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Abstract

Background: Clinical laboratory (lab) tests are used in clinical practice to diagnose, treat, and monitor disease
conditions. Test results are stored in electronic health records (EHRs), and a growing number of EHRs are linked to
patient DNA, offering unprecedented opportunities to query relationships between genetic risk for complex disease
and quantitative physiological measurements collected on large populations.

Methods: A total of 3075 quantitative lab tests were extracted from Vanderbilt University Medical Center's (VUMC)
EHR system and cleaned for population-level analysis according to our QualityLab protocol. Lab values extracted
from BioVU were compared with previous population studies using heritability and genetic correlation analyses. We
then tested the hypothesis that polygenic risk scores for biomarkers and complex disease are associated with
biomarkers of disease extracted from the EHR. In a proof of concept analyses, we focused on lipids and coronary
artery disease (CAD). We cleaned lab traits extracted from the EHR performed lab-wide association scans (LabWAS)
of the lipids and CAD polygenic risk scores across 315 heritable lab tests then replicated the pipeline and analyses
in the Massachusetts General Brigham Biobank.

Results: Heritability estimates of lipid values (after cleaning with QualityLab) were comparable to previous reports
and polygenic scores for lipids were strongly associated with their referent lipid in a LabWAS. LabWAS of the
polygenic score for CAD recapitulated canonical heart disease biomarker profiles including decreased HDL,
increased pre-medication LDL, triglycerides, blood glucose, and glycated hemoglobin (HgbA1C) in European and
African descent populations. Notably, many of these associations remained even after adjusting for the presence of
cardiovascular disease and were replicated in the MGBB.
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Conclusions: Polygenic risk scores can be used to identify biomarkers of complex disease in large-scale EHR-based
genomic analyses, providing new avenues for discovery of novel biomarkers and deeper understanding of disease
trajectories in pre-symptomatic individuals. We present two methods and associated software, QualityLab and
LabWAS, to clean and analyze EHR labs at scale and perform a Lab-Wide Association Scan.
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Background

The overarching goal of this study was to determine
whether laboratory (lab) test results collected in a
hospital and outpatient setting could be mined against
polygenic scores (PGS) to identify known and novel bio-
marker associations for complex disease. Lab test results
are essential to routine clinical care. These targeted
biochemical measurements facilitate disease diagnosis
and influence health care delivery. Clinical lab values are
also monitored as mediators of disease risk and are
targeted by interventions to reduce disease incidence
(e.g., cholesterol-lowering medication to reduce the risk
of heart disease). Lab test results in the electronic health
record (EHR) are a vast and growing resource for novel
biomarker discovery, especially as EHRs are increasingly
linked to patient DNA samples (e.g., the eMERGE
consortium (https://emerge.mc.vanderbilt.edu)), the All
of Us Program (https://allofus.nih.gov), and the Million
Veteran’s Program (https://www.research.va.gov/mvp/)).
Genetic studies of EHR-based labs could reveal novel
biomarker-disease or biomarker-gene associations, which
in turn could lead to better understanding of biological
processes in disease, improved diagnostic algorithms, and
new therapeutic targets.

Despite their potential, however, EHR-based labs have
been used in only a handful of prior genetic studies [1-5],
and none have systematically interrogated an extended
collection of EHR-based lab values. Barriers to studying
EHR-based labs include uneven data quality, and
challenges inherent to analyzing and interpreting high-
dimensional health care data. Data entry errors exist,
resulting in implausible recorded values [6], some labs
have different units and reference ranges over time, and
many individuals have multiple observations of different
lab tests, each measured at varying times relative to diag-
noses and treatment [7]. Moreover, previous studies dem-
onstrate that while 99% of lab results are accurately
transmitted from the testing laboratory to the EHR, only
70% of test results contain all required reporting elements,
and only 91% of results are appropriately formatted [8].
Thus, while these data represent real clinical care and may
accelerate translational research, there is little precedent
for their analysis and interpretation in genetic studies.

To address these challenges, we present a high-
throughput framework for genetic analysis of EHR-derived

lab data. We have developed two methods: the QualityLab
pipeline to clean, standardize, and visualize lab data and the
Lab-Wide Association Scan (LabWAS) pipeline to scan for
associations between any variable of interest (genetic or
otherwise) and the cleaned EHR labs. The LabWAS
method is similar to the Phenome-Wide Association Scan
(PheWAS) which scans for association between an expos-
ure variable (typically, a genetic risk factor) and many
phenotypes [9]. The PheWAS method has replicated many
known gene-disease associations [10] and has identified
novel pleiotropic genetic effects [11], opportunities for drug
repurposing, and unintended drug consequences [12].
QualityLab builds off the success of previous measurement
quality control methods, such as CLARITE [13]. While,
CLARITE focuses on minimal cleaning of survey data,
QualityLab conducts extensive cleaning of quantitative lab
measurements derived from EHRs.

We hypothesized that EHR-based lab values could be
used to identify known and novel relationships between
genetics, biomarkers, and disease. We deployed our
framework in the Vanderbilt University Medical Center
(VUMC) EHR and linked biobank, BioVU, and repli-
cated it in an independent biobank, Massachusetts
General Brigham Biobank. We focused on genetic ana-
lysis of blood values of high-density lipoprotein choles-
terol (HDL), low-density lipoprotein cholesterol (LDL),
and triglycerides (TG) and on coronary artery disease
(CAD) as proof-of-principle examples to test the associ-
ation between PGS for CAD and known biomarkers of
disease (LDL, HDL, and TG) using the QualityLab and
LabWAS methods across populations. We show that
EHR-derived lipids values are genetically similar to those
in population-based studies and that PGS for lipids ro-
bustly associate with their respective lab in a LabWAS.
Additionally, our LabWAS revealed that PGS for CAD
associated with known lipid biomarkers, even in individ-
uals without a history of CAD, and with potentially
novel immune biomarkers.

