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Abstract

Background: Exome sequencing (ES) is a first-tier diagnostic test for many suspected Mendelian disorders. While it
is routine to detect small sequence variants, it is not a standard practice in clinical settings to detect germline copy-
number variants (CNVs) from ES data due to several reasons relating to performance. In this work, we
comprehensively characterized one of the most sensitive ES-based CNV tools, ExomeDepth, against SNP array, a
standard of care test in clinical settings to detect genome-wide CNVs,

Methods: We propose a modified ExomeDepth workflow by excluding exons with low mappability prior to variant
calling to drastically reduce the false positives originating from the repetitive regions of the genome, and an
iterative variant calling framework to assess the reproducibility. We used a cohort of 307 individuals with clinical ES
data and clinical SNP array to estimate the sensitivity and false discovery rate of the CNV detection using exome
sequencing. Further, we performed targeted testing of the STRC gene in 1972 individuals. To reduce the number of
variants for downstream analysis, we performed a large-scale iterative variant calling process with random control
cohorts to assess the reproducibility of the CNVs.

Results: The modified workflow presented in this paper reduced the number of total variants identified by one
third while retaining a higher sensitivity of 97% and resulted in an improved false discovery rate of 11.4% compared
to the default ExomeDepth pipeline. The exclusion of exons with low mappability removes 4.5% of the exons,
including a subset of exons (0.6%) in disease-associated genes which are intractable by short-read next-generation
sequencing (NGS). Results from the reproducibility analysis showed that the clinically reported variants were
reproducible 100% of the time and that the modified workflow can be used to rank variants from high to low
confidence. Targeted testing of 30 CNVs identified in STRC, a challenging gene to ascertain by NGS, showed a 100%
validation rate.

Conclusions: In summary, we introduced a modification to the default ExomeDepth workflow to reduce the false
positives originating from the repetitive regions of the genome, created a large-scale iterative variant calling
framework for reproducibility, and provided recommendations for implementation in clinical settings.
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Background

Exome sequencing (ES) is a common standard of care
diagnostic tool for identifying molecular causes in indi-
viduals with suspected Mendelian disorders [1]. Identify-
ing single nucleotide variants (SNVs) and small
insertion/deletions (indels) from next-generation se-
quencing (NGS) data have been well studied and charac-
terized [2, 3]. Success has been elusive to date to detect
copy-number variants (CNVs) from NGS data with the
same confidence as SNVs/indels. Chromosomal microar-
rays (CMA), including both array CGH and SNP arrays,
are still the preferred methodology and the standard of
care for detecting genome-wide CNVs in a clinical lab
[4]. CNV detection using ES is not currently a routine
clinical test, likely due to the overwhelming inconsisten-
cies among different methods [5-7] and the lack of a
high-quality reference for CNVs from ES data. Most of
the algorithms for CNV detection from ES data use the
depth of coverage of exome targets under the assump-
tion that the read depth is linearly correlated with the
underlying true copy number at any given locus. How-
ever, the read depth in ES is known to be extremely vari-
able and influenced by several factors such as sample
batching, GC content, PCR duplication bias, targeted
depth, sequencing efficiency, and mappability [8, 9].
These factors make it difficult to differentiate between
technical artifacts and the real signal for a true copy
number change. Also, detecting CNVs in polymorphic
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regions of the genome is challenging as the methods for
ES-based CNV are estimating the copy number relative
to the average copy number of the control samples.

While the sensitivity of several software tools for
ES-based CNV has been published, reports of false
discovery rate and the reproducibility are limited [7,
10]. Quality and performance standards for a clinical
pipeline are set at the highest level possible as it has
direct implications on patients’ health and disease
management. In spite of the availability of several
computational tools to detect CNVs from ES [11-14],
clinical labs have been slow to adopt the incorpor-
ation of CNV detection from ES; however, some re-
cent reports support the argument for copy number
detection from ES in a clinical setting [15-17].

In this work, we used a cohort of 307 samples with clin-
ical SNP array and ES data to create a dataset of high-
quality true-positive CNVs from SNP array and compre-
hensively characterize the CNVs identified from ES data
by assessing the false discovery rate, false negatives, and
reproducibility. In addition, we proposed a modified ana-
lysis workflow to reduce false positives originating from
the repetitive regions of the genome. We created a large-
scale iterative variant calling framework using random
control cohorts to assess the reproducibility (Fig. 1). Our
results show that ES data can be used reliably for detecting
clinically relevant CNVs with high sensitivity in a reprodu-
cible manner for use in clinical diagnostic settings.

