+ BM immune microenvironment has low
abundance and activity of NK cells
The increase in cells expressing genes that may suppress
NK cell activity prompted further analysis of the BM im-
mune cells. In accordance, GNLY or NKG7 positive NK
cell numbers were markedly reduced in E/R+ BM com-
pared to HCA BM donors (Fig. 4a, percentage of mono-
nuclear cells (MNCs) shown, also seen as reduction in
percentage of non-leukemic MNC indicated in num-
bers). Moreover, according to flow cytometry data, NK
cell counts in the lymphoid cell fraction were lowest in
the E/R+ vs. non-E/R pre-B-ALL (Welch t test p value
0.025) (see Additional file 1, Fig. S4f).
To characterize the immune cell populations further,

we pooled T and NK cells across the HCA and E/R+
ALL donors for joint analysis. Based on the clustering
and marker gene analysis, several different NK cell types
could be distinguished (Fig. 4b, c). We focused on clus-
ters expressing GNLY or NKG7 (clusters 0, 2, 3, 7, 10,
11, 16) and noticed that the NK cells from ALL BM

Fig. 3 Comparison of E/R+ cells to normal pro-B cells. a Six diagnostic and two post-treatment bone marrow samples analyzed with scRNA-seq
are shown on the UMAP representation. b Expression level of the DNTT marker gene is shown in color on the ALL BM UMAP. c Gene set scoring
of differentiation stage is shown as a heatmap, comparing ALL cells to normal bone marrow lymphoid cells. d Computationally predicted cell
cycle stage of leukemic cells is colored separately for each donor on a UMAP. For ALL10 and ALL12, the sample origin (diagnostic or day 15 post-
treatment) is indicated in the bottom panel. e Eight clusters (clu) formed from genes that distinguish ALL cells from normal pro-B cells are shown
in the heatmap. The data corresponds to cluster centroids, and the colors indicate the mRNA detection metric ZP (zero proportion), with dark
blue tones indicating low expression (high ZP) and light tones corresponding to a larger proportion of cells expressing the genes in each cluster.
The number of genes in each cluster is indicated on the right. Cell cycle stage C: S/G2/M, G1: G1. f Genes modulating NK cell activity (TGFB1,
TERF2, LY6E, and HLA-E) plotted as density plots that compare the gene expression distribution of E/R+ cells to pro-B cells (both in G1 cell
cycle state)
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were disproportionately assigned to these clusters com-
pared to NK cells from HCA donors (Fig. 4d). Specific-
ally, ALL NK cells mainly represented clusters 10 and 16
that matched granzyme K (GZMK) expressing immature
CD56bright and transitional NK cells (gene set scores in
Fig. 4e represent the NK subtypes from a scRNA-seq
study [55]). In comparison, the majority of the normal
BM NK cells represented the mature or terminal NK
cells (cluster 0) that express granzyme B (GZMB) and
perforin (PRF1). Therefore, E/R+ leukemic cells may ac-
tively evade NK cell cytotoxicity. However, the frequency
of NK types varied across donors (Fig. 4f). Cluster 7 that
expressed IFNG at high level corresponded almost ex-
clusively to HCA donor 3, while the highly cell cycle ac-
tive ALL8 and ALL9 resembled more the mature or
active NK profile in normal BM compared to other ALL
cases.
Taken together, the leukemic cell states differed from

the normal pro-B differentiation state by high expression

of stem/progenitor cell-specific genes and several immu-
nomodulatory genes. The changes in immunomodula-
tory genes were reflected as more immature NK cell
types within the E/R+ BM.

