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Abstract

Background: Polygenic risk scores (PRSs) are a summarization of an individual’s genetic risk for a disease or trait.
These scores are being generated in research and commercial settings to study how they may be used to guide
healthcare decisions. PRSs should be updated as genetic knowledgebases improve; however, no guidelines exist for
their generation or updating.

Methods: Here, we characterize the variability introduced in PRS calculation by a common computational process
used in their generation—genotype imputation. We evaluated PRS variability when performing genotype
imputation using 3 different pre-phasing tools (Beagle, Eagle, SHAPEIT) and 2 different imputation tools (Beagle,
Minimac4), relative to a WGS-based gold standard. Fourteen different PRSs spanning different disease architectures
and PRS generation approaches were evaluated.

Results: We find that genotype imputation can introduce variability in calculated PRSs at the individual level
without any change to the underlying genetic model. The degree of variability introduced by genotype imputation
differs across algorithms, where pre-phasing algorithms with stochastic elements introduce the greatest degree of
score variability. In most cases, PRS variability due to imputation is minor (< 5 percentile rank change) and does not
influence the interpretation of the score. PRS percentile fluctuations are also reduced in the more informative tails
of the PRS distribution. However, in rare instances, PRS instability at the individual level can result in singular PRS
calculations that differ substantially from a whole genome sequence-based gold standard score.

Conclusions: Our study highlights some challenges in applying population genetics tools to individual-level
genetic analysis including return of results. Rare individual-level variability events are masked by a high degree of
overall score reproducibility at the population level. In order to avoid PRS result fluctuations during updates, we
suggest that deterministic imputation processes or the average of multiple iterations of stochastic imputation
processes be used to generate and deliver PRS results.
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Background
Polygenic risk scores (PRSs) are of increasing utility in
early risk detection, risk stratification, therapy
prioritization, and life-planning [1–3]. In practice, indi-
vidualized PRS reports should be updated over time as
the underlying genetic studies and resultant knowledge-
bases expand [4, 5]. This need to refresh PRSs is analo-
gous to the need to update monogenic testing results as
underlying knowledgebases of pathogenic variants evolve
[6–8]. However, PRSs are continuous scores that typic-
ally use the entirety of an underlying knowledgebase for
score calculation, whereas monogenic variant analysis
and reporting involve the binary (or categorical) re-
classification of a constrained set of rare variants present
in any individual’s genome. As a result, the PRS update
process may introduce fluctuations in any and possibly
all individual-level scores, whereas updates to mono-
genic testing results typically involve the rarer re-
clarification of ambiguous results (the re-classification of
a variant of unknown significance). This major difference
leads to special considerations for updating of PRSs.
Besides updates to genetic knowledgebases, the most

commonly used basic computational approaches for PRS
derivation can introduce variability in the resultant
score. Currently, sparse genotyping approaches, like
array-based SNP genotyping or low-pass whole genome
sequencing (WGS), are the dominant assays used to ob-
tain genetic data for PRS calculation. For example, tens
of millions of individuals have pre-existing SNP array
data acquired from direct-to-consumer genetic testing
companies that can and is used to calculate PRSs. These
technologies are inexpensive, a feature necessary for
population-wide screening where PRSs would be most
useful, suggesting sparse genotyping approaches will be
the preferred mode of PRS deployment even as WGS
costs decline. Sparse genotyping approaches require a
genotype imputation step to infer the full set of geno-
types included in PRS calculations. This imputation
process has been demonstrated to produce scores that
are highly correlated overall with PRSs derived from
gold standard WGS data [9–12]. However, genotype
imputation algorithms can include stochastic ele-
ments, which introduce variability in the inferred
genotype dosages at the individual level. Here, we in-
vestigate the influence of this variability on the stabil-
ity of individual PRS estimates for multiple genetic
diseases with similar results. Results for coronary ar-
tery disease (CAD) are presented in the main text as
our motivating example because of its emerging util-
ity [13–15]. Results for multiple PRS derivation
methods applied to other conditions of interest in-
cluding atrial fibrillation, breast cancer, type 2 dia-
betes, glaucoma, and Alzheimer’s disease are provided
in the Supplementary Files.