A. Original workflow
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Fig. 1 The default (a) and the modified (b) exome-based CNV detection and validation workflow
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Methods

CNV from exome sequencing

A cohort of 1972 individuals who were referred to the
Genomic Diagnostic Laboratory (GDL) at the Children’s
Hospital of Philadelphia (CHOP), Philadelphia, PA, for
genetic testing and had ES data was collected for this
study. All of the ES data were produced using the Agilent
SureSelect V5 plus target capture kit (Agilent Technolo-
gies, Santa Clara, CA), and the aligned BAM files
(GRCh37) were produced using the workflow described
elsewhere [18]. All of the ES data were generated at the
same sequencing center in 112 different batches over 2
years. These samples were analyzed as part of a process
improvement program within the GDL at CHOP. Figure 2
shows the cohorts and the number of samples used in this
study.

We used a custom CNV detection pipeline based on
the R package ExomeDepth [19] with the default param-
eters and exon definitions provided along with the pack-
age. ExomeDepth creates a custom reference panel by
choosing a subset of the most correlated samples (typic-
ally 10-12) from a larger control cohort to identify
copy-number variants. Further details of this method are
described elsewhere [19]. An initial cohort of 312 sam-
ples was selected from the 1972 samples with ES data
that also had SNP array data. ExomeDepth recommends
a high correlation value of 0.97 between the test sample
and the reference panel for reliable results, and we ex-
cluded 5 samples based on poor correlation (* < 0.97).
The final sample size for the comparison against the
SNP array was 307 (166 males and 141 females), includ-
ing 286 affected probands and 21 family members (16
unaffected and 5 affected). The mean number of CNVs
per sample identified in the entire cohort was 145 with
the default ES pipeline, with a standard deviation of 25.
For each test sample, the rest of the cohort of 1971
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samples was used as the pool of controls for Exome-
Depth during the variant calling process. Summary sta-
tistics of the CNVs identified from ES are provided in
Table 1.

CNVs from SNP arrays

SNP array data for the abovementioned 307 samples
were generated using the Illumina CytoSNP 850k chip.
Poorly performing probes with poor cluster separation,
probes with more than 3 genotype clusters, and probes
within highly polymorphic CNV regions (>10% internal
cohort) were removed prior to CNV calling. CNVs from
SNP arrays were called using CNV Workshop [20] or
PennCNV [21]. CNVs involving fewer than 10 probes
were excluded, as the rate of false positives increases
with a fewer number of probes [22]. We excluded any
CNVs called in the Y chromosome due to the lack of
coverage on both the array and exome capture.

Defining the high-quality true-positive CNVs from SNP
arrays

We considered several factors while defining the high-
quality baseline true-positive dataset for CNVs from
SNP arrays, as it dictates the resulting sensitivity of the
ES. In order to perform a reasonable comparison be-
tween these platforms, we first limited the CNVs from
the arrays to have at least one coding exon and at least
one bait in the ES design, and overlap at least ten SNP
probes in order to minimize the number of false posi-
tives and false negatives from the SNP array dataset. In
cases where we detected a CNV in the array but not in
the ES, we manually reviewed the raw data from SNP
array to determine if the call was a false negative in the
ES or a false positive in the SNP array in order to refine
the baseline true-positive calls as failing to remove the

« Entire ES cohort used
1972 for ExomeDepth
control selectionand
samples targeted STRC testing
307 * Cohort with CMA and ES
samples
124 * Cohort used for false-discovery rate
estimation against CMA
samples
5 * Cohort used for false-discovery rate
samples estimation against WGS
Fig. 2 Schematic showing the cohorts used in this study
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Table 1 Characteristics of all the CNVs from ES with the default
ExomeDepth workflow (307 samples)

Deletions Duplications
Number of 24,628 19,976
CNVs
Number of 1 to 470 (mean =4 1to 981 (mean = 4
exons (13 kb), median = 2 (968 bp)) (14 kb), median = 2

(1.4 kb))

Number of 45 to 210 (mean = 80, 34 to 158
CNVs per median = 78) (mean = 65, median = 63)
individual

putative false positives from the SNP array would deflate
the actual sensitivity of the ES.