The leukemic regulatory program reveals cell state
infidelity in TF activities and includes leukemia risk genes
To further decipher the aberrant TF activities contribut-
ing to the epigenetic reprogramming that distinguishes
E/R+ leukemic cells from normal lymphoid cell states,
we repeated the TF regulon activity analysis including
the diagnostic leukemic cell states from patient BM
(Fig. 5a) (for full list of regulons, refer to Additional file
5, Table S4). Two thirds of the regulons passing the lin-
ear model fit (R2 > 0.5) were active in pro-B cells and
showed elevated activity in E/R+ cells, including several
ETS-factors (ELK3, ERG, FLI1), FOXO1, MAX, MAZ,
SP4, TCF4, and THAP11. However, our analysis also re-
vealed high activity of RFX5 and NFYC in E/R+ blasts

Fig. 4 NK cell numbers and activity are low in E/R+ bone marrow. a Percentage of mononuclear cells represented by NK cells in BM scRNA-seq
data is shown as barplots across the five diagnostic E/R+ ALL (top panel, in blue; ALL12 sample enriched for B cells is not shown) and eight
normal BM samples (bottom panel, in green). Percentage of non-leukemic MNCs represented by NK cells is indicated in numbers for the ALL
samples. b Gene expression level for NK and T cell markers and Louvain clustering of cells is shown on the HCA and ALL NK/T cell UMAP. c
Marker genes for NK clusters analyzed are shown as a heatmap. Bright yellow color tones correspond to high expression. d The percentage of NK
cells (in barplot) represented by each cluster from b are shown from HCA (left) and ALL (right) samples. Total NK cell numbers assigned to
clusters (in HCA or ALL cases) are also indicated. e Gene set scores corresponding to scRNA-seq based subtypes [55] are colored on the NK/T cell
UMAP. Only cell clusters with low/negative CD3D expression used in this comparison are shown. f NK cell data plotted separately by donor,
indicating the cluster assignment for each cell (colored bar above). The cells (in columns) are clustered based on cluster scores. The heatmap
shows the scaled gene expression level for mature vs. immature cell markers GZMB and GZMK, respectively
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Fig. 5 (See legend on next page.)
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that typically would peak only at the immature B cell
state. This infidelity in differentiation-stage timed TF ac-
tivities was also manifested in the misexpression of
GATA2 that is normally confined to HSC and erythroid
progenitors. Furthermore, high but more variable levels
of IRF, KLF, STAT, and CREB TF family activities char-
acterized the E/R+ cells. Regulons showing diminished
activity included RUNX1, SPIB, TCF3, and IRF4
(Fig. 5a).
In further confirmation, we analyzed TF expression

matching the positive TF regulons with high activity in
E/R+ cells (top panel, Fig. 5a) across large bulk gene ex-
pression datasets [67, 89] (Hemap, N = 9544, with 1304
pre-B-ALL samples; Pan-ALL, with 1988 pre-B-ALL
samples; see also Additional file 1, Fig. S5 and RNA-seq
PanALL data in Additional file 5, Table S4). Overall, we
could confirm the expression in E/R+ leukemias (log2
signal above probe detection level of approximately 6
(see Additional file 1, Fig. S6)) for all 19 TFs analyzed
and 11/19 had significantly higher expression in the E/R
subtype.
The ETS-factor ELK3 and SP4 have been implicated

by genome-wide association studies (GWAS) as risk loci
for pediatric pre-B-ALL [90, 91]. Based on the bulk tran-
scriptomes, we could validate their expression in B-ALL,
with the highest proportion detected in the E/R+ sub-
type (red arrow), as shown comparing hematologic ma-
lignancies on the t-SNE plot of Hemap samples
(Fig. 5b), where lymphoid malignancies are highlighted
above the panel (for comparison across B-ALL subtypes,
see Additional file 1, Fig. S5). The two most common B-
ALL subtypes (E/R+ and high hyperdiploid cases) dis-
played similarly high ELK3 while elevated SP4 was more
E/R-specific (Additional file 1, Fig. S5). This prompted
further analysis of these TF loci in E/R+ cells (ELK3 in
Fig. 5c, SP4 in Fig. S6a). Towards this end, we character-
ized nascent transcription in E/R+ BM using GRO-seq
that reveals engagement of Pol2 to active initiation and
elongation at coding and non-coding regions. The GRO-