Methods

Study sample

Our primary analysis was performed at VUMC which is
a tertiary care center providing inpatient and outpatient
care in Nashville, TN. The VUMC EHR was established
in 1994 and includes data on billing codes from the
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International Classification of Diseases, 9th and 10th
editions (ICD-9 and ICD-10), Current Procedural
Terminology (CPT) codes, laboratory values, reports,
and clinical documentation. The de-identified mirror of
the EHR, known as the Synthetic Derivative, includes
patient records on more than 2.8 million individuals. In
2007, VUMC launched a biobank, BioVU, and the
BioVU Consent form is provided to patients in the out-
patient clinic environments at VUMC. The form states
policies on data sharing and privacy and, upon consent,
makes any blood leftover from clinical care eligible for
BioVU banking [14]. The VUMC Institutional Review
Board oversees BioVU and approved this project.

Genotyping and quality control

We obtained genotype information on 94,474 BioVU in-
dividuals of different ancestral and racial backgrounds
genotyped on the Illumina MEGA® array. Using PLINK
v1.9 [15], genotypes were filtered for SNP and individual
call rates, sex discrepancies, and excessive heterozygosity
(Additional file 1). We selected individuals of European
or African ancestry using principal component analysis
implemented in Eigenstrat [16, 17] and confirmed the
absence of genotyping batch effects through logistic
regression with “batch” as the phenotype. Imputation
was completed using the Michigan Imputation Server
[18] using the Haplotype Reference Consortium (HRC)
reference panel. SNPs were then filtered for SNP imput-
ation quality (R?>>0.3) and converted to hard calls. We
restricted to autosomal SNPs, filtered SNPs with minor
allele frequency > 0.01, or with allele frequencies that dif-
fered by more than 10% from the 1000 Genomes Project
phase 3 CEU or ASW set respectively [19], and Hardy-
Weinberg Equilibrium (p > 1 x 107'°). The resulting dataset
contained 6,303,629 SNPs on 72,824 individuals of
European genetic ancestry and 12,798,111 SNPs on
15,283 individuals of African genetic ancestry.

QualityLab pipeline

In parallel with the BioVU genotyping project, we
extracted data on all lab tests collected in the routine
clinical care of 1,521,125 VUMC patients, amounting to
275,991,157 observations across 11,061 lab tests (Fig. 1a).
Of these lab tests, 5028 were reported in non-numeric
values and 1618 had only been administered to one
patient, leaving 4415 quantitative lab tests for further
cleaning. Some lab tests had observations recorded in
different units (e.g., Selenium reported in both mcg/L
and pg/L); thus, we restricted to lab tests for which at
least 70% of the observations were measured in the same
unit and required that each lab have at least 100 patients
and at least 1000 numeric observations, for a total of
939 labs retained for further analysis.
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For each of these 939 labs, we applied lab-specific
quality control filters (Fig. 1b). First, we filtered infinite
and non-numeric values, as well as observations outside
of 4 standard deviations from the overall sample mean,
indicative of biologically implausible values due to tech-
nical or recording errors, monogenic disorders, or extreme
environmental influence. We calculated the median lab
value for each patient and extracted the patient’s age at
median lab value. For patients in whom we had to calcu-
late the median lab value (e.g., those with an even number
of observations), we defined the age at median lab value as
the mid-point of the patient’s ages at the two lab values
used to calculate the median lab value.

The analyses presented in this manuscript use the
QualityLab dataset constructed from pediatric and adult
observations, in both sexes, in patients of all races
(Fig. 1b). In downstream genetic analyses, however, we
restrict to participants of European or African genetic
ancestry and match the ancestry of the participants in
the discovery GWAS used for the training the PGS.

The QualityLab pipeline also provides user with the
option to stratify data (Fig. 1b), by age at observation,
sex, and EHR-recorded race, for a total of 72 different
data subsets. The QualityLab pipeline generates summary
statistics and plots for each strata (e.g., mean, maximum,
and minimum of the median lab value; Additional file 2:
Table S1; Additional file 3: Fig. S1), and returns two ver-
sions of the data for downstream analyses. The first is a
table of median lab values and age at median lab value for
each individual. The second is an inverse normal quantile
transformation (INT) of the median lab value data, to
account for skewness and non-normality [20, 21]. Import-
antly, the choice of quality control thresholds is com-
pletely in the control of the user. The choices made here
reflect the goals of this study which focus on the central
tendencies of large populations. However, the outlier
thresholds and normalization methods employed here
would not be appropriate in a study of rare, potentially
pathogenic, variation where large genetic effects and ex-
treme phenotypes may be expected.

Lab heritability and GWAS analyses

Prior to calculating SNP-based heritability (h%snp), we
first calculated pairwise relatedness in the BioVU geno-
typed sample and removed one related individual from
pairs with pi-hat greater than 0.05. This stringent
threshold was chosen based on prior experience and
previously published best practices in the application of
restricted maximum likelihood (REML) approaches to
the calculation of h’g\p [22]. After filtering, 45,010 indi-
viduals of European genetic ancestry (Fig. 1a) remained.
We then used the genome-wide complex trait analysis
(GCTA) package (version 1.92.4) [23] to create a pair-
wise genetic relationship matrix for all individuals, and
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(See figure on previous page.)

Fig. 1 Selection of BioVU patients and datasets for different analyses presented in this manuscript. a BioVU patients were selected in parallel for
clinical laboratory (lab) test cleaning and for genotyping. b Lab-specific quality control filters and subsetting were applied to the 939 lab tests in
the 94,474 patients with clean lab data. Parallelograms denote input and output datasets. Options highlighted in green were selected for the

proof-of-principle analyses of blood-based lipid lab values

heritabilities were calculated using REML methods. We
used the median, INT-transformed lab values from the
QualityLab pipeline, and of the 481 analyzed labs, 335
demonstrated non-zero heritability. For GWAS analyses,
we used a less stringent relatedness filter appropriate to
GWAS (pi-hat >0.2) [24] resulting in a total available
sample of 66,732 European descent individuals. Next, we
subset to the heritable labs with at least 1000 individuals
(n=181) and performed GWAS of the median, INT-
transformed lab values using fastGWA [25] (Fig. 1a). All
h%sup and GWAS analyses included covariates for sex,
cubic splines (knots = 4) of median age across the med-
ical record (to control for non-linear effects of age), and
the top 10 principal components of ancestry.