In our validation cohort of 307 samples with the SNP
array data, there were a total of 6634 CNVs before ap-
plying the exclusion criteria. After applying the filters,
there were 487 CNVs (448 in the autosomes and 39 in
chromosome X) for the initial true-positive dataset for
comparison against the CNV calls from ES data. Thirty-
two of these CNVs were not detected in the ES data in
the initial comparison. These discrepant calls were
manually reviewed using the Log,R ratio, B allele fre-
quency, and the overall quality of the SNP probe clusters
(e.g., cluster separation, normalized theta and normal-
ized R values). Of these putative ES false positives, 24
were confirmed to be true positives in the array, 5 were
false positives in the array, and 3 were ambiguous. The 8
CNVs that were either not present or ambiguous in the
SNP array data were excluded, and the revised baseline
true-positive dataset contained 479 CNVs (441 auto-
somal and 38 chromosome X variants). Details of this
filtering cascade are provided in Table 2, and the sum-
mary statistics of the baseline true-positive CNVs are
provided in Table 3. The final list of all the true-positive
CNVs is provided in Additional file 1: Table S1.

Modification of the default ExomeDepth workflow

We used the 35-mer mappability score [23] from the
UCSC genome browser [24] to compute mean mapp-
ability across each exon and excluded any exon with a
mean mappability score less than or equal to 0.75 prior
to computing the coverage and the variant calling. This
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threshold roughly corresponds to retain only the unique
regions in the exome and resulted in the exclusion of
8527 (4.5%) out of the total 190,340 unique exons
genome-wide which included 1132 exons (0.6%) that
may be clinically relevant (Additional file 1: Table S2).

Estimating false discovery rate of CNV from ES

To estimate the initial false discovery rate of the Exome-
Depth pipeline, we reviewed CNVs called from ES data
from the most recent 124 samples from the larger co-
hort of 307 samples. From these samples, there were 385
CNVs from the ES data that overlapped at least 10
probes in the SNP array design. Forty-two percent of
these calls originated from 2 known extremely poly-
morphic regions, the killer cell immunoglobulin-like re-
ceptor region in chrl9 (chr19:55,236,714-55,367,367)
and the HLA region in chr6 (chr6:32,549,335-32,709,
302). We did not review the CNVs from these 2 regions
as they are known to be highly polymorphic and challen-
ging in both platforms. The remaining 225 CNVs were
compared to the SNP array data. Of these, 103 were also
identified by the SNP array pipeline, while 122 were not
identified by the SNP array pipeline but were manually
reviewed by inspecting the Log,R ratio, B allele fre-
quency, and genotype clustering of all the SNP array
probes overlapping the CNV.

After the modification of the workflow, we followed
the same protocol outlined above to estimate the false
discovery rate in the 124 samples mentioned above.
There were 249 CNVs from the ES data that overlapped
at least 10 probes in the SNP array design. One hundred
of these CNVs originated from the abovementioned
polymorphic regions and were not reviewed. Eighty-four
of the remaining CNVs were detected by the SNP array,
and 65 were manually reviewed in the SNP array data by
inspecting the Log,R ratio, B allele frequency, and geno-
type clustering of all the SNP array probes overlapping
the CNV.

Reproducibility of the ExomeDepth pipeline

To test the effect of the control cohort on the reproducibil-
ity of the CNVs identified from the ES pipeline (Table 1),
we ran 1000 iterations of our pipeline for each of the 307

Table 2 Filtering cascade to create a list of high-quality true-positive CNVs from the SNP arrays

Filtering cascade Autosomal Chromosome X Total
Loss Gain Loss Gain
Het Hom Dup Trip Het Hom Hemi Dup Trip
All 5166 194 1062 7 103 5 12 84 1 6634
CNVs with 2 10 probes 527 1 411 6 17 3 2 35 1 1013
CNVs with an overlapping exon and a bait 170 6 268 4 8 0 2 28 1 487
Refined true positives 165 6 266 4 7 0 2 28 1 479

Het heterozygous, Hom homozygous, Hemi hemizygous, Dup duplication, Trip triplication
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Table 3 Characteristics of the high-quality true-positive CNV dataset as defined by the SNP array

Characteristics of the baseline truth CNVs defined by the SNP array

Deletion Duplication
Number of CNVs 180 299
Size 2.1 kb to 3.1 Mb (mean = 160 kb, median = 57 kb) 6 kb to 1.8 Mb (mean = 202 kb,
median = 94 kb)

