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Abstract

Background: Patient stratification based on molecular subtypes is an important strategy for cancer precision
medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole
tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with
cancer cells in the tumor microenvironment.

Methods: We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes
based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer
signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating
molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific
tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require
reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment
signals from bulk tumor transcriptomic data.

Results: DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome
Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular
composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes
generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and
copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more
significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal
cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a
reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic
subtypes generated by DeClust were supported by single-cell RNA sequencing data.

Conclusions: DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes,
together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic
and clinical insights across multiple tumor types.
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Background

Molecular subtyping of tumors based on transcriptomic
data generated from tumor tissue is increasingly being
used as a means of categorizing biology shared across
patients’ tumors and informing prognosis and response
to treatment [1, 2]. Many computational methods have
been developed for such purposes [3, 4]. However, solid
tumor tissues are a mixture of cancer, immune, and
non-hematopoietic stromal cells. Importantly, aside from
intra- and inter-tumor type variability among these cel-
lular components, different sample preparation and pro-
filing techniques may result in biologically irrelevant
variations in the quality and quantity of each cellular
compartment. Thus, deriving cancer cell-intrinsic sub-
types by dissecting the contribution of cancer cells from
other elements in the tumor microenvironment may
generate better biomarkers and mechanistic insights.

Several groups including ours have developed computa-
tional deconvolution algorithms to dissect cellular com-
partments from bulk tumor transcriptomic data [5-13].
However, despite the potential clinical importance of mo-
lecular subtyping of tumors, existing deconvolution
methods suffer from three key limitations: (1) Existing
methods do not incorporate cancer subtypes into the
modeling process nor do they output cancer cell-intrinsic
subtypes directly. Although for some of the methods [8],
cancer cell subtypes could theoretically be generated by
downstream analyses following initial deconvolution [10],
the accuracy of such a strategy has not been systematically
evaluated. (2) Existing methods rely on input of reference
profiles for the different cellular compartments [5, 8, 12,
13], the choice of which can substantially impact the ac-
curacy of the results [10]. However, appropriate input ref-
erence profiles are rarely available for any individual
tumor type and the use of fixed profiles across tumor
types is suboptimal due to cellular heterogeneity across
tumor types. (3) Existing methods focus on estimating cell
compartment fractions [8—10], but do not output tumor-
type- or tissue-specific gene expression values for each
cellular compartment. The estimated expression values of
all genes for cancer cells corresponding to a molecular
cancer subtype or for the stromal compartment of a par-
ticular tissue can be critical for achieving a better under-
standing of patient prognosis and drug response.

Here, we present a computational method, DeClust, for
modeling bulk tumor tissue transcriptomic data that sim-
ultaneously delivers a reference profile-free deconvolution
of bulk tumor gene expression data into cancer, immune,
and stromal cellular compartments, as well as a cancer
cell-intrinsic clustering of cancer samples to uncover mo-
lecular cancer subtypes. By modeling cancer transcrip-
tomic data as a mixture of three cellular compartments
(cancer, immune, and stromal compartments) and stratify-
ing samples into multiple subtypes based on the cancer
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cellular compartment, our algorithm outputs the cancer
cell-intrinsic subtype for each sample as well as the frac-
tion and estimated reference expression profile for each
cellular compartment. The output cancer cell-intrinsic
subtype reference profiles are for the dataset, not for indi-
viduals as ISOpure [14] and DeMixT [15] do.

Using simulated data, we compared DeClust to existing
methods in widespread use. DeClust achieved superior ac-
curacy in clustering samples into subtypes. We then ap-
plied DeClust to a pan-cancer dataset comprised of 13
tumor types from The Cancer Genome Atlas (TCGA)
[16]. From the DeClust outputs generated on this dataset,
we show that (1) stromal compartments are associated
with patient survival in a tumor-type-specific manner, (2)
the subtypes identified by DeClust were associated with
enhanced cancer cell-intrinsic characteristics than those
based on the existing TCGA molecular subtypes or alter-
native strategies, and (3) while DeClust identified subtypes
were not more significantly associated with survival in
general, a poor prognosis subtype relevant to several
tumor types was identified by DeClust that was not evi-
dent based on the existing TCGA molecular subtypes. Fi-
nally, we generated single-cell RNA sequencing data and
assembled publicly available single-cell data to validate the
cell-type-specific compartment profiles and cancer-
intrinsic subtypes inferred by DeClust.

Methods

Data sources

The RNAseq gene expression data, copy number data,
methylation data, mutation data, and survival data for the
13 TCGA [16] datasets were downloaded from Broad In-
stitute Firehose (https://gdac.broadinstitute.org/) (2016_
01_28). The list of genes that are significantly mutated in
each dataset assessed by Mutsig [17] and the genes that
are significantly amplified/deleted estimated by GIST [18]
were also downloaded directly from Firehose (206_01_28,
Aggregate_AnalysisFeatures). For each dataset, genes with
a standard deviation less than 0.5 (log scale) were filtered
out. The Cancer Cell Line Encyclopedia (CCLE) [19] gene
expression data were downloaded from Broad Institute
(https://broadinstitute.org/ccle/). The non-TCGA tumor
expression datasets used in validation were downloaded
from GEO [20] database according to the GSE number as
provided in the manuscript. The scRNAseq data of two
BLCA tumors that were generated in the study are depos-
ited into GEO database as GSE130001 [21].

TCGA subtypes

The sample clustering results based on gene expression
profiles were downloaded from the supplementary tables
of the original TCGA paper when available. If not avail-
able in the original paper, we used the clustering results
from Firehose (by cNMF [3] method). For those new
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samples added after the initial TCGA publications, we
applied the PAM [22] algorithm as implemented in R
package pamr to assign their subtypes. In particular, we
trained the PAM model using the subset of samples with
TCGA subtyping available and then predicted the TCGA
subtype for each newly added sample using the trained
PAM models.

Other deconvolution methods in the analysis of TCGA
datasets

EPIC, quanTIseq, and the absolute version of CIBER-
SORT were applied to the 13 TCGA datasets using R
package immunedeconv (V2.0.0) [23] with default pa-
rameters and input signature matrix. ISOpure was run
through the R package ISOpureR (V1.1.3) downloaded
from https://cran.r-project.org/web/packages/ISOpureR/
index.html. The algorithm ISOpure requires both nor-
mal tissue expression profiles and tumor expression pro-
files as inputs. We used the normal tissue expression
data provided by TCGA for each cancer type. TCGA
OV dataset was not analyzed by ISOpure since there was
no normal tissue data available for OV in TCGA. The
ISOpure program ran for TCGA BRCA dataset did not
finish after 14 days using the processor Intel 8168 (24C,
2.7 GHz) with 4G memory. We thus only assessed the
performance of ISOpure across 11 out of the 13 TCGA
datasets.