Overall, we find that genotype imputation introduces
minor fluctuations in PRSs. While small fluctuations in a
PRS may not materially influence risk estimates and re-
sultant clinical/personal conclusions, these fluctuations
may influence the perceived stability and/or confidence
in these estimates. Moreover, the range of these fluctua-
tions varies depending upon the imputation algorithms
used, and in rare instances, these fluctuations can result
in a score change exceeding 20 percentile points despite
no change in the underlying genetic data. These rare
large-scale fluctuations are not obvious when PRS repro-
ducibility is evaluated at the population level but can
lead to significant differences in the perception and in-
terpretation of PRSs at the individual level. In other rare
instances, score fluctuations result in the re-
classification of individuals across risk tiers as deter-
mined by relative population rank thresholds. These rare
score fluctuations would occur in population screening
settings where thousands, if not millions, of individuals
would receive PRS results and longitudinal updates.
Here, we characterize PRS variability at the individual
level and suggest the use of imputation algorithms with
more deterministic behavior given that overall imput-
ation accuracy is comparable across all algorithms.

Methods
An overview of the computational process we executed
is presented in Fig. 1.

Genetic dataset and pre-processing
A total of 3574 individuals from the Atherosclerosis Risk
in Communities (ARIC) [16] study with both array-
based SNP genotype data and WGS data available were
initially retrieved from National Center for Biotechnol-
ogy Information dbGAP server (phs000280.v6.p1). Sam-
ples were genotyped on Genome-Wide Human SNP
Array 6.0 chip with genotypes called using Birdseed call-
ing algorithm [17] with samples and SNPs filtered using
standard call rate, sex mismatch, and Hardy-Weinberg
equilibrium thresholds as described previously [18]. To
isolate algorithmic issues from of data format issues, we
standardized all genotype data to forward strand
GRCh37 orientation as is generated by variant calling
from WGS data. Strand orientation was standardized
using Strand Home (https://www.well.ox.ac.uk/~wray-
ner/strand/) strand and build files. Multi-allelic and du-
plicate variants were excluded using bcftools v1.9 with
view (flags: -M 2 -m 2) and norm (flags: -d both) func-
tions [19]. A total of 39,087 variants were excluded in
this step. Any strand flips or unresolvable ambiguous
variants were detected and corrected or removed using
Genotype Harmonizer v1.4.20 with 1000 Genomes
Phase3 v5 (1000G) providing the expected linkage dis-
equilibrium (LD) relationships (flags: --callRateFilter
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0.90 –keep). One hundred ninety-seven variants were
corrected, and 53,109 variants were removed in this step.
The remaining 70,715 strand ambiguous variants were
eliminated with bcftools with +fixref plugin (flags: -m
flip -d). A final round of filtering was applied to
remaining indels, variants with missing alternative allele
information, and multi-allelic variants using bcftools.
Sixty variants were removed in this final step. A total of
678,849 variants of 841,820 original variants were
retained for imputation.
For gold standard WGS-based variant calls, freeze 3

WGS variant calls were acquired from the Trans-Omics
for Precision Medicine program. Variant calls were gen-
erated using the GATK best-practices v3.2-2 pipeline
from TruSeq PCR-free libraries generated and se-
quenced at a number of different sequencing sites. For
more details of the computational pipelines producing
variant calls, see https://www.nhlbiwgs.org/sequencing-
and-data-processing-methods-freeze3a.

Ancestry estimation
For ancestry estimation, an independent set of SNPs was
defined by LD pruning with PLINK 1.9 (flags: --indep-
pairwise 100 10 0.05); see www.cog-genomics.org/
plink/1.9/ [20]. For each individual, we estimated the
%-contribution of each of the five 1000G continental
superpopulations to their genetic ancestry using

ADMIXTURE v1.3.0 (flags: --supervised 5) [21]. To iso-
late the influence of genetic ancestry and admixture on
PRS variability, we included only individuals with > 95%
European (EUR) or African (AFR) ancestry in our down-
stream analysis. This filter resulted in 1447 EUR ancestry
individuals and 239 AFR ancestry individuals considered
for the ancestry-specific PRS reproducibility analyses.