No. of SNP probes
No. of exons overlapping the CNV
Small CNVs (< 4 exons) 36 (20%)

Clinically reported CNVs 24 (13%)

10 to 2258 (mean = 67, median = 20)
1 10 464 (mean = 15, median = 9)

10 to 774 (mean = 62, median = 29)
1 to 359 (mean = 19, median = 11)
68 (23%)

17 (6%)

samples, using random subsets of 200 controls chosen from
the remaining 1971 samples from the large ES cohort. We
counted the number of times each CNV region was
identified.

Comparison against the whole-genome sequencing data
Paired-end WGS data (2 x 150 bp) for a small subset of 5
samples (5 out of the 307) was produced at the Broad In-
stitute following the standard protocols for PCR-free
WGS with an average coverage of 40x. Raw BAM (hg38)
files were downloaded from the sequencing center and
used for manual review of CNVs identified in ES. These 5
individuals were enrolled under an IRB-approved research
protocol (CHOP IRB# 16-013231). In these 5 samples, we
identified a total of 249 CNVs from WES data using the
modified workflow (Additional file 1: Table S3), including
130 deletions and 119 duplications. Of these, 55 were re-
moved for validation against the WGS data as they were
inconsistently identified as both deletions and duplications
over the 1000 iterations, likely due to the polymorphic na-
ture and/or reference issues within the CNV region. The
final sample size for validation against the WGS was 194
CNVs. Genomic coordinates for the CNVs detected from
ES were in GRCh37 and were converted to hg38 using the
software tool liftover [25]. Every CNV was deemed a true
positive if the following evidence types were observed in
the WGS data: (1) read depth across the called CNV com-
pared to the regions flanking the breakpoints was consist-
ent with the expected copy number state, (2) abnormal
read pairs with larger than expected insert sizes, and (3)
abnormal reads with soft-clipping and/or split mapping
across the breakpoints. CNVs were marked false positive
in the exome if none of these types of evidence was
present in the WGS data or unsure if only some of the evi-
dence types were present.

Validation of CNVs using orthogonal methods

All diagnostic CNVs (n = 4) and a subset of 30 CNVs in
the STRC gene were chosen for confirmation using PCR
across the breakpoints, droplet digital PCR (ddPCR), or
long-range PCR, using standard protocols used in the
clinical laboratory [26]. The clinical validation protocol

for STRC ddPCR is consistent with previously published
studies [27].

Results

Default ExomeDepth workflow

Using a cohort of 307 samples, we validated an exome-
based CNV detection pipeline using the R package Exo-
meDepth [19] for use in a clinical setting, by comparing
the results against data from a high-quality set of true-
positive CNVs from SNP array. The final dataset from
SNP array comprised of 479 CNVs including 180 dele-
tions and 299 duplications (Table 3). Of these, 36 of the
deletions (20%) and 68 of the duplications (23%) over-
lapped fewer than 4 exons and were considered small
CNVs. Compared to the SNP array, the default ES pipeline
had a 96% true-positive rate for deletions and 95% for du-
plications. The default pipeline was 86% sensitive for the
small deletions and 87% for the small duplications. A
summary of the sensitivity rates from the default workflow
for various CNV classes is provided in Table 4. There
were 32 CNVs from the SNP array that were not identified
by our exome pipeline. Twenty of the 32 false negatives
were in highly polymorphic or segmental duplicated re-
gions in the areas of the genome with no clinical signifi-
cance. Fourteen false-negative CNVs involved first or last
exons. Details of the CNVs missed by the exome pipeline
are provided in Additional file 1: Table S4.

In order to determine the false discovery rate from ES,
we analyzed CNVs identified by the ES pipeline that
overlapped at least 10 probes in the SNP array that
should have been theoretically identified by the SNP
array. Of the 225 ES variants identified in 124 selected
samples, 103 were identified by SNP array and 23 were
determined to be real in the SNP array after a manual
review leaving 99 false positives accounting for a 44%
false discovery rate in the ES data. Details of the CNVs
identified from the exomes and not by the SNP array are
provided in Additional file 1: Table S5.