For EPIC, the fraction of the immune compartment
was calculated by summing up the five immune cell fre-
quencies estimated by the algorithm (B cells, CD4 T
cells, CD8 T cells, macrophages and NK cells). The frac-
tion of the stromal compartment was the sum of two
stromal cell frequencies output by EPIC (CAF and endo-
thelial cells). The tumor purity was equivalent to the
fraction of “other cells” estimated by EPIC. For the abso-
lute version of CIBERSORT, the fraction of the immune
compartment was calculated by the sum of the 22 im-
mune cell fractions estimated by the absolute version of
the algorithm. The tumor purity was 1 minus the fraction
of the immune compartment. For quanTIseq, the frac-
tion of the immune compartment was calculated by the
sum of 10 immune cell fractions output from the algo-
rithm and the purity to the fraction of “other cells” by
quanTIseq.

The two-step strategy to obtain cancer cell-intrinsic
subtypes from EPIC and CIBERSORT was similar to that
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used in the simulation study. In the first step, as shown
in the following formula, we estimated the cancer cell
expression profile £;5“" for each sample by subtracting

from the mixed expression profile the contribution from
each immune or stromal cell types.
oﬁ“ji" denotes the mixed expression of gene i in sample

j (in the original scale, not log-transformed).

refE™™ K and  refES™™K (also in the original scale)

denote the reference expression of gene i for immune
immune_k
J

and f j.tromal‘k represents the corresponding cell type fre-

cell type k and stromal cell type k, respectively. f

quency for sample j. The reference profiles for different cell
types were the ones used in the corresponding deconvolu-
tion algorithm, i.e., EPIC or CIBERSORT, and the cell type
frequencies were estimated by the deconvolution algorithm.
The algorithm quanTIseq was not assessed for the two-step
clustering strategy since its reference expression profiles
were not available (only the signature matrix was available).
It is of note that the original reference expression profiles
may not be in the same scale as the observed mixed TCGA
expression profiles; we thus multiplied the reference expres-
sion matrix by a scaling factor to make the median of the
reference expression matrix to be the same as that of the
mixed expression matrix before applying the above formula.
In the second step, K-means clustering was applied to
E;%". Since K-means clustering is sensitive to the scale of

the data, we quantile-normalized the obtained cancer cell
expression profile before applying K-means; we found this
step improved the clustering results.

Pathway analysis

In the pan-cancer analysis of tissue/subtype-specific expres-
sion profiles derived based on DeClust, pathway scores were
calculated using the ssGSEA method as implemented in the
R package GSVA [24]. To identify pathways significantly up/
downregulated in the stromal profile of a particular TCGA
dataset as compared to that of other datasets, we first carried
out a gene-wise Z-transformation across the 13 stromal pro-
files. Then within each profile, we assessed whether a par-
ticular gene set showed a significantly higher/lower
expression value by Wilcoxon rank-sum test.

Survival analysis

Cox-regression model and the log rank test were used to
assess the significance of associations between survival
and cancer subtypes as well as samples with high/low
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stromal proportion. To define samples with high/low
immune/stromal proportion, we first split the samples
into three groups of equal size according to the 1/3 and
2/3 quantile value of the immune/stromal proportion
and then removed the middle group from the analysis.

Validation in non-TCGA datasets
Multiple approaches to assign each sample in the non-
TCGA dataset to DeClust subtypes were considered. For ex-
ample, we could apply DeClust to each non-TCGA dataset
and generate new subtypes de novo. Alternatively, we could
train a classifier using the TCGA expression profiles and the
DeClust subtype annotation and then predict the class label
for each sample in the validation dataset. We used this latter
strategy since it was less time-consuming, imposed no sam-
ple size requirement for the validation dataset, and allowed
us to take advantage of existing classification algorithms.
Specifically, we used the PAM method to train classifiers
based on DeClust subtypes of TCGA and then applied them
to the corresponding validation datasets. As a fair compari-
son, we used a similar strategy to assign the original TCGA
subtypes to each sample in the validation datasets as well.
To estimate immune/stromal cell proportions in the
non-TCGA datasets, we again did not generate those de
novo using DeClust, but rather used a less time-consuming
strategy. We defined tissue/cancer-type-specific stromal
genes as those whose expression showed a high correlation
with the stromal proportions estimated by DeClust (Spear-
man’s CC > 0.8). Based on these tissue/cancer-type-specific
stromal gene sets, we then estimated the stromal propor-
tions in the non-TCGA dataset using ssGSEA similar to
the approach employed by ESTIMATE. The immune pro-
portions were estimated similarly.

Single-cell RNA sequencing of two bladder cancer
specimens

The genomic study was approved by the Icahn School of
Medicine Institutional Review Board (#10-1180). The
fresh muscle-invasive bladder tumor samples were minced
to 1-2-mm chunks via mechanical dissociation. The sam-
ples were subsequently undergone mechanical/chemical
dissociation using the Mintenyi Biotec Gentlemacs 130-
096-427 Octo Dissociator at the h_2 dissociation program.
Upon completion of the dissociation, the dissociated
tumor and buffer was filtered to single-cell suspension,
using the 70-pm Gentelmacs filter. The suspension was
then spun down and the dissociation buffer was removed,
followed by the addition of 1% ACK lysis buffer for RBC
lysis for 1 min. The RBC lysis buffer was then diluted with
DBPS, and the bladder cancer cells were then spun down
at 200-300 G. After a final wash, the supernatant was dis-
carded, and the pellet was resuspended in cold FACS buf-
fer (DPBS containing 2% BSA and 2 mM EDTA). Bladder
cancer single cells were analyzed by fluorescence-activated

Page 4 of 22

cell sorting (FACS) to determine phenotype. In brief, cells
were stained with fixable viability dye blue to ascertain via-
bility (ThermoFisher) and BV510-labeled anti-CD45 (Bio-
Legend). For the sort, cells were gated on live singlets
followed by the CD45 makers. All CD45- were collected.