Heritability and GWAS analyses of lipids
We benchmarked our lipid h%s\p estimates against those
from two external datasets, the Global Lipids Genetics
Consortium (GLGC) [26] and the Million Veterans
Program (MVP). GLGC and MVP estimates of h2gp for
HDL, LDL, and TG were calculated from GWAS sum-
mary statistics using LDSC [27]. We computed h2gup in
BioVU using Linkage Disequilibrium Score regression
(LDSC) applied to our fastGWA summary statistics for
HDL, LDL, and TG (Additional file 3: Fig. S2). However,
because LDSC can underestimate h’gp [28], we also
calculated h*s\p using GCTA. In addition to these h*\p
comparisons, we calculated the genetic correlations (rg)
between the BioVU lipid GWASs and the GLGC and
MVP lipid GWASs using LDSC and the pre-computed
European LD scores from 1000 Genomes Phase 3 Euro-
pean data [29]. We also calculated genetic correlations
using a new method, high-definition likelihood [30],
which fully accounts for linkage disequilibrium across
the genome and is more suitable for traits with lower
heritability than LDSC. In sensitivity analyses, we repeated
genetic correlations of LDL after controlling the BioVU
GWASs for coronary atherosclerosis or diabetes diagno-
ses, defined as phecodes 411, “Ischemic heart disease,”
and 249, “Secondary diabetes mellitus” (Additional file 1).
To validate EHR-based lipid values, we tested the
robustness of HDL, LDL, and TG h%gp estimates to dif-
ferent lab value and patient filters. First, we excluded
lipid measurements that occurred after the first mention
of lipid-altering mediation in the EHR (Additional file 1)
and re-calculated each patient’s pre-medication median
values of HDL, LDL, and TG. Second, we excluded

patients with a diagnosis of CAD, defined by the phe-
code 411 (Additional file 1).

LabWAS pipeline

LabWAS wuses the median, INT-transformed lab
values from the QualityLab pipeline in a linear re-
gression to determine the association with an input
variable, adjusting for covariates. In these analyses, a
primary goal of the LabWAS was to test common
population genetic variation (e.g., PGS) for associ-
ation with common population variation in lab
values. We therefore only included the 335 labs with
non-zero hZgup. Additionally, we imposed a mini-
mum sample size requirement of 100 for a lab to be
included in the LabWAS analysis, bringing the num-
ber of labs tested in each scan to 315 in the European an-
cestry set and 226 in the African ancestry set.

Polygenic scoring

Prior to polygenic scoring, we randomly removed one
related individual from pairs with pi-hat greater than
0.2, leaving 66,732 individuals of European genetic an-
cestry and 12,383 individuals of African genetic ancestry.
(Fig. 1a). We generated lipids PGS for these individuals
using PRS-CS [31] with weights derived from the trans-
ethnic MVP lipid GWAS summary statistics [4]. PGS for
CAD (CADpgs) was calculated using SNP weights from
CARDIoGRAMplusC4D GWAS summary statistics [32]
using PRS-CS. Because the majority of the MVP trans-
ethnic sample was European, linkage disequilibrium was
modeled using the pre-calculated European panel. PRS-
CS is a recently developed Bayesian polygenic prediction
method that imposes continuous shrinkage priors on
SNP effect sizes (Polygenic Risk Score — Continuous
Shrinkage) [31]. These priors can be represented as
global-local scale mixtures of normals which allow the
model to flexibly adapt to differing genetic architectures
and provide substantial computational advantages. The
shrinkage parameter was automatically learnt from the
data (i.e., using PRS-CS-auto). SNP effect estimates were
obtained from GWAS summary statistics and the score
was calculated using a linkage disequilibrium reference
panel from 503 European samples in the 1000 Genomes
Project phase 3 [19]. Although PRS-CS outperformed
other polygenic scoring methods across a range of traits
in previous experiments, its superiority may not hold
across all genetic architectures [31]. We therefore also
generated PGS for the European sample using PRSice-2
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[33] (Additional file 1) and have automated a pipeline to
generate scores across both methods. PGS were scaled
to have a mean of zero and SD of one before testing for
association with any outcome variables. We validated
each score by testing the proportion of trait variability
explained by the PGS, controlling for sex, cubic splines
of median age (4 knots) across the medical record, and
the top 10 principal components to adjust for genetic
ancestry (Additional file 3: Fig. S3).

LabWAS of polygenic scores

PGS for LDL (PGS;p;), HDL (PGSypi), and TG
(PGStg) were calculated in BioVU participants using
PRS-CS and applying SNP weights from the MVP
GWAS summary statistics. We then ran LabWAS of
PGSy pr, PGSypr, and PGStg to test whether lipid labs
were robustly associated with the genetic scores to
which they corresponded. Next, a PGS for CAD
(CADpgs) was calculated using SNP weights from
CARDIoGRAMplusC4D GWAS summary statistics [32]
and a LabWAS of PGScap to test whether the score
could identify lab traits associated with genetic risk for
CAD, before and after controlling for a CAD diagnosis
(Additional file 1). Each LabWAS was controlled for sex,
cubic splines of median age across the medical record,
and the top 10 principal components of ancestry. Results
are reported as effect estimates and their 95% confidence
intervals per SD increase in the PGS. The Bonferroni-
corrected threshold for statistical significance across all
tested labs was 3.97x 107° (0.05/(315 x 4)).

Replication in Massachusetts General Brigham Biobank
We next sought to replicate the associations between
lipids PGS and referent lipids as well as the significant
associations with CADpgg in an external biobank. The
MGBB, previously the Partners Biobank, is an ongoing
virtual cohort study of patients across the Partners
HealthCare hospital system (including Brigham and
Women’s Hospital, Massachusetts General Hospital, and
other affiliated hospitals), which provides a large-scale
resource of linked longitudinal electronic health records
(EHR) data, genomic data, and self-reported survey data
[34]. All patients provided informed consent before en-
rollment, and all study procedures were approved by the
Partners HealthCare Institutional Review Board.