Modified ExomeDepth workflow
Manual review of the false-positive CNV calls from ES
data suggested that a large number overlapped with
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Table 4 Sensitivity of the default and modified ExomeDepth workflow
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True-positive rate

Default ExomeDepth workflow

Deletions

Duplications

Modified ExomeDepth workflow

Deletions

Duplications

96% (172/180)
95% (164/172)
100% (6/6)
100% (2/2)

Overall

Heterozygous deletions
Homozygous deletions
Hemizygous deletions
Duplications
Triplications

96% (165/171)
78% (7/9)
100% (24/24)
86% (31/36)
98% (141/144)

Autosomal

Chromosome X

Clinically reported CNVs
CNVs overlapping < 4 exons

CNVs overlapping = 4 exons

95% (283/299)

95% (278/294)
100% (5/5)
95% (256/270)
93% (27/29)
100% (17/17)
87% (59/68)
97% (224/231)

98% (163/166)
98% (157/160)
100% (4/4)
100% (2/2)

98% (156/159)
100% (7/7)
100% (22/22)
94% (29/31)
99% (134/135)

96% (280/293)

95% (275/288)
100% (5/5)
95% (254/266)
96% (26/27)
100% (17/17)
87% (58/67)
98% (222/226)

regions with high homology elsewhere in the genome
and/or regions with low sequence complexity (Fig. 3a).
Analysis of the mean mappability scores of the CNVs
from the false discovery rate cohort showed that the
false-positive CNVs had lower mean mappability scores
compared to the true-positive CNVs (Fig. 3b). To miti-
gate this effect, we used a mappability filter to exclude
exons that have difficulty in mapping short-read NGS
data [28] prior to read counting and CNV calling.

With the mappability filter in place, the average num-
ber of calls identified reduced from 145 per sample
(range of 83 to 259, with a median of 142) with the

default workflow to 51 per sample (range of 31 to 167,
with a median of 49). The distribution of the number of
CNVs identified by the default and the modified work-
flow is shown in Fig. 4. Exclusion of exons with low
mean mappability excluded 20 CNVs from the 479 high-
quality CNVs resulting in 459 CNVs for further com-
parison against the modified workflow (Additional file 1:
Table S1). Of the 20 excluded CNVs, only 2 were clinic-
ally reported and overlapped HBAI/HBA2 (chrlé:
223477-227391), which are known to have high hom-
ology and low mappability. Compared to the true-
positive calls (n = 459), the modified workflow had a

-

>

1.00

0.75

0.50

0.25

% of exons overlapping a segmental duplication

0.00

False pbsitives True pésitives

Fig. 3 Analysis of CNVs from the false discovery rate cohort, stratified by false positives and true positives. a Violin plot of the percentage of
exons that overlap segmental duplications within each CNV. b Violin plot of the mean mappability score across each CNV

B.

1.0

o
®

Mean mappability across the CNV
o
>

o
'S

False pbsitives True pésitives




Rajagopalan et al. Genome Medicine (2020) 12:14 Page 7 of 11
p
125 1
|
|
|
|
100 !
|
|
|
|
|
75 1
- |
= 1
o |
Qo ] |
50 !
I_
25
0
1 1
50 100 150 200 250
Number of CNVs per individual
Method [] Default workflow [l Modified workflow
Fig. 4 Histogram of the number of CNVs identified per individual using the default and the modified ExomeDepth workflow. The dotted lines
represent the mean value for each group (51, 145 respectively)

higher sensitivity of 98% for the deletions and a slightly
lower sensitivity of 96% for the duplications.

We repeated the protocol to estimate the false discov-
ery rate by reviewing 149 CNVs and found that 17 of
them were false positives in the ES data leaving the false
discovery rate at 11.4%. The sensitivity of the modified
ExomeDepth workflow is provided in Table 4.

To quantify the effect of the mappability filter on
CNVs identified from highly homologous regions of
the genome, we ran this modified workflow on a lar-
ger cohort of 1972 samples with ES data. Further, we
chose to focus on the STRC gene, as it is one of the
most common causes of autosomal recessive non-
syndromic hearing loss and is often included in NGS-
based panel testing. The STRC gene has a pseudogene
that is 99.6% identical to the protein-coding gene,
with the first 15 of the 29 exons identical between
the 2 genes. We excluded the exons of STRC with a
mappability score less than 0.75, leaving 3 exons in
the modified workflow. With the original workflow,
there were 953 STRC CNVs in 731 individuals (37%
of the samples) and 147 individuals had both deletion
and duplication identified in STRC. With the modified
workflow, we identified a total of 76 STRC CNVs (29
deletions and 47 duplications) in 76 individuals (4%

of the samples). Of these, we performed confirmatory
testing on 6 duplications and 27 deletions involving
all multiple exons, and 2 single-exon deletions. We
were able to confirm all multi-exonic deletions and
duplications, and the single-exon deletions were found
to be associated with gene conversion events involv-
ing exon 24 and exon 26. Details of the validation of
the STRC CNVs are provided in Table 5.