Prior to the preparation of single-cell sequencing libraries,
the cell density was determined using a hemocytometer
using a mixture of trypan blue and cell suspension was ex-
amined under the microscope at low magnification using
the Evos Cell Imaging System-digital inverted microscope.
This assessment of cell viability ensured successful prepar-
ation. The single-cell Chromium chip loading, gel emulsion
(GEM) generation and barcoding, post GEM_RT and cDNA
amplification, and library construction were performed ac-
cording to the Chromium™ Single Cell 3" Protocol - Chem-
istry version 2 (10X Genomics). For GEM generation, an
input of > 10,000 cells in total was targeted for each sample,
with a target cell recovery goal of 2000+ cells. For the cDNA
amplification reaction, we used 12 cycles during incubation
for a targeted cell recovery of interest (2000-6000 cells).
Quantification of the synthesized cDNA was evaluated using
Qubit (Qubit dsDNA HS Assay Kit, Thermo Fisher), and
Agilent cDNA High Sensitivity Kit, following the manufac-
turers’ instructions. During library construction, the sample
index PCR incubation was performed according to the pro-
tocol’'s recommendation. Quantification of the constructed
libraries was evaluated using Qubit (Qubit dsSDNA HS Assay
Kit, Thermo Fisher), Agilent cDNA High Sensitivity Kit, and
Kapa DNA Quantification Kit for Illumina platforms, fol-
lowing the manufacturers’ instructions. Each sample was
then sequenced using the Illumina HiSeq 2500 platform le-
veraging one lane per sample to assure 50,000 reads or more
per cell for expression profiling. Cell Ranger pipeline from
10X genomics (Pleasanton, CA) was used to align reads and
generate gene-cell matrices. The scRNAseq data are depos-
ited into GEO database as GSE130001 [21].

Analysis of single-cell RNA sequencing data

The scRNAseq read count data for three ccRCC samples
and one pRCC sample were downloaded from the supple-
mentary table of the previous study [25]. We selected only
those cells passing the original quality control and showing
zero CD45 read count. Note that some immune cells with
zero CD45 read counts still remained in our analysis, likely
reflecting dropout events [26] or sampling artifacts given
limited sequencing depth. Since one of the ccRCC samples
has only 29 cells left, it was removed from further analyses.
There were a total of 6781, 757 and 649 cells for the two
ccRCC samples and one pRCC sample, respectively. For
the two BLCA specimens we sequenced (GSE130001 [21]),
there were 3422 and 588 cells after quality control for the
two samples. The median number of detected genes per
cell was 2560.
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We used Seurat [27] to analyze the scRNAseq data.
Briefly, after the read count data was normalized, the most
variable genes were selected. Then the effect of unique
molecular identifier (UMI) count and percentage of mito-
chondria per cell was regressed out, followed by dimen-
sion reduction using PCA. Finally, the cells were clustered
using the K-nearest neighbors graph-based methods as
implemented in Seurat and then annotated the cell clus-
ters based on cell-type-specific markers [25, 28].

DeClust algorithm

This section is organized as follows. We first lay out the
general framework of the DeClust algorithm. Then we
provide a detailed description of each step. Finally, we
explain how certain parameters were determined includ-
ing the number of subtypes.

A bulk tissue expression profile can be decomposed
according to tissue/subtype-specific expression profiles
and the sample-specific abundance of each component
as in formula (1):

exp’i/
subtype(j)=subtypex

subtypey
~ expE i > f(];ancer
Estromal

+ exp™

Fimmune fimmune

+ exp™ j

stromal
X f; (1)
where 0§“ji" denotes the observed mixed expression (log-

cancer rimmune
S , and

J j
represent the cancer, immune, and stromal propor-

transformed) for gene i and sample j; f

stromal
fj

tion for sample j, respectively; Emmmune, gstromal and Ejubtypek
denote the expected expression value (log-transformed) of
gene { in immune cell, stromal cell, and cancer cell of sub-
type &, respectively; and subtype(j) = subtype; denotes sam-
ple j belonging to cancer subtype k. Note the linear
combination of expression values across the different com-
ponents was carried out in the original scale (before log-
transformation).
There are three groups of unknown variables in formula
(1): the sample-wise variables of the different cell compart-
P ';"““”“e, and f jm’mal (group A), the size of
which equals to three times of the sample size; the sample-
wise variables of subtype assignment subtype(j) (group B),

the size of which equals to the sample size; and the gene-
Ei.mmune
l

ments f

wise variables of the expected expression values

Es"om™land ES*™™P% (group C), the size of which equals to
the number of genes multiplied by (2 + the number of can-
cer subtypes). The known variables in formula (1) are the

’

Eimmune

s subtype
MSE = Z (omm_ log( 6xpEi ypek Xf?mcer+ exp"
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observed expression levels of the mixture 02‘;", the size of
which equals to the gene count multiplied by the sample
size. We estimated the above three groups of unknown vari-
ables by minimizing the mean square error (MSE) of for-
mula (1), ie, the difference between observed and
reconstructed expression values as shown in formula (2):

Note the MSE is calculated after log-transformation
assuming the gene expression follows log-normal distri-
bution. Since the count of known variables in formula
(1) is significantly larger than that of unknown variables
for TCGA datasets where the sample number is gener-
ally around 200, optimal mathematical solution is
expected.

To find the parameter estimates that minimize the
MSE, we employed a two-layer (an inner and outer
layer) optimization procedure to iteratively optimize the
three groups of unknown variables. In the outer layer,
we iteratively optimized group A variables, given esti-
mates for parameters associated with the group B and C
variables. In the inner layer, given the group A variables,
we iteratively optimized between the group B and C var-
iables. The initial value of cell component (group A) was
derived based on known marker gene expression values,
and the initial sample subtype (group B) was obtained
from K-means clustering of the residual expression. We
used gradient descent method “L-BFGS-B” implemented
in R function optimx() to find the optimal solution in
each step. The step-by-step process of the DeClust algo-
rithms is detailed below, and the schematic illustration
can be found in Additional file 1: Figure S1.