Lab values were extracted from EHRs and cleaned using
QualityLab, resulting in 759 labs for analysis. The median
value for each lab trait for each individual was selected
and inverse normalized. Lab heritabilities were calculated
using REML in GCTA. Of 759 labs that passed Quality-
Lab, 241 demonstrated measurable heritability and in-
cluded a sample size of at least 100 individuals.

Polygenic scores for HDL, LDL, TG, and CAD were
calculated on individuals of European descent in MGBB
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(n = 25,698) using the same criteria as BioVU. Lipids and
CAD polygenic scores were associated with each of 234
labs using LabWAS. Lastly, the associations between
CADpgs and lab traits were controlled for CAD diagno-
sis, defined by phecode 411 (N cases=1094, N con-
trols = 20,405). All associations were controlled for sex,
top 10 principal components, and the first two splines of
median age across the medical record.

Results

QualityLab pipeline

A total of 94,474 BioVU patients with clean lab data, of
whom 66,732 were also of European genetic ancestry
were included in the PGS LabWAS analyses (Fig. 1a).
These 66,732 patients had data on 939 labs, containing
30,421,498 observations. The median number of unique
lab tests per patient was 44, and the median number of
lab observations per patient was 201. Slightly more than
half of the BioVU patients in the sample were female
(55.6%), and the average median age across the EHR was
52.0 years. These BioVU participants included 10,015
CAD cases and 49,702 CAD controls. In the African an-
cestry sample, 12,383 patients had data on 925 labs, con-
taining 5,367,062 observations. More than half the
patients were female (61.6%) and the average median
age was 38.5years. The median number of unique lab
tests per patient was 41, and the median number of
lab observations per patient was 150 (Additional file 1;
Additional file 2: Table S3). Distributions of lipids
levels by genetic ancestry are shown in Additional file 3:
Fig. S4.

Heritability and GWAS analyses

Out of 939 clean lab traits, 335 demonstrated non-zero
h%sxp and the point estimates ranged from 2x 107° to
0.98. (Additional file 2: Table S4, Additional file 3: Fig. S5).
As a resource for the community, the GWAS summary
statistics for the labs with calculable heritability and a mini-
mum sample size of 1000 individuals (7 = 181) are available
in the GWAS Catalog (Study Number: GCP000091; acces-
sion numbers GCST90012603 - GCST90012784; accession
numbers are listed in Additional file 2: Table S22).

Heritability and GWAS analyses of lipids

The h%g\p estimates in BioVU were robust to removing
post-medication observations, and to removing CAD
cases. The number of participants included in these
analyses, however, was smaller, and so the standard
errors of these h%gp estimates were larger (Fig. 2a;
Additional file 2: Table S5). Both GCTA and LDSC
gave similar estimates of h%gp in BioVU (Fig. 2b),
and the LDSC estimates in BioVU were comparable
to those in the GLGC and MVP for all lipids.
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Genetic correlation between BioVU and GLGC sum-
mary statistics was strong for HDL (LDSC: rg=0.96,
SE=0.08, p value =2.69 x 107>, high-definition likeli-
hood: rg = 0.92, SE = 0.11, p value = 3.25 x 10""’) and TG
(LDSC: rg=0.94, SE=0.05, p value=5.86x10"", high-
definition likelihood: rg=0.89, SE=0.11, p value =7.69 x
107"7). When comparing BioVU and MVP, the correlations
for HDL (LDSC: rg=0.99, p value=7.51x10"°, high-
definition likelihood: rg=0.89, SE =0.08, p value = 2.24 x
10%) and TG (LDSC: rg=094, p value=228x10",
high-definition likelihood: rg=0.88, SE=0.10, p value =
4.84 x 107'®) were nearly perfect. The LDL and LDL pre-
medication genetic correlations between GLGC and BioVU
were not calculable using LDSC due to low heritability.
Using high-definition likelihood, GLGC LDL levels were
significantly correlated when median LDL values across the
entire EHR (rg = 0.44, SE =0.10, p value = 1.08 x 10~°) and
median pre-medication LDL values (rg =0.50, SE = 0.08, p
value = 6.38 x 107'°). The comparison between BioVU and

MVP showed a stronger correlation for LDL (LDSC: rg =
0.84, SE =0.17, p value = 1.47 x 10~% high-definition likeli-
hood: rg=053, SE=009, p value=152x10"""). The
genetic correlation with MVP increased when we restricted
to pre-medication values of LDL in BioVU (LDSC: rg=
0.89, SE = 0.22, p value = 2.90 x 10~%; high-definition likeli-
hood: rg=0.56, SE=0.07, p value =2.06 x 107%) (Fig. 2¢)
and increased further when we controlled for coronary ath-
erosclerosis and diabetes diagnoses (GLGC, high-definition
likelihood: rg = 0.57, SE = 0.09, p value = 8.88 x 10, MVP,
LDSC: rg=1.00, SE=0.34, p value =0.004) (MVP, high-
definition likelihood: rg=0.55, SE =0.09, p value = 1.50 x
107%) (Additional file 3: Fig. S6).

LabWAS of polygenic scores for lipids

A LabWAS of HDLpgs in the European sample was as-
sociated with levels of several metabolic markers
(Fig. 3a, Additional file 2: Table S6), including increased
HDL (p value< 2.23 x 1073%, beta = 0.31), decreased TG
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(p value =2.06 x 107!, beta = -0.16), decreased total
cholesterol to HDL ratio (p value = 2.54 x 10~*, beta = —
0.22), increased total blood cholesterol (p value =2.51 x
107%, beta = 0.07), and decreased blood glucose (p value =
4.62 x 107%, beta = — 0.04), decreased blood urea nitrogen
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(p value =148 x 107, beta=-0.03), decreased glycated
hemoglobin (p value=1.52x 1072, beta=-0.05), de-
creased bedside glucose (p value =1.03 x 10", beta = —
0.07), and decreased whole blood glucose (p value = 2.49 x
107°, beta = — 0.03). HDLpgg was also associated with four
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immune labs, white blood cell count (p value = 6.14 x 107*3,
beta = — 0.03), absolute neutrophil count (p value = 5.69 x
107, beta=-0.03), immature granulocytes (p value =
7.86 x 107, beta = — 0.02), and monocyte to leukocyte ratio
(p value =9.13 x 10°°, beta = 0.02). Five blood biomarkers
associated with HDLpgs, mean corpuscular volume (p
value = 3.48 x 10°7, beta = 0.03), blood carbon dioxide
(p value = 6.69 x 107!, beta = 0.02), mean corpuscular
hemoglobin (p value = 9.53 x 107'°, beta = 0.02), inter-
national normalized ratio (p value = 1.31 x 107°, beta =
-0.03), and red blood cell distribution width (p
value = 2.21 x 107>, beta = - 0.02). Finally, three other
labs associated with HDLpgs, urate (p value=1.13 x
107'%, beta = — 0.07), creatinine (p value = 1.42 x 107,
beta=-0.02), and urine pH (p value=2.22 x 1078,
beta=0.02). In the African ancestry group, HDLpgg
significantly associated with increased HDL (p value =
1.38 x 1077%, beta =0.23), decreased triglycerides (p
value = 6.72 x 1071°, beta = - 0.08), and increased total
cholesterol (p value = 4.81 x 10~°, beta = 0.08) (Fig. 3b,
Additional file 2: Table S7).