Phasing and imputation
We performed phasing and imputation using three com-
monly used combinations of algorithms: (1) pre-phasing
and imputation with Beagle 5.1 [22] (referred to as Bea-
gle), (2) pre-phasing with Eagle v2.4.1 [23] and imput-
ation with Minimac4 [24] (referred to as Eagle+
Minimac), and (3) pre-phasing with SHAPEIT4 [25] and
imputation with Minimac4 [24] (referred to as SHAP
EIT+Minimac). Minimac and Beagle were run with de-
fault settings. For Eagle, we disabled imputation of par-
tially missing genotypes (flags: --noImpMissing) and
otherwise applied default settings. With SHAPEIT4, we
applied default settings. We used the default genetic
map files provided by SHAPEIT4 authors. A total of 37,
995,438 variants were imputed six times per condition
to ascertain PRS variability. We performed all phasing
and imputation steps using the Haplotype Reference
Consortium (HRC) as reference [26].

Fig. 1 Study overview. A schematic overview of our polygenic risk computational process. Genetic data was standardized (pre-processing),
underwent imputation using three different common genotype imputation processes (imputation), and PRS analysis (PRS analysis)
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PRS calculation and ancestry adjustment
PRS calculation was performed using the standard
weighted allele-counting approach assuming independ-
ent effects across loci using the following equation:

PRSi ¼
Xn

j¼1

xijβ j

where an individual’s (i) PRS is the sum of the effect al-
lele dosages (0 ≤ xij ≤ 2) for each variant (j) included in
the score multiplied by its marginal effect size (β j - log
odds ratio per dosage of effect allele). Percentile ranking
was calculated within each matched ancestry members
of the study cohort. Specifically, we calculated a 161
SNP score based on a recent analysis identifying 163
confident CAD risk loci [27] with weights based on the
latest large-scale CAD meta-GWAS—the CARD
IoGRAMplusC4D consortium [28] (PRSCAD). The gen-
etic model for non-additive variants was determined as
previously described [29, 30]. SNPs and weights are pro-
vided in Additional file 1: Table S1. Two variants were
excluded from this list, one multi-allelic variant and one
variant absent in HRC, resulting in a final 161 SNP
score. One hundred twenty-three of these SNPs are not
present in the SNP array data and were imputed. Of the

123 imputed SNPs, 105/123 (85.37%) were in LD with a
genotyped SNP at R2 > 0.5, 77/123 (62.60%) at R2 > 0.8,
and 62/123 (50.41%) at R2 > 0.9 in EUR populations, and
for AFR populations 72/123 (58.54%) at R2 > 0.5, 38/123
(30.89%) at R2 > 0.8, and 34/123 (27.64%) at R2 > 0.9. In
addition, we investigated the variability of two additional
previously published PRS scores for CAD, as well as
atrial fibrillation, type 2 diabetes, Alzheimer’s disease,
glaucoma, and breast cancer, derived from a variety
score construction methodologies as defined in the PGS
Catalog (http://www.pgscatalog.org/browse/studies/).
These additional PRS models ranged from dozens to
millions of risk loci. The breakdown of the number of
SNPs and those directly genotyped vs imputed SNPs is
provided in Table 1. All statistical analyses were per-
formed in R v3.5.1.

Imputation accuracy calculation
For evaluating the imputation accuracy, we developed a
flexible python script to calculate the coefficient of de-
termination (R2) and other accuracy metrics not used
here: F-score and imputation quality score [38]. The py-
thon script for calculating imputation accuracy is avail-
able at https://github.com/TorkamaniLab/imputation_
accuracy_calculator.

Table 1 The breakdown of typed vs imputed SNPs per PRS score

Number of SNP Reference

Total Found Typed Imputed

Coronary artery disease (CAD)

PRSCAD 163 161 38 123 [27]

metaGRSCAD 1,745,180 1,736,608 143,724 1,592,884 [31]

GPSCAD 6,630,150 6,238,460 567,297 5,671,163 [3]

Type 2 diabetes (T2D)

PRS-GWAST2D (547) 558 547 66 481 [32]

PRS-GWAST2D (397) 403 397 29 368 [33]

PRS-GWAST2D (170487) 171,249 170,487 10,152 160,335 [33]

GPST2D 6,917,436 6,482,889 570,779 5,912,110 [3]

Breast cancer (BC)

PRS-GWASBC (239) 313 239 34 205 [34]

PRS-GWASBC (2935) 3820 2941 325 2616 [34]