Step 0: In this step, we set the initial values of cell
components. Assuming the immune and stromal cell
abundance is proportional to its corresponding marker
expression, the cell component for each sample can be
calculated as follows:

fi;nmune — expoa'ﬁfnuneMarkers,,- X Cimmune
mix
f ;tromal — expostromalMarkers,/' X Cstromal (3)
cancer __ immune gstromal
fne = 1-fymeps
where o™X and o™X are the mean

immuneMarkers, j stromalMarkers, j
expression values of immune and stromal markers for

sample j (averaged in log scale), and Ciymune and Cyiromal

: stromal 2
X fljmmune + expEil 1 X fj'tromal) ) (2)
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are two constants (how to determine the value of the
two constants are described later).

el cancer gcimmune stromal
Step 1: Given f™, f7 , and f for each

sample, we optimize E{"""P%, Eimmune and Egtromal for
each gene and subtype assignment for each sample
subtyp(j) through an inner layer of iterative
optimization (step 1.0 to step 1.3):

Step 1.0: In this step, we set the initial subtype
assignment for each sample as the following. We first
assume there is only one cancer subtype, i.e., subtyp(j)
=1 for each sample j; formula (1) is then simplified as
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It is of note that there are three unknown parameters

in the above algorithm that need to be determined. Two
of them are Ciymune and Cgroma, Which are used to
transform marker gene expression to tissue proportions.
Here is how we determine them: for a given number of
subtype, we used the grid search to find the optimal pair
of Cinmune and Cgromal. Because the tissue fraction is be-
tween 0 and 1, the possible value of Ciymune and Csiromal
forms a constrained two-dimensional space. We then di-
vided the space into a 10 by 10 grid. For each pair of
Cimmune and Cgiromar in the grid, we run step 1 and step
2 above to obtain MSE (we did not use iteration in this
case to save computation time). The pair of Cypypune and
Cstromal Which gives the smallest MSE was chosen as
optimal.

The third parameter to be determined is the optimal

number of subtypes. We used BIC curves as the guid-

: subtypey immune : stromal
rij= Ogljlx_ lOg( eXpEi ¥ ><fjancer + expEi ><f;mmune + expEi I Xf;tromal) (5)
ance to select the optimal number of subtypes. Specific-
ally, we iterated the subtype number from 1 to 10 and
- bty f— calculated MSE and BIC (log (MSE) x sampleNum-+log
expt/ ~ exp x f ;ancer + exp (sampleNum) x subtypeNum) for each subtype number.

stromal

><fijmmune + expEt ><jr;troméll (4)

By minimizing MSE, we obtained the optimal

ESUPoPer pimmune onq pstomal for each gene i We then
calculated the residual expression r; ; for gene i and
sample j as the difference between the observed and
reconstructed expression value (in log-transformed
scale):

The initial subtype assignment is obtained by K-means
clustering of r; ; given the number of subtypes (how to
choose the optimal number of subtypes is described later).

Step 1.1: Given subtype assignment for each sample
subtyp(j), we optimize ES**"P%, Eimmune gp pswomal
for each gene by minimizing MSE in formula (2).

Step 1.2: Given E?L‘btypek , Emmune and Esomal for each
gene, we optimize subtype assignment for each

sample subtyp(j) to minimize MSE in formula (2).

Step 1.3: Repeat step 1.1 and step 1.2 until converge
(end of the inner layer of iterative optimization).

Step 2: Given ES**0Pe, pimmune - pstomal o g subtyp(j)
that are optimized through the inner layer of iterative

optimization, we optimize f""“", fijm"“”‘e7 and f ;tromal
for each sample by minimizing MSE in formula (2).
Step 3: Repeat step 1 and step 2 until converge (end of

the outer layer of iterative optimization).

Two strategies were used to select the best subtype
number: (1) the one giving the minimum BIC and (2)
the one at the elbow point of the BIC curve. When the
two criteria gave two different results, the medium of
the two was chosen as the final one.

Simulations

In the simulation study, we used bladder cancer as an
example. Following formula (1), we simulated mixed
BLCA expression profiles with reference (expected) ex-
pression profiles for BLCA cancer cells of different sub-
types, immune cells and stromal cells as detailed below.

For simplicity, we assumed there were three BLCA

subtypes, i.e., luminal, basal, and neuronal. The reference
expression profile for each subtype was represented by
that of a BLCA cell line of the corresponding subtype.
To choose the best representative cell line, we mapped
each BLCA TCGA sample to the most similar CCLE
BLCA cell lines (highest Spearman’s correlation). For ex-
ample, the cell line that was mapped by the most TCGA
samples of luminal subtypes (the original TCGA subtyp-
ing was used here for convenience) was chosen to repre-
sent the luminal subtype. As a result, the expression
profiles of SW780, BFTC950, and KU1919 cell lines in
CCLE were chosen as the reference cancer cell profile
for luminal, basal, and neuronal subtype, respectively.
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The immune components in the tumor are a mixture
of different immune cells. Thus, we reconstructed the
reference immune profile using the expression profile
for each type of immune cells (downloaded from CIBER-
SORT [8]) and the fraction of each immune cell type
(downloaded from the immune landscape [29]). Al-
though DeClust does not consider subtype-specific im-
mune profile, we did consider the possible subtype-
specific difference in simulating the data, i.e., the propor-
tion of immune cell types might differ for different sub-
types. We thus constructed reference immune profile for
each subtype separately, using the mean fraction of each
immune cell type within that particular subtype. The ref-
erence immune profile for each subtype derived in this
way is very similar to each other (Spearman’s CC > 0.99),
much higher than the correlation between cancer pro-
files (Spearman’s CC=0.86, 0.87 and 0.88). This sup-
ports the hypothesis that the majority of inter-tumor
heterogeneity comes from cancer cells, based on which
subtype was designed.

The stromal component was simulated here by ex-
pression profile of cancer-associated fibroblast (CAF).
Since there is no BLCA-specific CAF data available,
we used CAF data from breast cancer (GSE37614
[24]) as a replacement. Similar to immune profile, we
allowed subtype-specific difference in stromal profile
by using CAF associated with ER, Her2 and TNBC
subtype in breast cancer to represent the stromal pro-
file of the three BLCA subtypes respectively. Again,
the similarity between each pair of the three stromal
profiles (Spearman’s CC=0.99, 0.96 and 0.96) is
much higher than similarities of cancer cells of differ-
ent subtypes.

To simulate the mixed expression profile for a sub-
type, we used the reference expression profiles of
each component for that particular subtype as de-
scribed above. We then randomly sampled the frac-
tion for each component according to their
distribution in that subtype in the TCGA data (down-
loaded from the immune landscape [29]). The mixed
expression profile was then calculated according to
formula (1). Finally, random noise was added to the
log scale of the mixed expression value with noise
following either a log normal distribution (~N(0,
noiselevel) at a given noise level) or a negative bino-
mial distribution with the dispersion parameter within
the range that matched the gene variation simulated
under a log-normal distribution. We simulated data-
sets at different sample sizes (100, 200, and 300) and
different noise levels. For a given sample size, the
number of samples simulated for each cancer subtype
follows the subtype proportion in the TCGA BLCA
dataset. We simulated 20 datasets at each combin-
ation of sample size and noise level.
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Comparison with other methods in simulations
CIBERSORT

The reference expression profiles for the three cellular
compartments and the three subtypes (9 profiles in total)
were input to CIBERSORT’s feature selection program
to construct the feature matrix (each of the three sub-
types was treated as a replicate of the cellular compart-
ment). The feature matrix was then used as an input for
the CIBERSORT deconvolution algorithm.