seq profiles confirmed the transcriptional activity of
these gene loci in E/R+ cells (Fig. 5c, E/R+ cell line REH
and two primary E/R+ bone marrow profiles are shown)
(see also Additional file 1, Fig. S6a). Furthermore, it re-
vealed an unannotated (Refseq, UCSC, or Gencode)
transcription start site (TSS) upstream the ELK3 TSS
(Fig. 5c). Two lncRNA repositories [92, 93] had match-
ing transcripts within this genomic region; however, the
concordance between the annotations was poor (Fig.
S6b). Therefore, we further examined the splicing pat-
terns within this locus using paired-end bulk RNA-seq
in the E/R+ BM (n = 8, matching samples in scRNA-seq
and GRO-seq analyses). The annotated ELK3 transcript
had highest support from splice junction spanning reads,
while the upstream transcript matched best the MiTran-
scriptome lncRNA structures (Fig. 5c, data from ALL10
shown). The read-through transcription observed in
GRO-seq was reflected in splice events from the up-
stream transcript to ELK3-exon2.

Leukemic TF activities that persist during chemotherapy
provide new targets to overcome resistance
Next, we analyzed the effect of the standard leukemia in-
duction therapy (prednisolone, vincristine, doxorubicin)
on the TF expression based on the scRNA-seq profiles
acquired at mid-induction therapy in ALL10 and ALL12
(Fig. 5d). Based on differential distribution analysis, re-
sidual leukemic blasts from day 15 bone marrow had
lower expression of RUNX1, TCF3, SOX4, and ERG
compared to diagnostic state in both samples, while
SMAD1 and ELK3 levels increased slightly [refer to Add-
itional file 4, Table S3 for full analysis]. ALL10 had a fa-
vorable decrease in blast count at the end of induction
on day 29 (0.08%). At day 15, the expression of pre-/im-
mature-B TFs POU2F2, KLF2/6, AFF3, and SPIB were
elevated in the remaining leukemic cells of ALL10 (10%
blasts). These changes may relate to the differentiation-
inducing effects of glucocorticoids (daily prednisolone)
[94]. However, overall, the changes in TF activities or

(See figure on previous page.)
Fig. 5 TF activity in E/R+ leukemic cells. a Regulon activity is visualized as a heatmap as in Fig. 2a comparing E/R+ cells and normal BM cells. Cell
cycle stage C: S/G2/M, G1: G1. Annotated functional category: CM, chromatin modifier; CR, coregulator; TF, transcription factor; ST, splicing/
transcription complex. b Bulk mRNA expression data for ELK3 and SP4 from Hemap is shown on a t-SNE map comparing transcriptomes across
hematologic malignancies (ALL, acute lymphoblastic leukemia; BCL/TCL, B/T cell lymphoma; CLL, chronic lymphocytic leukemia; MM, multiple
myeloma; CML/AML, chronic/acute myeloid leukemia). The location of pre-B-ALL and E/R+ samples is indicated on the plot. Red color tones
indicate high expression. c Bulk GRO- and RNA-seq data is shown at the ELK3 locus. GRO-seq tracks correspond to E/R+ REH cell line and two
primary E/R+ bone marrows. Representative RNA-seq signal (coverage) and splicing pattern (Sashimi plot, +strand splicing corresponding to min
10 junction spanning reads) are shown from ALL10. d Distributions of expression level at diagnosis and day 15 post-treatment are shown as
violin plots for a set of TFs with significant expression change (refer to Additional file 4: Table S3). Y-axis corresponds to normalized expression
level. The differentiation marker MS4A1 (mRNA) and CD20 (corresponding protein) level is shown for comparison. e The luminescence signal from
MTS assay (above) and relative cell counts (viable cells in colored bars, total cell count indicated without fill) at different drug concentrations are
shown. TK, TK216; XR, XRP44X). f Schematic summary of repressed pathway gene expression upon ETS-inhibition in REH cells (refer to Additional
file 4: Table S3). g Distributions of mRNA expression level of TERF2 and HLA-E comparing XRP44X treatment to control are shown based on
scRNA-seq data in REH
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gene expression were modest, indicating that only partial
differentiation towards pre-B cell state may occur, des-
pite the increase in the maturation marker CD20
(encoded by MS4A1). In contrast, cases ALL3 and
ALL12 responded slowly to therapy (74% and 59% blasts
at day 15; 0.16% and 0.2% end of induction, respectively).
In ALL3, the cell cycle state distribution was strongly
skewed to G0/G1 state at diagnosis (Fig. 3d) compared
to the other E/R+ cases, which could underlie resistance
to drugs targeting dividing cells (doxorubicin/vincris-
tine). In ALL12, the day 15 sample TF profile indicated
persistence of the leukemic gene regulatory program,
manifested as a lack of pre-/immature-B TF upregula-
tion (Fig. 5d).
As a strategy to overcome resistance to standard in-