Reproducibility

To understand the effect of the choice of the control
cohort, we estimated the reproducibility of our pipe-
line by rerunning every sample for 1000 iterations
using a pool of 200 randomly selected controls and
counted the number of iterations where the initial
CNVs were also detected. Over these 307,000 experi-
ments, the average number of CNVs per sample
across iterations was 60 for the autosomes (median =
50) and 2 for the X chromosome (median = 1.4).
There was a total of 3787 out of 13,804 CNVs (27%)
in the cohort which were identified in all 1000 itera-
tions, with a mean of 12 CNVs per individual. All the
clinically reported variants from the SNP array (n =
39) and 4 new diagnostic CNVs from the ES were
identified in all 1000 experiments for those samples.
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Table 5 Details of the validation of the CNVs identified in STRC
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Genomic coordinates of the CNV from ES (hg19)  Exome call Validation method Result
chr15:43891026-43895609 Deletion SNP array (n = 1), ddPCR (n = 2), long-range  Heterozygous deletion of STRC
PCR followed by NGS (n = 1)

chr15:43891026-43940259 Deletion SNP array (n = 2), ddPCR (n = 21) Heterozygous deletion of CATSPER2
and STRC

chr15:43891026-43940259 Duplication  ddPCR (n = 6) Duplication of CATSPER2 and STRC

chr15:43892733-43892880 Deletion long-range PCR followed by NGS (n = 1) Gene conversion involving exon 26
of STRC

chr15:43893595-43893749 Deletion long-range PCR followed by NGS (n = 1) Gene conversion involving exon 24

of STRC

As most of the CNVs identified by the ES are below the
resolution of SNP array, we performed a secondary valid-
ation using the whole-genome sequencing data from 5
samples with both exome and genome data. Of the 194
CNVs identified from ES data in these 5 samples, 43
CNVs were called in all 1000 iterations (22%). When com-
pared to the WGS data, 56% (24/43) were considered to
be true positives leaving the false discovery rate at 44%,
while the remaining CNVs had no supporting or ambigu-
ous reads in the WGS data. When the threshold for the
number of reproducible iterations was reduced to 900, the
false discovery rate increased to 64% (67/106), and for a
threshold of 800 iterations, the false discovery rate in-
creased further to 68% (87/129). Overall, the 42 true-
positive CNVs had a mean number of iterations of 987
(range, 854-1000; median, 1000). Using the minimal
number of iterations for the known true positive (854),
there were 28 CNVs per individual on average compared
to only 12 variants per individual identified in all 1000 it-
erations. The majority of the false-positive CNVs were
found to be associated with either segmental duplications
overlapping the exons that escaped the mappability
threshold, the presence of multiple haplotypes, or poly-
morphic regions (Additional file 1: Table S3).

New diagnoses

Upon reviewing CNVs which overlapped known disease
genes, we identified four new diagnostic CNVs in four
individuals who had non-diagnostic results with the
SNV/indel only exome pipeline and the SNP array. We
were able to determine the exact breakpoints for two de-
letions from the chimeric reads in the exome data and
validated these using Sanger sequencing across the
breakpoints. The details of the new diagnoses are pro-
vided in Table 6, and brief phenotype descriptions are
provided in Additional file 2. These pathogenic CNVs
involved two to five exons, in both autosomal dominant
and recessive disease-associated genes. Table 7 provides
the number of CNVs identified by the default Exome-
Depth workflow, the modified workflow, and filtering
cascade with the number of reproducible CNVs and the
number of clinically relevant CNVs for these individuals.