K-means clustering

Subtyping the simulated data by k-means clustering was
performed in two ways. One way was that k-means clus-
tering was applied to the data directly without consider-
ing heterogeneity of the samples. Alternatively, the
subtyping followed a two-step strategy noted as
CIBERSORT-k-means: fractions of cell components,

fioee, fijmm““e, and fjtmmal were estimated by CIBER-
SORT as described above, and the cancer profile Eff}“cer

for gene i in sample j was calculated as follows:

mix immune immune stromal stromal
o —refE; x f —refE} x f5

[peancer _ ij
ij - fcancer ’
j

where refEM™™ ™ and ref ES™M2! were the reference ex-
pression profiles used in simulation (median of the three
subtypes). Then, K-means clustering was applied to the
estimated cancer profile EF5™*".

Results

Overview of the DeClust algorithm and evaluation
strategy

The general framework for most transcriptomic decon-
volution algorithms involves reconstruction of bulk tis-
sue gene expression data from gene expression profiles
for individual cell compartments [30]. Given the appro-
priate reference gene expression profiles, the fraction of
each compartment is estimated by minimizing recon-
struction errors [5, 7]. Alternatively, if the fractions of
the different cell compartments are known, reference
gene expression profiles can be directly estimated [31,
32]. However, in most cases, neither accurate cell com-
partment fractions nor proper reference expression pro-
files are available. Thus, DeClust employs a multi-layer
optimization strategy to infer this information from the
available data.

DeClust begins by generating initial estimates of the
immune and stromal compartment fractions based on
the expression levels of well-known marker genes (those
used by ESTIMATE [6]). The cancer compartment frac-
tion is then computed as the difference between the
whole and the immune and stromal compartment frac-
tions. Given these initial estimates of the compartment
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fractions, DeClust, in an iterative fashion (depicted as
the inner optimization layer of the DeClust algorithm in
Fig. 1a), estimates the intertumoral heterogeneity repre-
senting different molecular states by considering each
sample as having come from a different cancer subtype.
With each sample clustered into a molecular subtype
supported by the expression data, DeClust then esti-
mates the expected expression values for each gene for
each inferred cancer subtype and each non-cancer com-
partment. Given the cancer subtype assignments and ex-
pected gene expression levels for each cancer subtype
(representing the reference profiles for each cancer sub-
type) generated by the inner optimization layer, the
DeClust algorithm generates new estimates for the cell
compartment fractions in a second iterative process that
is similar to matrix factorization [33] (depicted as the
outer optimization layer in Fig. la). Whereas the inner
optimization layer addresses intertumoral heterogeneity
across subtype-specific molecular states, the outer
optimization layer addresses intratumoral heterogeneity
across the different cellular compartments. By iterating
between the inner and outer optimization layers, the
DeClust algorithm aims to find the following estimates
that might minimize the reconstruction errors: (1) the
proportion of cancer, immune, and stromal cells in each
sample; (2) the cancer cell-intrinsic subtype to which
each sample belongs; and (3) the inferred gene expres-
sion profiles for each cancer subtype as well as for the
immune and stromal compartments, which collectively
serve as the output for each run.

To evaluate the performance and accuracy of DeClust,
we applied it to simulated datasets and to a pan-cancer
dataset from TCGA. The simulated dataset was
employed to directly compare the performance of
DeClust to other deconvolution approaches in wide-
spread use. The metrics to assess performance center on
demonstrating the accuracy of DeClust across its pri-
mary outputs (cell compartment fractions, classification
of samples to subtypes, and compartment-wise expres-
sion values across all genes) under different sample size
and noise conditions, by comparing the estimates gener-
ated by DeClust to the known values used to generate
the simulated datasets. For the pan-cancer dataset, we
again focused on the accuracy of the primary outputs,
but because ground truth in the pan-cancer dataset is
not known, we examined how DeClust outputs com-
pared to other approaches with regard to patient sur-
vival, known drive mutations, tumor purity, and cell
compartment-specific gene expression (see Add-
itional file 1: Figure S2 for an overview of our study
workflow).

Assessment of DeClust based on simulated datasets

We simulated bulk tumor expression datasets where ex-
pression profiles for the immune, stromal, and cancer
compartments; number of cancer subtypes; and cancer
subtype assignment of each sample were all known (see
the “Methods” section) and then applied DeClust to the
simulated datasets and compared the outputs to existing
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methods to assess their performance based on multiple
criteria.

To assess the performance and accuracy of estimating
the cell compartment fractions, we compared DeClust
with one of the more commonly used deconvolution
methods, CIBERSORT [8]. Both DeClust and CIBER-
SORT achieved good accuracy and their results were
broadly comparable (Fig. 1b). As expected, accuracy im-
proved with increasing sample size and decreased as
noise levels were increased in the expression data.
DeClust was more robust than CIBERSORT with respect
to the accuracy of the compartment fraction estimates
as noise levels and sample sizes were increased. We note
that the CIBERSORT results in our simulation analysis
were more idealized (thus the accuracies reported here
are inflated) than would be achieved in practice, given
we provided the reference expression profiles used to
simulate the data as input for CIBERSORT to generate
its needed feature matrix. In practice, the context-
specific reference expression profiles would not likely be
available.

To assess the performance and accuracy of classifying
samples into the most appropriate molecular subtype,
we compared the DeClust subtype assignments to those
generated by two related approaches: (1) ordinary K-
means clustering applied directly to the simulated bulk
tumor expression profiles and (2) a two-step strategy in
which CIBERSORT was first applied to estimate the cell
compartment fractions as described above, and then K-
means clustering was applied to the resulting cancer cell
profiles (derived for each sample by removing the im-
mune and stromal compartments from the simulated
bulk tumor gene expression data) [10] (Fig. 1c). As
shown in Fig. 1c, the performance of ordinary K-means
was the least favorable approach, even when noise levels
were low, indicating that the varied immune and stromal
compartment fractions adversely affected the accuracy of
the sample subtyping assignments. The two-step strategy
gave better results when noise levels were low, demon-
strating the utility of removing the effects of the non-
cancer compartments. However, as noise levels were in-
creased, the performance of the two-step strategy deteri-
orated rapidly. In contrast, DeClust was much more
tolerant to increasing noise levels and remained at a high
level of accuracy until noise levels were much higher
than those observed in the TCGA datasets (Add-
itional file 1: Figure S3).