duction therapy, we sought to identify drugs that could
target the identified high activity TFs. We selected two
compounds for further experiments: XRP44X that has
dual activity in targeting microtubules (like vincristine)
and simultaneously decreasing ELK3 activation by inhi-
biting its phosphorylation [95], and TK216 (an analog of
YK-4-279 that inhibits ERG and FLI1-mediated tran-
scriptional activity [96]). We used the glucocorticoid-
resistant E/R+ REH cells as a cellular model and per-
formed proliferation and viability assays at different drug
doses (Fig. 5e) (for dexamethasone control experiment,
see Additional file 1, Fig. S6c). At 72 h, cellular ATP
levels assessed using MTS assay (top panel) and viable
cell counts (bottom panel) dropped sharply at sub-
micromolar doses of XRP44X and TK216. Moreover, >
1 μM doses (1.6 μM for XRP44X, 2 μM for TK216) re-
sulted in loss of cellular ATP. To further characterize
the drug responses, we selected the drug concentrations
800 nM for TK216 and 1 μM for XRP44X, and prepared
scRNA-seq samples. Dead cells were removed during
sample preparation. The differential gene expression dis-
tributions in surviving cells were compared to control
(DMSO-treated) cells separating cells assigned into G1,
or cycling phases (see Additional file 4, Table S3). The
downregulated genes showed enrichment in ETS-motifs
and ETS-factor knockdown signatures, indicating on-
target activity of both drugs (see Additional file 6, Table
S5). Furthermore, the scRNA-seq data allowed us to
characterize secondary pathways that contribute to the
drug effect. Overall, the repressed pathways were drug-
specific, while many upregulated pathways were shared
(see Additional file 1, Fig. S6d). TK216-repressed genes
were enriched in functional terms related to splicing and
DNA replication (evident also in decrease of S-phase-
assigned cells, Fig. 5f bottom panel). In comparison,
XRP44X-repressed genes matched p53 target and MHC
complex genes, as summarized in Fig. 5f. We further an-
alyzed genes that may contribute to the suppressive BM
immune microenvironment (Fig. 3): HLA-E and TERF2

were significantly downregulated upon XRP44X treat-
ment. Both genes were among top predicted targets in
ETS-regulons, and we could further support direct bind-
ing of ETS TFs to the respective gene regulatory regions
based on TF ChIP-seq peak data from several cell types
(see Additional file 1, Fig. S6e). In summary, small mol-
ecule inhibitors targeting the ETS-factors could be ef-
fective in drug-resistant leukemic cells, acting through
direct effects on the leukemic regulatory network, cell
cycle- and immune-modulatory genes.

Discussion
Specific cell types are faithfully generated in a repeated
manner during development. This is due to gene regula-
tory interactions that limit the space of stable cell states
[97]. Understanding the direct impact of aberrant
leukemic TFs on cell state transitions in differentiating
lymphoid cells, and identifying TFs that maintain
leukemia-specific cell states could enable more precise
therapeutic intervention. Here, we explored large-scale
single cell transcriptomics data from healthy human BM
to generate a reference for cell state transitions and TF
activities that characterize early B-lineage differentiation.
Focusing on leukemias carrying the E/R fusion, we pro-
filed primary patient BM samples from diagnosis and
during induction therapy. The data suggest that the E/
R+ leukemic cell states resemble most the pro-B state,
differ between cases in cell cycle activity, express genes
that modulate the immune microenvironment, and may
partially be programmed towards pre-B state by induc-
tion chemotherapy. Accompanying the differentiation
arrest at pro-B cells, our results revealed elevated activity
of specific TFs that could serve as therapeutic targets.
Single cell profiling techniques have challenged how