Discussion

Detecting CNVs from ES data is perceived as challen-
ging for clinical use as many previously published re-
ports suggested high false-positive rates and low
sensitivity. Several algorithms exist for detecting CNVs
from ES and often there is a trade-off between the true-
positive rate (detecting the true CNVs) and false discov-
ery rate (detecting false positives). For use in a clinical
setting, one requires the highest sensitivity and lowest
false discovery rate possible for a given platform. In this
work, we used a cohort of 307 individuals to systematic-
ally and comprehensively benchmark the ability to detect
CNVs from exome sequencing data using the Exome-
Depth pipeline. Prior benchmarking efforts have
attempted to use data from multiple orthogonal plat-
forms and algorithms for estimating sensitivity and spe-
cificity from ES data [7, 28, 29]. Performance metrics
such as sensitivity and false discovery rate rely solely on
the baseline true-positive set. Factors influencing such
comparisons should be considered carefully before defin-
ing the true-positive set as the resulting performance
metrics may be misleading. For example, in SNP array,
the number of probes within a CNV is known to be as-
sociated with the confidence of the call and the rate of
false positives increases with fewer number of probes
[22]. Non-exon targeted, genome-wide arrays are consid-
ered to be low resolution for small CNV (< 4 exons) de-
tection and may not be the best orthogonal technology
for benchmarking against ES; however, SNP array is a
standard of care test for the detection of clinically rele-
vant CNVs genome-wide. Taking these limitations into
account, we have created a high-quality baseline true-
positive CNVs from SNP array data by iterative review
process by manually verifying the B allele frequency,
Log-R ratio, and the clustering quality of the probes
underlying the copy-number variants. This process of
manual review of SNP array data enabled us to have a
bona fide true positives for further comparisons. The
limitations of ES include poor sequencing efficiency in
GC-rich regions, in segmental duplication regions, and
in regions with low sequence complexity [8, 9]. Also, the
sequencing is based on a target design which may or
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Table 6 New diagnoses made by the ES pipeline that were previously not reported

ID  Genomic coordinates Gene Size CNV  Number of SNPs in SNP Comment Confirmation method
(hg19) (bp) exons array

1 chr12:116,457,030-116, MED13L 3376 Het 3 3 Under SNP array resolution ddPCR
460,406 del

2 chr6:33,405,980-33,409, SYNG 3286 Het 5 4 Under SNP array resolution ddPCR
266 AP1 del

3 chr3:191,888,248-192,126, FGF12 237, Dup 4 123 Not known disease gene SNP array and breakpoint
012 765 sequencing

4 chr4:123,976,639-123,989, SPATAS 12,562 Het 2 3 Under SNP array resolution, in - ddPCR and breakpoint
201 del trans with SNV sequencing

may not include regions of the genome that is captured
by an alternative technology (SNP array in this case).
Taking the inherent limitations of both the ES and SNP
array platforms into account allowed for a high-quality
true-positive CNV dataset for a fair comparison across
platforms.

The ExomeDepth pipeline coupled with a mappability
threshold for including exons before calling the CNVs re-
duced the number of calls to one third which reduced the
burden of downstream analysis and validation. In addition,
we were able to detect CNVs in the clinically relevant and
difficult regions, such as STRC, with a 100% validation rate
in the samples tested. The current standard of care testing
for the STRC gene is a ddPCR assay of exon 23 and intron
25 [27]. Our work includes a signal from 3 exons (exons
23, 24, and 26) which is an improvement considering the
current standards. We found that our modified ES work-
flow is 97% sensitive for both deletions and duplications. In
reviewing the false negatives, the majority involved poly-
morphic or segmental duplication regions and the first or
last exon of a gene. First exons are known to be GC rich,
and GC content greatly influences the depth of coverage
[11]. However, there is no prior evidence associating the
last coding exons with a non-uniform depth of coverage
during exome sequencing. The modified pipeline had a
false discovery rate of 11.4% compared to the standard of
care SNP array. The analysis of false positives showed a
similar trend regarding polymorphic, low sequence com-
plexity, or segmental duplications with 89% located in these
regions, with the remainder being CNVs involving the first/
last exon of 2 nearby genes. The results from the Exome-
Depth pipeline were 100% reproducible for clinically re-
ported variants with control datasets generated from over

112 batches over a period of 2 years, even though sample
batching is known to be strongly correlated with the vari-
ability in the depth of coverage observed in ES data [11].

Using this pipeline, we were able to make new diagno-
ses in four individuals who had previous negative SNP
array tests (additional diagnostic yield 4/286 = 1.4%),
demonstrating the utility of this assay for small (two to
five exon CNVs), intragenic CNVs below the clinical
reporting threshold for SNP array.