The LabWAS of LDLpgs showed associations with
four lipid labs (Fig. 3¢, Additional file 2: Table S8). The
most significant association was increased calculated
LDL (p value <2.23 x 1072%, beta = 0.24), followed by in-
creased total blood cholesterol (p value = 1.30 x 1072%%,
beta = 0.20), increased directly measured LDL (p value =
3.79 x 107, beta = 0.19), increased non-HDL cholesterol
(p value = 1.78 x 1073}, beta = 0.19), increased total chol-
esterol to HDL ratio (p value = 5.27 x 10™%7, beta = 0.13),
and increased triglycerides (p value = 4.47 x 107°, beta =
0.03). LDLpgs also associated with four blood biomarkers,
mean corpuscular hemoglobin (p value=5.68 x 107,
beta = — 0.02), total protein in blood (p value = 2.18 x 10°°,
beta = 0.02), total protein in serum (p value = 3.00 x 1075,
beta = 0.02), and mean corpuscular hemoglobin concen-
tration (p value = 1.50 x 107>, beta = — 0.02). LDLpgg in the
African ancestry group associated with LDL cholesterol
(p value =5.71 x 1073, beta = 0.24) and increased total
cholesterol (p value = 1.63 x 1072, beta = 0.21) (Fig. 3d,
Additional file 2: Table S9).

The LabWAS of TGpgs was associated with several
metabolic measurements (Fig. 3e, Additional file 2: Table
$10), including increased TG (p value <2.23 x 107°%,
beta = 0.28), followed by decreased HDL (p value =
4.83 x 10718 beta = — 0.14), increased total cholesterol
to HDL ratio (p value =295 x 10728, beta =0.02), in-
creased blood glucose (p value =1.20 x 107>%, beta =
0.04), increased lipemic index (p value=1.57 x 1075,
beta = 0.01), increased total blood cholesterol (p value =
1.25 x 107, beta = 0.04), increased glycated hemoglobin
(p value = 5.69 x 10~°, beta = 0.04), increased bedside glu-
cose (p value =299 x 1077, beta=0.04), and increased
non-HDL cholesterol (p value = 1.18 x 1075, beta = 0.08).
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Additionally, TGpgs showed associations with seven im-
mune labs, white blood cells (p value =3.90 x 107,
beta = 0.04), immature granulocytes (p value=1.99 x
10™'*, beta=0.03), absolute lymphocytes (p value =
2.01 x 107", beta = 0.03), monocyte to leukocyte ratio
(p value =5.21 x 107'°, beta = - 0.03), absolute neutro-
phils (p value =1.87 x 107°, beta=0.03), complement
C4 (p value=1.03x107%, beta=0.09), and monocyte
count (p value=6.76x 1078, beta=-0.03). Several
blood associations also emerged with TGpgs, including car-
bon dioxide (p value = 2.57 x 1072*, beta = — 0.04), total pro-
tein in blood (p value =4.25x 107*®, beta = 0.03), mean
corpuscular volume (p value = 9.16 x 1072, beta = — 0.03),
mean corpuscular hemoglobin (p value = 9.75 x 107%, beta =
- 0.02), anion gap (p value = 2.03 x 10™", beta = 0.03), total
protein in serum (p value = 2.61 x 10™'® beta = 0.04), and
calcitriol (p value = 1.07 x 107'% beta=-0.05). Lastly,
TGpgs associated with albumin to creatinine ratio (p
value = 9.13 x 1078, beta = 0.10), urate (p value = 6.58 x 107,
beta = 0.06), urinary pH (7.66 x 1077, beta=-0.02), and
urinary albumin concentration (p value = 2.99 x 10>, beta =
0.06). In the African ancestry group, TGpgs showed signifi-
cant associations with increased triglycerides (p
value = 1.66 x 1072, beta = 0.19), decreased HDL chol-
esterol (p value =6.08 x 107", beta = — 0.08), and in-
creased glucose (p value=2.33 x 107°, beta =0.04)
(Fig. 3f, Additional file 2: Table S11).

LabWAS of a polygenic score for coronary artery disease

We next sought to recapitulate the risk biomarker profile
for CAD through a LabWAS of a CADpgs. The CADpgs
reproduced associations, in the direction of risk, with
canonical risk factors for CAD (Fig. 4a, Additional file 2:
Table S12) in the European ancestry population, including
decreased HDL (p value = 6.20 x 107, beta = — 0.07), in-
creased TG (p value = 3.98 x 107", beta = 0.06), increased
blood glucose (p value=1.18x 10!, beta=0.04) and
glycated hemoglobin (p value = 2.36 x 10™'?, beta = 0.05),
and bedside glucose (p value =1.10 x 107%, beta = 0.03).
The CADpgs also associated with other known bio-
markers of cardiovascular health such as increased
troponin-I (p value =7.20 x 10™°, beta=0.04) and brain
natriuretic peptide (p value=2.12x107, beta=0.05).
CADpgs associated with six blood composition markers,
red blood cell distribution width (p value = 1.60 x 10714
beta =0.03), mean corpuscular hemoglobin (p value =
6.73 x107'°, beta = -0.02), mean corpuscular volume (p
value = 1.17 x 10~°, beta = — 0.02), carbon dioxide (p value =
336 x 107, beta=-0.02), red blood cell sedimentation
rate (p value =2.10x 107/, beta=0.05), and international
normalized rate (p value = 1.96 x 107>, beta = 0.03). Finally,
CADpgg associated with white blood cell count (p value =
8.75 x 107", beta = 0.02), creatinine (p value =2.13 x 105,
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beta = 0.02), and blood urea nitrogen (p value = 1.09 x 1072, To determine which biomarkers were explained by the
beta = 0.02). clinical presence of CAD as opposed to the genetic risk