we define cell types and provided new methodology to
characterize their molecular phenotypes [23, 98]. Previ-
ous analysis of the HCA BM data [2, 74] distinguished
the B-lineage cell populations but did not further com-
pare them or analyze how the transition from HSC to
immature B cells is regulated. One distinguishable fea-
ture along this lineage is the alternating cycling and G1
cell populations that the single cell profiling uniquely
could resolve. Here, we focused on uncovering key
lymphoid TFs orchestrating these cell state transitions.
A popular approach to study gene regulation based on
scRNA-seq profiles is to analyze the so-called TF regu-
lons defined by TF-to-target correlation and TF motif
analysis, available in the SCENIC tool [24]. We bench-
marked this method for studying BM cell states, using
ATAC-seq motif analysis and target genes for EBF1,
PAX5, and BCL11A from ChIP-seq as validation. Com-
pared to the original method, we introduced a cross-
validation step and improved capture of repressive TF-
target interactions. These regulons faithfully captured

Mehtonen et al. Genome Medicine           (2020) 12:99 Page 18 of 25



targets confirmed by ChIP-seq and TFs that have been
previously functionally implicated in B-lineage differenti-
ation through mouse knockout studies [78, 79]. This
same analysis strategy could be adopted to identify can-
didate regulatory programs for cell states across
hematologic malignancies.
In this study, we examined the TF activities that may

contribute in maintaining leukemic cell states in E/R+
cases and linked those to target genes, including modu-
lators of leukemia-immune cell cross-talk. Previous bulk
cancer genomics studies have established that repeated
gene expression patterns also characterize cancer sam-
ples [99], including ALL where such studies have estab-
lished several transcriptome-based subtypes [67, 100–
103]. They have also shed light on pathway activity and
TF expression in E/R+ cells that could be utilized to de-
sign targeted therapies [6, 104, 105]. However, the rarity
of normal B-lymphoid pro-B cells in BM tissue has rep-
resented a challenge to perform direct comparison of E/
R+ and healthy BM lymphoid cell states in vivo. More-
over, bulk profiles have obscured the characteristics of
the immune microenvironment. Existing scRNA-seq
studies in ALL have so far not focused on the leukemic
gene regulatory network [36, 106]. Through computa-
tional discovery and analysis of TF regulons from
scRNA-seq data, and independent validation with bulk
genomics data, we could show that elevated activity of
multiple ETS-factors (ELK3, ERG, and FLI1) together
with pro-B TFs FOXO1, MEF2C, immature B cell TFs
NFYC, RFX5, lineage-atypical GATA2 expression, and
E/R subtype-specific SP4 and TCFL5 activities character-
ized the E/R+ regulatory network. TCFL5 has been pre-
viously shown to be upregulated in E/R+ pre-B-ALL
[107–109], while GATA2 has been reported to contrib-
ute to the upregulation of erythroid genes, such as
EPOR, a known marker gene in E/R+ leukemia [110–
112]. While these TF activities were consistently high
across the six diagnostic samples studied, many IRF- and
STAT-regulons showed variable activity. Previously, in-
hibition of STAT3 was tested in E/R+ leukemic cells and
shown to be necessary for MYC expression [104]. How-
ever, we did not observe correlation between STAT3
and MYC regulon activities in our analysis.
Among the E/R+ TF network, ELK3 and SP4 have

been reported to confer risk of leukemia development in
GWAS [90, 91]. Previous expression quantitative trait
loci data from mature B-lymphoid cells indicated that
the ELK3 risk variant associates with its lower expression
[90]. This contrasts the data obtained here where high
expression was seen in E/R+ scRNA-seq data, which we
confirmed by bulk gene expression data comparing
across hematologic malignancies [89] and GRO- and
RNA-seq profiles in the E/R+ samples analyzed. Com-
parison across ALL subtypes indicated similar expression