Finally, to assess the performance and accuracy of in-
ferring the reference expression profiles, we computed
the Pearson correlation coefficients between the profiles
used in the simulations and those inferred by DeClust.
The accuracy hovered around 0.8 when noise levels were
within the range of those observed in the TCGA datasets
(Fig. 1d).
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The results across all of the DeClust outputs were
similar (Additional file 1: Figure S4) when noise was
simulated following a negative binomial distribution (a
common assumption for RNAseq data) as opposed to
the log-normal distribution (a common assumption for
microarray gene expression data) assumed above. To-
gether, these results suggest that as a reference profile-
free method, DeClust achieves accuracies for cell com-
ponent fraction estimations that are comparable to refer-
ence profile-based deconvolution methods. However,
DeClust has the unique advantage over these methods of
accurately inferring the cancer cell-intrinsic subtypes for
each sample as well as the compartment-specific gene
expression profiles.

Pan-cancer analysis by DeClust

We applied DeClust to 13 solid tumor datasets from
TCGA and characterized cancer, immune, and stromal
compartment outputs from DeClust. We also employed
other available gene expression deconvolution methods,
i.e., ESTIMATE [6], the absolute version of CIBERSORT
[8], EPIC [34], quanTIseq [35], and ISOpure [14]. We
chose these methods because their estimation allows
both intra-sample comparisons between cell types and
inter-sample comparison [23]. Using the default settings
and inputs, ESTIMATE and EPIC output the proportion
of both immune and stromal compartments, CIBER-
SORT and quanTIseq output only the proportions of
immune compartment while ISOpure output the estima-
tion of cancer and non-cancer compartments as well as
the cancer and non-cancer expression profile per sample
(see the “Methods” section for details and Add-
itional file 2: Table S1 for inputs and outputs of these
methods). To evaluate their performance in estimating
the cancer cell proportion, we compared their results
with tumor purity estimation derived from orthogonal
information, i.e., copy number (ABSOLUTE [36] [37]).
As shown in Fig. 2a, the top 3 methods, DeClust, ESTI-
MATE, and CIBERSORT, performed similarly with re-
gard to their correlations with ABSOLUTE’s estimates
and performed significantly better than the other
methods (p<0.05 by two-sided paired ¢ test). The
DeClust purity estimates were ranked the best in term of
median absolute deviation (MAD) (Fig. 2b). The im-
mune cell scores output by CIBERSORT (the absolute
version) do not reflect cell fractions (within the range of
[0,1]), thus were not included in the comparison of
MAD. Even though the ESTIMATE purity estimation
was non-linearly transformed from ssGSEA scores using
ABSOLUTE purity as the target [6], a larger systematic
shift from ABSOLUTE was still observed for ESTIMATE
as compared to DeClust (Fig. 2c). To further evaluate
their performance in estimating immune and stromal
cell proportion separately, we also compared the cell
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fraction estimates with the estimates generated from
methylation data (MethylCIBERSORT [38]). DeClust
consistently ranked among the top methods in this com-
parison (Additional file 1: Figure S5). Together, these re-
sults demonstrate that DeClust is among the best
methods for estimating cell components.

Although the estimates of immune proportion showed
very high correlation among different deconvolution
methods and by using different genomic information,
the estimates of stromal proportions were poorly corre-
lated (Fig. 2d). This indicates that while the immune
proportion can be robustly estimated using a universal
immune gene signature, the stromal cell fraction may be
less amenable to estimation using universal gene signa-
tures. We thus turned further attention to the stromal

compartment. Since correlation with MethylCIBER-
SORT could not distinguish the performance of the
three methods, i.e., DeClust, ESTIMATE, and EPIC, in
estimating the stromal cell proportion, we next assessed
the correlations of the stromal estimates using these
various approaches with clinical outcomes. Based on the
stromal proportions estimated by DeClust across tumor
types (Fig. 3a), a higher stromal proportion was associ-
ated with better survival in KIRC (Fig. 3b, p value of log
rank test = 1.6e-6), whereas a higher proportion was as-
sociated with worse survival in BLCA (Fig. 3¢, p value of
log rank test = 0.0011). While the trend of association in
BLCA was also supported by ESTIMATE (Add-
itional file 1: Figure S6, p value of log rank test = 0.017),
the association in KIRC was not detected by ESTIMATE
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J

(Additional file 1: Figure S6, p value of log rank test=
0.48). These trends were also less apparent using the
EPIC estimates of stromal proportion. We subsequently
confirmed the associations between DeClust estimates of
stromal proportion and survival in independent datasets:
GSE3538 [39] for KIRC and GSE32894 [40] for BLCA,
respectively (Additional file 1: Figure S6, see the
“Methods” section for details). Thus, using the stromal
proportions estimated by DeClust, we were able to un-
cover survival associations that were not readily appar-
ent with other methods.

We next assessed whether the tumor-type-specific
stromal gene expression profiles estimated by DeClust
could elucidate our understanding of the distinctive
effects the stromal compartment proportion on sur-
vival outcomes in BLCA and KIRC. We examined the
stromal gene expression profiles inferred by DeClust
across the 13 tumor types of known cell-type-specific
markers [25, 28] (Fig. 3d). There was an increased ex-
pression of endothelial cell markers in the KIRC’s
stroma profile while fibroblast and myofibroblast cell

markers demonstrated increased expression in the
stromal profiles for BLCA (Fig. 3d). We also com-
pared the pathway activity among the 13 stromal pro-
files (Additional file 1: Figure S7). Consistent with
our prior report [41], genes in “epithelial and mesen-
chymal transition” (EMT) and “myogenesis” pathways
were the most upregulated in the stromal compart-
ment expression profile of BLCA compared to the
other cancer types (Fig. 3e). Thus, the distinct effects
of the stromal proportion on survival outcomes may,
at least in part, result from the differential cellular
composition and pathway activity of the stroma in
BLCA and KIRC. DeClust was able to facilitate such
discoveries by inferring the tumor-type-specific stro-
mal expression profiles.