Notably, the CADpgs was not initially associated with ~ for CAD, we adjusted the LabWAS of CADpgs for the
LDL values (p value = 0.13, beta = 0.008). The lack of as-  coronary atherosclerosis phecode (411) (Fig. 4c, Add-
sociation, however, was attributable to lipid altering itional file 2: Table S13). Four canonical biomarkers of
medication use and a significant association between the =~ CAD risk remained associated with CADpgs including
CADpgs and LDL levels was detected when we restricted TG (p value = 2.88 x 10, beta = 0.05), pre-medication
to pre-medication values (p = 6.19 x 1072, beta = 0.04). LDL (p value = 2.40 x 10~*? beta = 0.05), HDL (p value =



Dennis et al. Genome Medicine (2021) 13:6

2.55x 1073, beta=-0.04), LDL-C (p value=8.48 x
107'%, beta = 0.04), blood glucose (p value = 2.55 x 107,
beta = 0.02), total cholesterol (p value=4.16x 107",
beta = 0.03), and glycated hemoglobin (p value = 3.16 x
107°, beta = 0.03). The CADpgs also remained associated
with one immune marker, white blood cell count (p
value = 6.44 x 107°, beta=0.02), and two other blood
biomarkers, mean corpuscular volume (p value = 3.23 x
1077, beta=-0.02) and mean corpuscular hemoglobin
(p value = 4.18 x 107°, beta = — 0.02).

None of the associations in the initial LabWAS of
CADpgs among African ancestry individuals reached
phenome-wide significance; however, three of the top
four associations were canonical CAD risk factors in-
cluding increased glycated hemoglobin Alc (p value =
9.56 x 107*, beta =0.04), increased glucose (p value =
0.002, beta =0.03), and increased LDL cholesterol (p
value = 0.003, beta =0.04) (Fig. 4b, Additional file 2:
Table S14). When the LDL levels were restricted to
pre-medication values, the top association with
CADpgs was pre-medication LDL (p value =8.50 x
107>, beta = 0.06); however, this association did not
pass multiple testing correction. After controlling the
analysis for CAD diagnosis, the association between
CADpgs and pre-medication LDL surpassed the
Bonferroni correction for phenome-wide significance
(p value=3.92x 107>, beta=0.06) (Fig. 4d, Add-
itional file 2: Table S15).

Lastly, we ran a LabWAS of CAD diagnosis (i.e., using
CAD cases/control status (Additional file 1) as the pre-
dictor variable) after adjusting for sex and median age
across the EHR, which revealed the medical comorbidity
pattern of CAD. CAD diagnosis was significantly as-
sociated with 136 out of 734 labs in our sample
(Additional file 3: Fig. S7, Additional file 2: Table S15), in-
cluding 34 immune, 32 blood, 24 metabolic, 17 cardiovas-
cular, 8 urinary, 5 toxicology/pharmacology, 4 endocrine,
3 kidney, 3 liver, 1 cancer, and 5 other markers.

Replication in Mass General Brigham Biobank

In the MGBB, there were 21,499 individuals of European
descent with genetic data available with recorded lab
data. Slightly more than half of the sample was female
(51.5%) and the average age was 56.1 years. The MGBB
patients contained 1094 CAD cases and 20,405 CAD
controls.

In MGBB, the HDLpgs most strongly associated with
HDL cholesterol (p value <2.23x107°%, beta=0.33),
followed by decreased triglycerides (p value = 2.77 x 107'%,
beta = — 0.17), increased total cholesterol (p value = 4.96 x
1073, beta = 0.09), and decreased very low-density lipopro-
tein (p value=2.62x10%, beta=-0.14). HDLpgs also
associated with decreased values of glucose (p value =
3.33x 107, beta=-0.07), hemoglobin Alc (p value=
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364 x 1078, beta=-0.07), and mean glucose value (p
value = 4.10 x 107Y, beta = — 0.07). Additional associations
with HDLpgs included cardiac relative risk (p value =
5.72x 107", beta=-0.20), alanine aminotransferase (p
value = 2.45 x 10719, beta = - 0.04), white blood cell count
(p value=1.03x10"°, beta=-0.04), mean corpuscular
volume (p value = 6.51 x 1075, beta = 0.03), non-HDL chol-
esterol (p value = 1.41 x 107, beta = — 0.06), red blood cell
distribution width (p value =2.60 x 1077, beta = — 0.03),
neutrophils (p value =2.95 x 107, beta = —0.03), urate (p
value = 1.79 x 10, beta = — 0.05), and alkaline phosphatase
(p value =201 x 10’6, beta = -0.03) (Additional file 3:
Fig. 8a, Additional file 2: Table S17).

The LDLpgs associated with four metabolic labs in-
cluding LDL-C (p value = 1.78 x 10°%, beta = 0.24), total
cholesterol (p value =2.37 x 107**%, beta = 0.20), calcu-
lated LDL cholesterol (p value=1.28 x 10™%, beta =
0.23), and non-HDL cholesterol (p value = 2.90 x 1075,
beta =0.19). The LDLpgs also associated with comple-
ment C4 (p value = 1.85 x 107, beta = 0.09), red blood
cell sedimentation rate (p value=2.60x 107>, beta =
0.04), and increased cardiac relative risk (p value =
3.80 x 107>, beta = 0.10) (Additional file 3: Fig. 8b, Add-
itional file 2: Table S18).