GPSBC 5218 4457 374 4083 [3]

Atrial fibrillation (Afib)

PRS-GWASAfib 166 166 19 147 [35]

GPSAfib 6,730,541 6,302,924 570,913 5,732,011 [3]

Alzheimer’s disease (AD)

PRS-GWASAD 29 29 2 27 [36]

Glaucoma

PRS-GWASGlaucoma 2673 2657 224 2433 [37]
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Results
We evaluated the variability in PRS scores due to 3 com-
mon imputation processes (Beagle, Eagle+Minimac,
SHAPEIT+Minimac), using 3 different pre-phasing tools
(Beagle, Eagle, SHAPEIT) and 2 different imputation
tools (Beagle, Minimac4), relative to a WGS-based gold
standard (Fig. 1). Here, we present the variability ob-
served across the combined cohort of 1686 individuals
of > 95% European ancestry (1447 individuals) or > 95%
African ancestry (229 individuals). Plots separated by
genetic ancestry are provided in Supplemental Figures—
those results are consistent with the combined results
presented here, with a greater degree of variability ob-
served in the African ancestry sub-group.
For each imputation process, we repeated the PRS cal-

culation process six times starting from the pre-phasing
step. Imputation-based PRSs were generally highly cor-
related with ground truth WGS-based PRSs (average
R2 > 0.9), except for the Alzheimer’s disease PRS and two
type 2 diabetes PRSs which consistently showed lower
correlation with WGS-based ground truth (Fig. 2a,
Additional file 1: Table S2, Fig. S1A-S13A). For each
score, the overall level of score dispersion relative to the

WGS-based gold standard is approximately equivalent
across all three imputation processes when evaluated at
the population level—being primarily associated with the
genetic architecture being imputed. However, when we
evaluate the range of PRS percentile values achieved
across the different imputation methods at an individual
level, clear differences in PRS stability emerge; SHAP
EIT+Minimac leads to the most intra-individual variabil-
ity, followed by Beagle and Eagle+Minimac (Fig. 2b,
Additional file 2: Fig. S1B-S13B). In rare instances (~ 1%
of the time), SHAPEIT+Minimac results in a range of >
20 percentile points between the highest and lowest PRS
values achieved for an individual (Table 2, Additional file
1: Table S3). Beagle and Eagle+Minimac return relatively
stable PRS values, with both methods very rarely (~
0.1%) resulting in PRS values that change > 10 percentile
points between the highest and lowest values achieved
for an individual. This algorithm-level variability is ob-
served regardless of the original approach used to derive
the PRS and the number of SNPs included in the
score—as similar variability is observed for three differ-
ent CAD risk scores derived using very different strat-
egies and including vastly different numbers of SNPs

Fig. 2 PRSCAD reproducibility. The variability in PRSCAD percentile values as determined by three different imputation processes. a Gold standard
WGS-based PRS percentile (x-axis) vs six replicates of imputation-derived PRS percentiles (y-axis). Point darkness depicts WGS-based ranking. b
Histogram of the absolute score deviations relative to the WGS-based standard. Bin for no change is not shown
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(Table 2), as well as across all diseases considered (Fig. 3).
These results suggest that the pre-phasing step intro-
duces the bulk of the stochasticity in imputation and
PRS results. Variability is further increased in individuals
of African ancestry (Table 2, Additional file 2: Fig. S14-
S27) and is exacerbated for PRSs with worse overall con-
cordance with the WGS-based gold standard.
Next, we determined which individuals are most likely

to be affected by imputation-induced PRS score variabil-
ity. As expected, the variability of the PRS percentile is
greatest in the middle of the distribution and lowest at
the tails of the distribution when quantified as the aver-
age absolute deviation (Fig. 4a, Additional file 1: Fig.
S28A-S40A) and maximum absolute deviation (Fig. 4b,
Additional file 1: Fig. S28B-S40B) in PRS percentile per
person. This is true for both European and African an-
cestry individuals (Additional file 1: Fig. S41-S54). This
is the expected behavior given raw score increments due
to imputation variability would be uniform across the
normal distribution of the raw PRS, but those equal-
sized raw score increments result in larger percentile
rank changes in the middle of the distribution vs the
tails. Thus, the largest percentile rank changes occur in
individuals where the utility implications are least influ-
enced by that change (individuals who are overall at
average risk and whose score fluctuates within the aver-
age risk range). While relatively large percentile changes
may not change the utility conclusion for average risk