levels also in high hyperdiploid pre-B-ALL samples that
represent the most common ALL subtype. In E/R+ cells,
we observed an active unannotated TSS upstream the
ELK3 locus. By integrating GRO-seq and lncRNA anno-
tations and analyzing splice junctions from RNA-seq, we
could match this transcript to a putative exon structure.
Furthermore, the genomics data indicated potential
read-through and cross-splicing events to ELK3 exon 2
(harboring the CDS start). Further functional studies on
the lncRNA, ELK3 spliceforms, and the impact of the
GWAS risk variants on expression of ELK3 in normal
pro-B cells and leukemia are thus warranted to
characterize their role during leukemogenesis. One as-
pect to study in this context is the role of immune sur-
veillance of pre-leukemic clones, as the target genes that
were reproducibly associated with the ELK3 regulon
across SCENIC runs included TERF2 and HLA-E that
we showed to be highly expressed in E/R+ cells. In
addition to HLA-E, class I MHC molecules HLA-A,
HLA-B, HLA-C, and HLA-F were also upregulated in
leukemic cells. Functionally, their expression might
interfere with NK cell-mediated tumor surveillance [84,
86–88, 108, 113, 114]. It is known that infection expos-
ure is a key underlying factor in the development of E/
R+ leukemias [115–118], thus highlighting the relevance
to study the BM immune microenvironment. The de-
crease in relative NK cell number observed in the E/R+
BM characterized here with scRNA-seq and parallel flow
cytometry is in agreement with a larger flow cytometry-
based study [85]. However, using scRNA-seq data from
E/R+ and normal BM, we could analyze the small NK
cell population further. There was a shift towards imma-
ture NK cell populations in leukemic BM, and we did
not detect subpopulations with high BHLHE40 or IFNG
(IFNγ) expression that would characterize active tumor
killing, matching targets inhibited by TGF-β [119, 120].
Interestingly, the TF regulons did not indicate canonical
activation of SMAD2/3 by TGF-β in the E/R leukemic
cells, but instead, both the regulon and differential ex-
pression analysis showed high SMAD1 levels. Atypical
activation of SMAD1 via TGF-β has been reported to
occur in different cell types [121, 122], and instead of
suppressive signaling, it may give E/R+ pre-leukemic
cells a growth advantage over healthy pro-B cells [115].
Further changes in innate immune cells (monocytes)
were recently reported in an ALL scRNA-seq study
[123]. Overall, single cell analyses provide a rationale for
carrying out further studies focused on immune cell-
leukemia cross-talk to develop therapies that specifically
target these immune cell suppressive mechanisms (NK
and monocytes) and the detailed genomic
characterization of patient material can help to unravel
how genetic variations in the leukemia-associated TF
loci relate to leukemia risk.
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Measurable residual diseases (MRD) at mid [124] and
end of induction chemotherapy are predictive markers
for relapse risk [13]. Moreover, in vitro resistance to
prednisolone has been shown to confer poor prognosis
[125]. Previous bulk gene expression studies have indi-
cated treatment-specific changes in gene expression and
expression of more mature cell markers [126, 127]. In
this study, we sought to gain insight on the efficacy of
drug therapy in leukemic cell clearance examining cell
state features from scRNA-seq samples collected during
in vivo chemotherapy. The E/R+ patient cohort included
several cases with residual leukemia cells at mid (day 15)
or end of induction (day 29), and we profiled BM sam-
ples from two of these at day 15. ALL10 with a favorable
end of induction blast count (< 0.1%) regained expres-
sion of multiple pre-B/immature B-specific TFs, includ-
ing SPIB and AFF3. In contrast, similar changes in TF
expression were lacking in blasts (representing 59% of
BM cells) in ALL12 at day 15. In ALL3 that also had a
high blast count at day 15, the leukemic blasts at diagno-
sis represented predominantly non-cycling cells.
Characterization of these features across a larger patient
cohort is thus warranted. To overcome resistance to
standard induction therapy, our analysis highlighted can-
didate drug therapy targets in E/R+ cells that could dis-
rupt leukemic TF activities. Inhibitors abrogating FLI1,
MEF2C, ELK3, or SP4 activation have been previously
shown to have efficacy in different cancers [95, 128–
133]. We tested small molecule drugs targeting the ETS-
factors ELK3, or ERG and FLI1 in dexamethasone-
resistant E/R+ REH cells and found reduced cell viability
with sub-micromolar concentration. We further charac-
terized the drug on-target and secondary pathway activa-
tion through scRNA-seq. Both drugs modulated ETS
target gene expression, and additionally, TK216 had a
repressive effect on splicing-related genes, while
XRP44X repressed p53 targets. RNA helicase inhibition
by TK216 [133] could underlie splicing changes based
on yeast studies reviewed in [134]. Downregulation of
p53 targets upon XRP44X treatment, on the other hand,
could result from decreased microtubule-mediated p53
nuclear transport [135]. Understanding of these
genome-wide drug effects is important for the design
and optimum use of cancer therapeutics. As one limita-
tion, our study did not compare the response to other
cell types. However, the small molecule ERG/FLI1 in-
hibitor TK216 tested here has entered a phase 1 study in
Ewing sarcoma [136, 137]. Thus, the safety profile from
the clinical study could guide further ex vivo and in vivo
analysis of this drug in pre-B-ALL. The ELK3 inhibitor
(XRP44X) tested has been studied using a mouse model
[131] where only limited toxicity was detected.
In this study, we compared the E/R+ leukemic cells to