DeClust identified cancer subtypes across 13 tumor types
The cancer cell-intrinsic subtype outputs from DeClust
were annotated according to their best overlap with the
clustering results reported by TCGA (Fig. 4, Add-
itional file 3: Table S3). The difference between TCGA
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and DeClust subtypes may be attributed to many fac-
tors: different clustering strategies and different num-
bers of subtypes as well as the effects of dissecting
the immune and stromal compartments. To better il-
lustrate the effects of deconvolution which is the
main focus of this study, we applied K-means cluster-
ing directly to the TCGA bulk tissue expression data
with the same number of subtypes chosen by
DeClust. To explore alternative strategies in deriving
cancer cell-intrinsic subtypes, we also applied the
two-step strategy described in the simulation section.
Briefly, EPIC or CIBERSORT was used to estimate
the cell components, based on which the non-cancer
compartment was subtracted from the bulk tissue ex-
pression. The K-means clustering was then applied to
the residual expression profiles (i.e., cancer compart-
ment). As ISOpure outputs not only the cell compo-
nent estimation but also the estimated cancer
expression profile per sample, K-means algorithm was
applied directly to the latter. In all the above alterna-
tive strategies, the same optimal subtype number se-
lected by DeClust was used to avoid bias due to
different numbers of subtypes. We compared different
subtype annotations with respect to subtype-specific

DNA variations, prognosis, and variations in stromal
and immune cell-intrinsic properties.

Cancer molecular subtypes driven by cancer cell-
intrinsic properties as opposed to variations in non-
cancer cell compartments are likely to be characterized
by subtype-specific genomic alterations (somatic muta-
tions or copy number alterations) [42, 43]. Better sub-
type classifications would lead to more enrichment for
such alterations. Thus, we compared subtypes generated
by different methods with respect to enrichment of
subtype-specific somatic mutations or copy number al-
terations. DeClust subtypes were ranked the highest
among all methods assessed here, suggesting that
DeClust subtypes were more likely driven by cancer cell-
intrinsic properties (with statistical significance p < 0.05
or marginal significance p < 0.1 in Fig. 5a, b). Some well-
known subtype-specific mutations were more enriched
in DeClust subtypes compared with TCGA subtypes
(Additional file 4: Table S4). For example, FGFR3 muta-
tions, one of the best characterized features of luminal-
papillary bladder cancer [44], were present in 37% of the
luminal-papillary subtype based on DeClust, versus 31%
by TCGA (Fig. 5c¢). The K-means results based on the
TCGA bulk tissue expression profiles were ranked
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second. The numbers of subtype-specific genomic alter-
ations were lower compared with subtypes based on
DeClust (p=0.024 using the original gene counts or
0.053 using the log-transformed gene counts by two-
sided paired Wilcoxon rank-sum test), but higher than
based on subtypes reported by TCGA. The better per-
formance of the K-means on the bulk tissue expression
profiles might be partially attributed by the differences
of the optimal subtype numbers identified by DeClust
and TCGA. For instance, the number of subtype-specific

mutations in COADREAD would be much lower for the
K-means method if K =3 (based on TCGA) was used as
opposed to K=4 (based on DeClust) [47 vs 82]. Al-
though the results based on EPIC_Kmeans and CIBER-
SORT_Kmeans were not better than the K-means
results overall in terms of the number of subtype-
specific genomic alterations, there are noticeable excep-
tions, e.g., the EPIC_Kmeans result ranked the highest
for COADREAD and the CIBERSORT_Kmeans result
ranked the highest for KIRC (Fig. 5b).
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Methylation is another common type of genomic alter-
ation in cancer cells. However, variation in the methyla-
tion level of bulk tissue profiles could be due to both
variation of cellular compositions (the foundation for
MethylCIBERSORT) and cancer cell-intrinsic alterations.
Indeed, DeClust subtypes showed the highest numbers
of subtype-specific methylations only after methylations
associated with immune or stromal cell frequencies were
filtered out (Additional file 1: Figure S8).

A stronger subtype-specific association with genomic
alterations is only an indirect indication that the sub-
types are likely to be driven by cancer cell-intrinsic gen-
omic alterations. A more direct assessment would be to
compare them with cancer subtypes derived directly
from cancer cells or patient-derived xenograft (PDX)
models. A recent study [45] utilized gene expression
data from PDX models to derive five cancer cell-
intrinsic subtypes in colorectal cancer (CRIS). We thus
compared subtypes based on DeClust and other
methods with CRIS subtypes. As shown in Fig. 5d and
Additional file 1: Figure S9, DeClust subtypes showed
the highest overlap with CRIS subtypes among all the
subtypes assessed here, including the consensus molecu-
lar subtypes (CMS) which were pooled from six inde-
pendent classification systems [46].

Patients with different cancer molecular subtypes are
likely to have different prognoses [42, 43]. We thus com-
pared the association between patient prognosis and the
subtypes identified by different methods. Across the 13
datasets, DeClust subtypes overall performed similar to
the other approaches (Fig. 6a) but may be favored for
cancer types with the strongest subtype-specific associa-
tions with survival (Fig. 6b). The top three cancer types
were investigated in more details later. We also showed
that DeClust subtypes were significantly less correlated
with non-cancer cell-intrinsic variations, such as sample
purity, compared with other subtypes (Additional file 1:
Figure S10). In summary, compared to TCGA subtypes,
DeClust subtypes were more likely driven by cancer cell-
intrinsic genetic alterations as opposed to non-cancer
cell variations, in addition to having a stronger associ-
ation with survival outcomes in certain tumor types.

Clinically relevant outlier subtypes identified by DeClust

To characterize the cancer cell subtype-specific gene ex-
pression profiles output by DeClust, we summarized the
gene expression profiles at the pathway level (Fig. 6b, de-
tailed in the “Methods” section). The cancer cell
subtype-specific profiles could largely be grouped into
three clusters characterized by overexpression of cell
cycle pathways (purple), metabolic pathways (gray), or
stromal-related genes (yellow). Cancer subtypes of the
same tumor type generally clustered together reflecting
tissue of origin-related specificity. For example, the Wnt
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signaling pathway was upregulated in COARDREAD
cancer subtypes [49], the estrogen response pathway was
upregulated in the majority of BRCA subtypes [50] (with
the exception of the basal-like subtype), and the fatty
acid metabolism pathway was upregulated in LIHC sub-
types. Most cancer cell subtype profiles were clustered
together based on higher activity in cell cycle-related
genes, with the exception of thyroid cancer, which was
separated from other cancer subtype profiles given it is a
slow growing cancer with low cell cycle activity.

While most cancer subtypes of the same tumor type
clustered together, a group of “outlier” subtypes was ob-
served, consisting of different tumor types with shared
underlying pathway activities. For example, KIRC_3,
KIRP_2_3, and LUAD_proxi-prolif 4 were clustered to-
gether (Fig. 6b). Strikingly, these three subtypes were
also associated with significantly worse survival out-
comes compared with the other subtypes of the corre-
sponding tumor types (Fig. 7a—c). Interestingly, all were
enriched for CDKN2A deletions (Fig. 7d). This is con-
sistent with the previous discovery that samples with the
same tumor suppressor gene inactivation in different
cancer types tended to cluster together [51]. The associ-
ations of the worse survival and the outlier DeClust sub-
types of KIRP, KIRC, and LUAD were replicated in
independent datasets GSE2748 [52], GSE3538 [39], and
GSE31210 [53], respectively (Additional file 1: Figure
S11). These findings highlight the potential of DeClust
to identify heretofore unrecognized intrinsic cancer sub-
types of potential clinical relevance.