individuals, those changes would likely lead to a per-
ceived change in risk. In addition, we observe some sig-
nificant variability, > 5 percentile changes in score, at the
tails of the risk distribution. Smaller percentile changes
at the extreme ends of the risk distribution can influence
both the clinical implications as well as perceptions of
risk [3]. Overall, using typical quintile thresholds for de-
fining high (top 20%) vs intermediate (middle 60%) vs
low (bottom 20%) risk individuals, we observe that run-
to-run imputation variability can lead to differing utility
conclusions in < 1% of individuals when using Beagle
and Eagle+Minimac, whereas interpretation variability
can exceed 5% of individuals for SHAPEIT+Minimac
(Table 3, Additional file 1: Table S4). When evaluated
using more refined risk tier thresholds for high-risk indi-
viduals, the rate of re-classification increases further as the
distance between risk tier thresholds shrinks, in some
cases exceeding re-classification of 20% of individuals
placed in a more narrowly defined top/bottom 5% per-
centile threshold (Table 4, Additional file 1: Table S5).
Finally, we sought to determine whether imputation

score variability was reflective of any differences in over-
all score accuracy at the genotype level relative to gold
standard WGS-based genotypes. We compared the
mean and minimum R2 values between imputed and
gold standard genotype dosages per imputation process
and replicate for all SNPs on chromosome 22 (Fig. 5a,
b). Overall, the three approaches demonstrate equivalent

Table 2 The distribution of CAD risk score percentile changes caused by three different imputation processes

Percentile
change

Beagle Eagle+Minimac SHAPEIT+Minimac

EUR AFR All EUR AFR All EUR AFR All

PRSCAD (161)

≤ 1%tile 1247 (86.18%) 163 (68.2%) 1410 (83.63%) 1437 (99.31%) 236 (98.74%) 1673 (99.23%) 259 (17.9%) 5 (2.09%) 264 (15.66%)

> 1%tile 200 (13.82%) 76 (31.8%) 276 (16.37%) 10 (0.69%) 3 (1.26%) 13 (0.77%) 1188 (82.1%) 234 (97.91%) 1422 (84.34%)

> 5%tile 21 (1.45%) 5 (2.09%) 26 (1.54%) 7 (0.48%) 1 (0.42%) 8 (0.47%) 331 (22.87%) 168 (70.29%) 499 (29.6%)

> 10%tile 2 (0.14%) 0 (0%) 2 (0.12%) 1 (0.07%) 0 (0%) 1 (0.06%) 68 (4.7%) 87 (36.4%) 155 (9.19%)

> 20%tile 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (0.21%) 10 (4.18%) 13 (0.77%)

metaGRSCAD (1736608)

≤ 1%tile 940 (64.96%) 106 (44.35%) 1046 (62.04%) 1418 (98%) 229 (95.82%) 1647 (97.69%) 153 (10.57%) 13 (5.44%) 166 (9.85%)

> 1%tile 507 (35.04%) 133 (55.65%) 640 (37.96%) 29 (2%) 10 (4.18%) 39 (2.31%) 1294 (89.43%) 226 (94.56%) 1520 (90.15%)

> 5%tile 12 (0.83%) 2 (0.84%) 14 (0.83%) 5 (0.35%) 1 (0.42%) 6 (0.36%) 277 (19.14%) 154 (64.44%) 431 (25.56%)

> 10%tile 2 (0.14%) 0 (0%) 2 (0.12%) 0 (0%) 0 (0%) 0 (0%) 8 (0.55%) 42 (17.57%) 50 (2.97%)

> 20%tile 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

GPSCAD (6238460)

≤ 1%tile 1289 (89.08%) 191 (79.92%) 1480 (87.78%) 1429 (98.76%) 233 (97.49%) 1662 (98.58%) 328 (22.67%) 20 (8.37%) 348 (20.64%)

> 1%tile 158 (10.92%) 48 (20.08%) 206 (12.22%) 18 (1.24%) 6 (2.51%) 24 (1.42%) 1119 (77.33%) 219 (91.63%) 1338 (79.36%)