early B-lineage differentiation in healthy adult and non-

leukemic pediatric BM. In our analysis, a putative steady
state of pro-B cells in G1 state was connected to the suc-
cession of cell states from early lymphoid to pre-B state.
Pro-B cells can migrate during early development from
fetal liver and contribute as a progenitor pool to lymph-
oid cell generation alongside HSC during early life [80].
As pre-leukemic clones may arise already in utero, the
origin and the relative contributions of both HSC- and
pro-B pool-derived lymphoid cells at different ages
would be relevant to characterize further, which could
be achieved using new lineage tracing approaches
coupled with scRNA-seq [138–140]. Moreover, com-
pared to other hematopoietic lineages, the succession of
lymphoid cell states from early lymphoid to immature B
cells differed markedly in transcriptional activity and cell
size. The sequential transitions between G1 and cycling
cell states pose challenges in single cell analysis in data
normalization and resolving the B-lineage differentiation
path. Existing benchmarks with downsampling of counts
[41, 48] show that normalization methods are robust to
differences up to 20% in “size,” yet the differences be-
tween G1 and G2/M states observed in lymphoid cell
data exceeded this. Moreover, many common trajectory
analysis methods fit tree-like structures to data [141].
This challenge motivated our choice of diffusion pseudo-
time and RNA velocity analyses that both can accommo-
date cycling cell states [25, 50, 52]. The variability
between donors in relative proportions of cycling cells at
each differentiation state would also represent a con-
founder in comparative analysis of cells categorized
using differentiation markers alone, as carried out in
previous flow-sorted bulk transcriptomes. Therefore, the
comparisons of subsequent differentiation states
matched by cell cycle state, as performed here, represent
a significant advance. One technical confounder in
scRNA-seq performed using viably frozen (unfixed) BM
samples could derive from the specific protocol used for
thawing cells, which could introduce differences in cell
populations measured. Using parallel flow cytometry
data from thawn cells, we could confirm that different
processing steps during library preparation did not alter
the leukemic cell content; however, a decrease during
freezing occurred in some samples. Therefore, parallel
clinical flow cytometry data is valuable and we used it
here to confirm changes in the leukemia immune micro-
environment. Sample processing could introduce differ-
ences also in the transcriptional activity level of cells
measured. We noted that the largest variance (PC1)
within individual leukemic bone marrow samples
reflected their transcriptional activity. These effects
could be mitigated by careful selection of analysis steps
and underline the importance of good benchmarking
data for optimizing single cell workflows for clinical
samples.
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Conclusions
This study provides the first comprehensive
characterization of cell states and TF activities in E/R+
ALL cases and its comparison to normal human B-
lineage differentiation at single cell resolution. We fur-
ther demonstrate the feasibility of monitoring the early
treatment response using single cell genomics and its
potential to uncover new therapeutic targets. Through
joint analysis of single cell and bulk genomics data, we
characterized TF activities contributing to the aberrant
cell phenotype in leukemic cells. These results could
provide a rational basis for developing new therapies tar-
geting leukemia-immune cell cross-talk and treatment-
resistant leukemic cell states.
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