The TGpgg associated with twelve metabolic labs, includ-
ing increased measured triglycerides (p value <223 x
1073%, beta = 0.32), followed by increased very low-density
lipoprotein (p value = 8.90 x 107?°, beta = 0.30), decreased
HDL (p value = 1.33 x 107*%, beta = — 0.17), increased non-
HDL cholesterol (p value =8.70 x 10728, beta =0.12), in-
creased glucose (p value = 4.56 x 107, beta = 0.05), average
glucose (p value =4.16 x 107'°, beta =0.05), total choles-
terol (p value=158x10"°, beta=0.05), anion gap (p
value = 1.52 x 1077, beta=0.03), total protein (p value =
4.63x 1077, beta=0.03), globulin in serum (p value =
880 x107° beta=0.03), aspartate aminotransferase (p
value = 1.26 x 107>, beta=0.03), and sodium (p value =
1.27 x 107, beta = — 0.03). TGpgs also associated with seven
immune labs, white blood cell count (p value = 3.89 x 107",
beta = 0.05), lymphocytes (p value =7.86 x 107", beta =
0.04), complement C4 (p value = 1.58 x 10~, beta = 0.13),
automated lymphocyte count (p value = 2.14 x 107, beta =
0.09), neutrophils (p value = 3.09 x 1077, beta = 0.05), auto-
mated neutrophil count (p value = 5.13 x 107, beta = 0.03),
and monocytes (p value=3.38 x 107°, beta=0.05). Ten
additional labs significantly associated with TGpgs, includ-
ing increased cardiac relative risk (p value =5.49 x 1077,
beta = 0.19), mean corpuscular volume (p value =3.02 x
107, beta = - 0.05), glycated hemoglobin Alc (p value =
500 x 107", beta=0.05), urinary pH (p value=9.58 x
10710 beta = - 0.04), red blood cell sedimentation rate
(p value = 2.22 x 1078, beta = 0.05), alanine aminotrans-
ferase (p value=3.88x107% beta=0.04), alkaline
phosphatase (p value =3.17 x 1077, beta = 0.03), blood
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carbon dioxide (p value=5.63x 1077, beta=-0.03),
mean corpuscular hemoglobin (p value =1.49 x 107°,
beta = — 0.03), and urate (p value=1.62 x 107°, beta =
0.05) (Additional file 3: Fig. 8c, Additional file 2:
Table S19).

Finally, the CADpgs associated with several known
CAD risk factors, including decreased HDL-C (p value =
1.56 x 107!, beta = - 0.07), increased glucose (p value =
9.91 x 107"°, beta = 0.05), increased glycated hemoglobin
Alc (p value = 4.44 x 10™**, beta = 0.06), mean glucose (p
value = 1.75 x 10™"2, beta = 0.06), and increased triglycer-
ides (p value =2.09 x 107, beta =0.05). The CADpgs
also associated with increased red blood cell distribution
width (p value = 2.42 x 107, beta = 0.05), increased red
blood cell sedimentation rate (p value=4.11 x 107,
beta = 0.05), increased alanine aminotransferase (p
value = 2.59 x 10°%, beta =0.04), decreased hemoglobin
(p value=1.45x 107, beta = - 0.03), increased alkaline
phosphatase (p value =2.26 x 107%, beta = 0.03), in-
creased white blood cell count (p value=6.77 x 1075,
beta = 0.03), decreased albumin (p value =1.06 x 107>,
beta = - 0.03), increased globulin (p value =1.29 x 107>,
beta = 0.03), decreased iron (p value = 3.36 x 107, beta =
- 0.04), and decreased hematocrit (p value = 3.77 x 107>,
beta = - 0.03) (Additional file 3: Fig. 9a, Additional file 2:
Table S20).

After adjusting for CAD diagnosis, CADpgs remained
associated with several heart disease risk factors including
decreased HDL-C (p value =8.23 x 107'%, beta = — 0.06),
increased glucose (p value=6.80 x 107", beta = 0.04),
increased hemoglobin Alc (p value = 2.08 x 107'°, beta =
0.05), increased mean glucose (p value = 2.29 x 10~°, beta =
0.05), and increased triglycerides (p value =348 x 10~
beta = 0.05). Additionally, associations with red blood cell
distribution width (p value = 1.40 x 10™*2, beta = 0.04), ala-
nine aminotransferase (p value = 4.01 x 108, beta = 0.04),
red blood cell sedimentation rate (p value=550x 1075,
beta = 0.05), alkaline phosphatase (p value =5.44 x 107,
beta = 0.03), serum globulin (p value =4.51 x 107>, beta =
0.03), and white blood cell count (p value =4.67 x 107>,
beta=0.03) remained (Additional file 3: Fig. 9b, Add-
itional file 2: Table S21). In MGBB, the CADpgg was not as-
sociated with levels of LDL-C (p value = 0.06, beta = - 0.03),
and we were unable to investigate the effects of cholesterol
lowering medications on the association.

Discussion

The results of our study add to a growing body of evi-
dence indicating that lab values from EHRs with linked
genetic data can be mined at scale to identify biomarkers
for complex disease [1-5]. Our proof-of-principle ana-
lyses focused on lipids and CAD in 94,747 genotyped
BioVU patients and revealed that EHR lipid values
cleaned using our QualityLab pipeline were genetically
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comparable to those measured in samples ascertained
for research. Here, we describe two proof concept
studies that demonstrate the power of our proposed dis-
covery paradigm. First, we show that PGS for lipids
(HDL, LDL, and triglycerides) associate robustly to their
referent lipid across ancestries (Fig. 3). Moreover, the
CADpgs recapitulated associations with known bio-
markers in individuals of European ancestry in two bio-
banks. Unlike CAD, many complex diseases do not yet
have bona fide biomarkers, but do have well-powered
GWAS that can be used to mine large biobanks and
identify quantitative labs which may be correlated, even
weakly, with genetic risk for disease. Importantly, the as-
sociation between CADpgs and canonical risk factors
was significant even among those who did not have a
CAD diagnosis. In analyses in Mass General Brigham
Biobank, several of the associations with CADpgg repli-
cated, helping to validate our approach to cleaning and
analyzing EHR laboratory data. Interestingly, CADpgs
also associated with white blood cell count, an inflam-
matory marker that is not currently used to diagnose or
monitor heart disease. This association remained after
controlling for CAD diagnosis, indicating that CAD gen-
etics could play a role in increasing inflammation. These
results highlight the usefulness of our approach which
takes advantage of the entire patient population regard-
less of disease status. This approach offers a potential
path forward for the detection of novel biomarkers and
for improved understanding of biomarker activity during
the prodromal phase of disease. Furthermore, while dis-
ease PGS are not diagnostic, they may be useful in iden-
tifying pre-symptomatic individuals whose lab values
should be monitored more closely.