> 5%tile 26 (1.8%) 0 (0%) 26 (1.54%) 2 (0.14%) 0 (0%) 2 (0.12%) 239 (16.52%) 69 (28.87%) 308 (18.27%)

> 10%tile 12 (0.83%) 0 (0%) 12 (0.71%) 0 (0%) 0 (0%) 0 (0%) 56 (3.87%) 9 (3.77%) 65 (3.86%)

> 20%tile 2 (0.14%) 0 (0%) 2 (0.12%) 0 (0%) 0 (0%) 0 (0%) 6 (0.41%) 1 (0.42%) 7 (0.42%)

Columns indicate the number and percentage of subjects in the population with percentile change in their PRS. EUR European, AFR African

Chen et al. Genome Medicine          (2020) 12:100 Page 6 of 13



average accuracy relative to WGS-based genotypes R2 =
~ 0.925 (Fig. 5a left). However, when restricting our view
to the minimum accuracy achieved per individual by
each process, a left shift in minimum accuracy is ob-
served for SHAPEIT+Minimac (Fig. 5a right) (p value <
2e−16 by paired Wilcoxon). As expected, the range of
accuracy achieved is larger for rare genetic variants
though variants across the entire minor allele frequency
spectrum contribute to this variability in accuracy
(Fig. 5b). This individual-level imputation variability is
masked by the approximately equivalent average

accuracy when evaluated at a population level (Fig. 5a).
To dissect the source of variability further, we examined
the potential contribution of each SNP to the overall de-
gree of score variability, which is related to the
consistency of its imputation (captured by the Gini coef-
ficient of imputation results, which ranges from 0 to 1
where a value of 0 corresponds to completely consistent
imputation results) and its relative contribution to the
overall score (captured by percent variability explained,
which is further a function of the SNP weight and its al-
lele frequency variance) (Fig. 5c). As expected, the vast

Fig. 3 PRS reproducibility. The variability in PRS percentile values as determined by three different imputation processes for 14 different PRSs.
Gold standard WGS-based PRS percentile (x-axis) vs six replicates of imputation-derived PRS percentiles (y-axis). Point darkness depicts
WGS-based ranking
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Fig. 4 PRSCAD variability as a function of PRS bin. The degree of variability in PRS percentile as a function of the expected WGS-based PRS tier
across three different imputation processes. a Average absolute deviation per individual relative to their WGS-based gold standard. b Maximum
absolute deviation per individual relative to the WGS-based gold standard. Box plots depict the interquartile range as is standard

Table 3 The rate of risk tier re-classification due to imputation variability using quintile-based cutoffs

Risk tier Beagle Eagle+Minimac SHAPEIT+Minimac

< 20%tile 20–80%tile > 80%tile < 20%tile 20–80%tile > 80%tile < 20%tile 20–80%tile > 80%tile

PRSCAD (161)

< 20%tile 19.89% 0.09% 0% 19.99% 0% 0% 19.27% 0.72% 0%

20–80%tile 0.04% 59.90% 0.09% 0% 60.01% 0.01% 0.48% 58.88% 0.64%

> 80%tile 0% 0.10% 19.90% 0% 0.01% 19.98% 0% 0.48% 19.52%

metaGRSCAD (1736608)

< 20%tile 19.88% 0.11% 0% 19.98% 0.01% 0% 19.47% 0.51% 0%

20–80%tile 0.29% 59.59% 0.13% 0.01% 60% 0% 0.51% 58.95% 0.54%

> 80%tile 0% 0.09% 19.92% 0% 0.01% 19.99% 0% 0.50% 19.50%

GPSCAD (6238460)