Despite our positive results, some challenges still exist,
for example, determining the exact copy number state in
highly variable regions of the genome regardless of the
technology used. Detecting CNVs in genes with near-
identical homologs elsewhere in the genome is an intract-
able problem when using short-read sequencing data.
These regions often result in both false positive and false
negative CNV calls. Using an exon-level mean mappability
score threshold helps in reducing the false positives, but it
also excludes some clinically relevant genes completely
(e.g, SMNI and SMN2). In our experiments, using the
mappability filter excluded two clinically reported variants
in the SNP array overlapping HBA1/HBA2. These genes
are difficult to assay by short-read sequencing as they
overlap segmental duplications. Averaging the mappability
scores across exons allows the inclusion of exons with par-
tial regions of poor mappability, resulting in numerous
false positives. The 100% validation rate we observed for
the STRC gene deletions and duplications after using the
mappability-based filter is encouraging, and further work
is warranted to understand the effect on similar regions
elsewhere in the genome.

In spite of being able to detect the clinically reported
CNVs 100% of the time in our reproducibility

Table 7 Number of CNVs identified by the modified ExomeDepth pipeline at every stage

ID Number of CNVs identified Number of CNVs identified
by the default pipeline by the modified pipeline

Number of reproducible
CNVs (> 850 iterations)

Number of CNVs in
OMIM disease genes

Number of diagnostic CNVs
relevant to the patient phenotype

1 137 47 27
2 152 54 33
3 163 54 26
4 174 53 26

3 1
1 1
1 1
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experiments, we found that the choice of controls and the
batch in which the controls were sequenced had an effect
on the total number of CNVs identified. While the num-
ber of times a variant is reproduced with different control
cohorts may indicate the robustness of the call, it is also
likely that technical artifacts are also reproducible. It is im-
portant to note that all of our controls were generated in
the same sequencing facility with the same protocol. Also,
the number of control samples available for the iterative
variant calling process may limit the ability to conduct
such a large-scale experiment. Further work is warranted
to utilize the reproducibility along with other quality met-
rics for better ranking of likely true-positive variants. Val-
idation of clinically relevant CNVs using an orthogonal
method is important before reporting to the patients as
ES-based CNV detection is still relative to the control co-
hort used. However, maintaining good practices in creat-
ing a control cohort, a validation pipeline with a variety of
known variant types and size, and stringent quality control
before clinical correlation will reduce the burden of valida-
tions using orthogonal methods.

Based on the results presented in this paper, we have a
few considerations for the detection of CNVs from
exomes with high sensitivity and how to prioritize high-
quality CNVs for the identification of clinically relevant
CNVs. We have shown that the CNVs identified and the
reproducibility depend on the choice of controls, and it is
important to keep the control cohorts updated in a fre-
quent manner. It is also important to make sure the con-
trols are produced using the same sequencing platform,
library preparation methods, and target capture kits. We
recommend excluding exons with low mean mappability
prior to variant calling as these regions tend to be challen-
ging for the alignment of short reads, and the results from
these regions are not reliable. A large-scale iterative vari-
ant calling process with random controls can help assess
the reproducibility of the CNVs identified in the initial call
set, and the number of iterations in which a particular
variant is identified can be used to rank the variants in
terms of reliability. Together, these measures reduce the
total number of variants per individual. Annotations such
as overlap with segmental duplications and alternative
haplotypes will help further reduce the number of variants
for downstream analysis as they are more likely to be
enriched for false positives and less reliable. Finally, we
highly recommend the validation of the CNVs by an or-
thogonal method such has ddPCR or quantitative PCR
(qPCR) before reporting to the patients.

Conclusions

In summary, our work demonstrates the ability to detect
CNVs from ES data in a reliable and reproducible manner
in a clinical setting. Integrating CNVs in a clinical workflow
may help in finding molecular diagnoses for unresolved
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patients with one pathogenic variant (SNV/indel) in an auto-
somal recessive disease gene and increase the overall diag-
nostic rate. We expect targeted NGS to be used in
diagnostics for a considerable amount of time given the
lower cost, focused approach, and reduced burden on down-
stream analysis compared to genome sequencing. Thus, it is
important to continue to invest in resources and refine the
existing tools for making ES a better diagnostic test overall.
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