Furthermore, we show that treatments (in this
example, lipid-altering medications) can influence the
detection of risk biomarkers at the genetic level. For
example, we found that the genetic correlation between
LDL measurements in BioVU and MVP increased
considerably when we restricted to pre-medication LDL
measurements and controlled for CAD or diabetes diag-
nosis. Additionally, the CADpgs was strongly associated
with pre-medication median LDL values, but was not
associated with combined pre- and post-medication me-
dian LDL values. This finding also has important and
complex implications for the clinical use of PGS recently
discussed in the literature [35, 36]. These results indicate
that as preventative treatments for complex diseases are
adopted (e.g., lipid-altering medications), the risk factors
targeted by those treatments (e.g., lipids) are less likely
to play a role in the development of subsequent disease
(e.g., CAD) in current and future treated populations.
Thus, today’s PGS will no longer identify at-risk individ-
uals in future generations who are routinely treated for
risk factors which are only now being discovered.
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Moreover, cases ascertained today for GWAS of diseases
with available preventative treatments will be enriched
for a different set of genetic (and environmental) risk
factors because those individuals with risk factors that
can be treated are less likely to develop the disease. PGS,
while incredibly valuable, provide only a snapshot of the
human genetic profile of complex disease and thus are
highly susceptible to these types of cohort effects in
addition to other known sources of technical and experi-
mental artifacts [37, 38].

Though the results and approach presented provide an
exciting path forward for genetic analysis of EHR-lab
data, important limitations should be acknowledged.
First, our analyses yielded more associations in patients
of European ancestry compared to patients of African
ancestry. This is likely to due to decreased power from
both the discovery GWASs and the target sample.
BioVU has considerably fewer patients of African ances-
try than European ancestry, impacting our statistical
power to find associations. The polygenic scores of
lipids, which were trained on trans-ancestry GWAS
summary statistics including individuals of African des-
cent, strongly associated with the referent lipid in the
African ancestry sample with effect estimates similar to
those found in the European sample. However, the CAD
polygenic score, which was trained on a trans-ancestry
GWAS that did not include African ancestry samples,
yielded far fewer significant associations. These results
highlight the critical importance of diversity in GWAS
as the downstream applications of such studies are dra-
matically impacted by representation. As the number of
ancestrally diverse GWAS increase, so too will our abil-
ity to identify novel biomarkers in different ancestral
groups, and the QualityLab pipeline is poised to deliver
on these analyses. The QualityLab pipeline could also
have more immediate clinical impact for diverse popula-
tions. Genetic ancestry, race, sex, age, and ethnicity
strongly influence the distribution of lab tests results in
healthy people [39], but many current reference ranges
were developed using White middle-aged men and are
applied to patients irrespective of these differences. This
could result in under- or over-diagnosis in some patient
groups, and developing lab reference ranges appropriate
for diverse demographics is low-hanging fruit for
precision medicine. The QualityLab pipeline provides
summary metrics based on demographic features which
allows the user to evaluate lab distributions across popu-
lations, sexes, and ages.

Second, polygenic scores are based on GWAS sum-
mary statistics that are typically unadjusted for pheno-
typic comorbidities. While this approach is optimal in
GWAS for many reasons, it introduces the possibility of
“phenotypic hitchhiking” in which a comorbid trait is
unintentionally selected during the ascertainment of the
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index trait. Thus, two heritable phenotypes that might
share common environmental risk factors but no genetic
risk factors can subsequently appear correlated in PGS
analysis, even in independent samples. We therefore
emphasize that this genetic approach is still fundamen-
tally correlational.

Third, high-throughput analysis of 939 lab traits in
our LabWAS required us to prioritize statistical
model performance over coefficient interpretability.
In our primary analysis, we transformed lab values
to fit the normal distribution to improve the per-
formance of the linear regression models [21]. We
applied the rank-based inverse normal quantile
transformation to all labs, which ensured trait nor-
mality by replacing the value of each observation
with its quantile from the standard normal distribu-
tion. The inverse normal quantile transformation
thus preserved the rank ordering of observations, but
not the values themselves, and model coefficients
therefore are uninterpretable on the original scale.
For example, based on our LabWAS results, we are
unable to report the change in LDL levels in mg/dL
per SD increase in the CADpgs. Multiple testing cor-
rection was another statistical challenge inherent to
the high-throughput analysis of lab traits. We used
the Bonferroni threshold for statistical significance,
but this threshold is likely to be overly strict because
it ignores the correlation between lab tests.

Conclusions

Here, we propose that PGS for complex disease can
be used to discover genetically related biomarkers of
disease by mining quantitative physiological measure-
ments collected during routine clinical testing, but
caution that mindful interpretation of correlational
results is paramount to progress. We demonstrate
the robustness of this discovery paradigm in a proof
of principal analysis focused on CAD. As EHR re-
sources grow in size, standardized quality control
and analysis pipelines will be necessary to compare
results across samples. QualityLab and LabWAS pro-
vide a starting point for consistent analysis of lab results
stored in various EHR systems. Furthermore, we demon-
strated that EHR-derived lipids are similar to measure-
ments ascertained in traditional cohort studies, providing
additional rationale for analyses of EHR labs [40]. Quality-
Lab and LabWAS are scalable programs that can be used
to confirm clinical paradigms and discover new genetic
and environmental relationships between biomarkers and
complex traits. We propose that future studies will lever-
age this discovery paradigm for analysis of rare or under-
studied complex traits with no known biomarker
associations (e.g., psychiatric disorders).
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