< 20%tile 19.85% 0.14% 0% 19.96% 0.02% 0% 19.57% 0.42% 0%

20–80%tile 0.08% 59.76% 0.17% 0.03% 60% 0% 0.59% 58.93% 0.48%

> 80%tile 0% 0.13% 19.88% 0% 0% 19.99% 0% 0.56% 19.44%

The rate of re-classification into low risk (< 20th percentile), intermediate risk (20–80th percentile), and high risk (> 80th percentile) due to phasing and imputation
variability across all individuals included in this study (1447 EURs and 239 AFRs combined). Columns indicate the average individual-level imputation-based risk
tier. Rows indicate the process-level imputation-based risk tier
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majority of SNPs show low variability as captured by
a low Gini coefficient. For those SNPs contributing to
score variability, we observe both single SNP variabil-
ity events (top left plot quadrant—high weight vari-
ants with moderate levels of imputation variability
like LPA and ANRIL for CAD and APOE for Alzhei-
mer’s disease) as well as the accumulation of errors
across multiple SNPs (bottom right plot quadrant—
several low weight variants with a higher degree of
imputation variability). When applied across a large
population, where rare computational events will ac-
cumulate in a small subset of individuals simply by
random chance, these fluctuations can lead to dra-
matic PRS differences when the score is updated,
even when no changes are made to the underlying
PRS model or input genotype data.

Discussion
Several initiatives are ongoing to evaluate the behavioral
and health outcomes associated with PRS reporting [39–
43]. PRSs will continue to be updated over time as
GWASs expand in size, additional risk loci are identified,
and more sophisticated score calculation and variant
weighting schemes are introduced. While updating our
MyGeneRank CAD score (https://mygenerank.scripps.
edu/blog/post/mgr-new-update), we sought to identify a
computational process that would lead to the greatest
degree of PRS stability and accuracy in the face of a
score that is expected to evolve over time. In most cases,
the degree of score fluctuation resulting from imputation
variability is small and does not change the interpret-
ation of the result. Most individuals remain in the same
broad risk tier, and the degree of score fluctuation is

Table 4 The rate of risk tier re-classification for high risk individuals due to phasing and imputation variability

Risk tier Beagle Eagle+Minimac SHAPEIT+Minimac

PRSCAD (161)

< 5%tile 1.19% (− 1.13–3.51) 0% (0–0) 15.66% (7.84–23.48)

< 10%tile 2.96% (0.4–5.51) 0% (0–0) 10.12% (5.56–14.68)

< 15%tile 1.59% (0.04–3.13) 0% (0–0) 9.96% (6.26–13.67)

< 20%tile 0.89% (− 0.11–1.9) 0% (0–0) 9.91% (6.7–13.12)

> 80%tile 1.78% (0.37–3.19) 0.3% (− 0.28–0.88) 10% (6.81–13.19)

> 85%tile 1.98% (0.26–3.69) 0% (0–0) 12.7% (8.59–16.81)

> 90%tile 1.19% (− 0.45–2.83) 0% (0–0) 17.54% (11.84–23.24)

> 95%tile 4.71% (0.2–9.21) 0% (0–0) 15.85% (7.95–23.76)

metaGRSCAD (1736608)

< 5%tile 6.98% (1.59–12.36) 1.19% (− 1.13–3.51) 18.6% (10.38–26.83)

< 10%tile 2.37% (0.07–4.66) 0% (0–0) 6.67% (2.86–10.47)

< 15%tile 2.37% (0.5–4.25) 0.79% (− 0.3–1.88) 12.94% (8.82–17.06)

< 20%tile 3.82% (1.79–5.86) 0.3% (− 0.28–0.88) 8.9% (5.86–11.94)

> 80%tile 2.66% (0.95–4.38) 0% (0–0) 9.76% (6.6–12.93)

> 85%tile 4.72% (2.12–7.33) 0% (0–0) 12.11% (8.11–16.11)

> 90%tile 6.43% (2.76–10.11) 0% (0–0) 6.06% (2.42–9.7)

> 95%tile 2.38% (− 0.88–5.64) 0% (0–0) 9.52% (3.25–15.8)

GPSCAD (6238460)

< 5%tile 5.88% (0.88–10.88) 0% (0–0) 13.25% (5.96–20.55)

< 10%tile 2.38% (0.08–4.69) 0.59% (− 0.56–1.75) 7.78% (3.72–11.85)

< 15%tile 0.79% (− 0.3–1.88) 0% (0–0) 9.92% (6.23–13.61)

< 20%tile 1.49% (0.19–2.78) 0.3% (− 0.28–0.88) 10% (6.81–13.19)

> 80%tile 2.37% (0.75–3.99) 0% (0–0) 8.33% (5.38–11.29)

> 85%tile 1.97% (0.26–3.68) 0% (0–0) 6.48% (3.41–9.55)

> 90%tile 2.37% (0.07–4.66) 0% (0–0) 5.99% (2.39–9.59)

> 95%tile 1.18% (− 1.12–3.47) 0% (0–0) 10.59% (4.05–17.13)

The rate of individuals re-classified from high risk tiers due to imputation variability across all individuals included in this study (1447 EURs and 239 AFRs
combined). An individual is considered re-classified if at least two imputation replicates produce a different risk tier than the WGS-based ground truth. Values in
parenthesis present the 95% confidence interval
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reduced in the tails of the distribution where disease risk
implications are most useful. However, upon systematic
investigation of the individual-level run-to-run variability
of PRS score generation reported here, we observe rare
instances where a score update can lead to a substantial
fluctuation in PRS without any change to the underlying
genetic model. The magnitude of these fluctuations is
not obviously related to the method used to define the
score nor the number of SNPs contained within a score.
Our observations suggest that imputation variability
across all components of a score contributes to score

fluctuations at an individual level. Though clearly, SNPs
with the highest weights contribute most strongly and
consistently to score fluctuations under modest but gen-
erally accepted levels of imputation variability. In a
population screening setting, both infrequent SNP vari-
ability events for singular high weight SNPs or the rare
accumulation of run-to-run imputation fluctuations
across low weight SNPs will return rare score results for
some individuals. Given that some of the promise of
PRSs in practice relates to prioritization of preventative
behaviors, even minor fluctuations in score may reduce

Fig. 5 Imputation accuracy relative to WGS-based gold standard expressed as R2. a Distribution of R2 values per individual for chromosome
22—average R2 (left) and minimum R2 (right) for 6 replicate imputation runs. Dashed vertical lines indicate the median values. b Range of R2

values achieved per minor allele frequency (MAF) bin for chromosome 22. c Scatterplot of percent variation explained (log-scale) per SNP for CAD
PRSs (left: PRSCAD, middle: metaGRSCAD, right: GPSCAD) vs imputation variability as defined by the Gini coefficient of SNP imputation results
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the perceived confidence of the score by the recipient—
despite the fact that the overall risk implications are un-
changed. Thus, we suggest that either deterministic im-
putation processes should be favored or stochastic
imputation processes could be run multiple times in
order to select the most common result. We expect
score accuracy is equivalent under these two scenarios.

Conclusions
Overall, given the dynamic and evolving nature of PRSs
and their purported influence on health decision-
making, we suggest that methods for the effective fore-
casting of score changes should be developed. Besides
the score variability introduced by computational pro-
cesses, PRSs also evolve over time depending upon the
underlying genetic architecture and size of GWASs cur-
rently executed. A projection of the remaining risk loci
and their likely effect sizes can be used to project the
likely future state of an individual’s PRS [44] to provide
them some idea of the uncertainty in their risk estimate
and to set expectations for the level of score change that
might be expected upon update. To accomplish this, all
technical sources of score variability must be addressed
and minimized in order to allow for an accurate projec-
tion of PRS uncertainty due to undiscovered risk loci.
During our CAD score update, we found that both com-
putational stochasticity and changes to the underlying
genetic model contribute to PRS variability. Score vari-
ability due to imputation was expected to be a more
prominent issue for PRSs with a small number of con-
tributing variants (like our original 57 SNP MyGeneRank
CAD score) and was expected to diminish in impact for
PRSs composed of many SNPs, i.e., imputation variabil-
ity should regress to the mean with high SNP counts.
However, our results suggest that significant (and equiva-
lent) score variability exists even in scores composed of
thousands of SNPs, suggesting that imputation variability
in the most highly weighted SNPs must be carefully
addressed in all PRS deployments. Increased imputation
variability in underrepresented populations will further
exacerbate this issue and potentially contribute to health
disparities as a result of PRS deployment [45]. This
variability highlights a pressing need for expanded and
diverse imputation reference panels. We expect score vari-
ability is further exacerbated for admixed individuals espe-
cially when considering the additional variability that
might be introduced upon matching an admixed individ-
ual to a genetically matched reference population to derive
relative score rankings. Thus, while updating genetic
models themselves introduces the bulk of population-level
score variability, it is important to control for computa-
tional variability so that score changes and projections due
to improvements to PRS knowledgebases can be deployed
and communicated with confidence.
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