Comparing stromal expression profiles inferred by
DeClust and single-cell RNAseq data

DeClust estimated the immune and stromal expression
profiles in a cancer-type-specific manner. We first com-
pared these imputed expression profiles with known ref-
erence expression profiles of immune and stromal cells
that are agnostic to the cancer types to demonstrate its
general effectiveness (see Additional file 1: Figure S12
and Additional file 2: Supplementary Methods and Re-
sults). To further evaluate the tumor-type-specific stro-
mal profiles inferred by DeClust, we compared them
with single-cell RNA sequencing (scRNAseq) data. In
particular, we looked into KIRC and BLCA since their
stromal profiles exhibited disparate prognostic effects
(Fig. 3a), and suggested different compositions of stro-
mal cells (Fig. 3e). We collected scRNAseq data gener-
ated on clear cell renal cell carcinoma (ccRCC, referred
hereafter as KIRC) from a previous study [25]. There
were three clusters of cells from the stromal compart-
ment in the KIRC scRNAseq dataset: endothelial cells,
myofibroblasts, and venular endothelial cells (Fig. 8a, b).
The largest fraction (68%) for the stromal compartment
was endothelial cells, and no classical fibroblast cells
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were identified in this dataset. The KIRC stromal profile
inferred by DeClust correlated best with the average
endothelial cell profile based on the scRNAseq dataset
compared with other stromal cell profiles (Fig. 8c).

Noting that the KIRP’s DeClust_stromal profile was
poorly correlated with all three types of the stroma cell
profiles (Fig. 8¢, f), we collected and analyzed scRNAseq
data of papillary renal cell carcinoma (pRCC) [25] in a
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similar way to that of scRCC. There was no clear cluster
of stromal cells in pRCC’s microenvironment (Add-
itional file 1: Figure S13), which may partially explain
the low correlations between KIRP’s DeClust_stromal
profile and stroma cell profiles (Fig. 8c).

As there are no publicly available BLCA scRNAseq
datasets, we performed scRNAseq profiling on two fresh
muscle-invasive bladder cancer specimens in-house (de-
tailed in the “Methods” section deposited as GSE130001
[21]). Cells in the stromal compartment of the BLCA
scRNAseq dataset were clustered into fibroblasts (40%),
myofibroblasts (20%), and endothelial cells (40%) (Fig. 8d,
e). The DeClust inferred BLCA stromal expression pro-
file correlated best with the fibroblast cell profile in the
BLCA scRNAseq dataset (Fig. 8f).

Thus, the scRNAseq data indicates different stromal
cellular compositions in different cancer types. For ex-
ample, there was a relatively higher proportion of endo-
thelial cells in KIRC and a relatively higher proportion of
fibroblasts in BLCA, consistent with the observations in

Fig. 3e. In addition, the EMT signal in BLCA stromal
compartment (Fig. 3f) was at least partially driven by fi-
broblasts (Fig. 8e).

Comparing DeClust cancer profiles and single-cell RNAseq
data

Our cancer subtype comparison between DeClust and
TCGA described above examined associations with gen-
omic alterations and prognosis. To more directly compare
the molecular profiles inferred by DeClust for each sub-
type to known molecular states of these subtypes, we
compared profiles for cancer cell clusters derived from
available scRNAseq datasets (i.e., BLCA, KIRC, and KIRP)
with the cancer subtype profiles inferred by DeClust, in
addition to those derived from the bulk tissue cancer pro-
files based on TCGA subtypes (Fig. 9a and Additional file 1:
Figure S14). As expected, the scRNAseq cancer profiles
generally correlated better with DeClust cancer profiles
than to the TCGA bulk tissue profiles, given the latter are
confounded by non-cancer cell compartments. For some
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cancer cell clusters in the scRNAseq datasets, the best
matched cancer subtypes were consistent. For example,
bladder cancer epithelial cell cluster c2 (shown in Fig. 8d)
was the most similar to the luminal-papillary subtype
assessed by both DeClust and TCGA profiles (Fig. 9a).
However, for other cancer cell clusters, discrepancies were
observed. For instance, the bladder cancer epithelial cell
clusters c0 and c1 were best matched with the luminal|lu-
mina-infiltrated subtype based on the DeClust profiles,
but were matched with the luminal-papillary subtype
based on the TCGA profiles (Fig. 9a).

To understand this discrepancy, we utilized the
scRNAseq data to dissect which cell types contributed
most to the differences between the different subtypes.
We compared the gene signatures of the TCGA
luminal-papillary and TCGA luminal subtypes, identified
the top 20 most upregulated genes in each subtype, and
then examined the expression of these genes in our
bladder cancer scRNAseq data (Fig. 9b). The top 20
genes upregulated in the TCGA luminal subtype were

most highly expressed in stromal cells, suggesting signals
in stroma cells instead of bladder epithelial cells contrib-
uted to differences in the TCGA subtypes. On the other
hand, the top 20 genes upregulated in the TCGA
luminal-papillary subtype were most highly expressed in
the Epithelial-c2 cluster, but not in Epithelial-cO and
Epithelial-c1 despite all three clusters being annotated as
TCGA _luminal-papillary. We performed a similar ana-
lysis comparing the gene expression profiles of DeClust_
luminal |luminal-infiltrated and DeClust_luminal-papil-
lary subtypes and identified the top 20 most upregulated
genes in each subtype. The top 20 genes upregulated in
the DeClust_luminal|luminal-infiltrated subtype were
highly expressed in cancer cells in the Epithelial-cO and
Epithelial-c1 clusters, and the top 20 genes upregulated
in DeClust_luminal-papillary were highly expressed in
cancer cells in the Epithelial-c2 cluster (Fig. 9c). Similar
findings were observed using pathway analysis (Add-
itional file 1: Figure S15). Together, these findings sug-
gest that non-cancer cells in bulk tissue transcriptomes
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contribute to conventional BLCA subtypes (Add-
itional file 1: Figure S16) and that DeClust subtypes may
better reflect cancer cell-intrinsic differences.

Discussion

We developed a reference profile-free deconvolution algo-
rithm, DeClust, that estimates both cell fractions and ref-
erence expression profiles for different compartments of
the tumor, as well as generating cancer cell-intrinsic sub-
typing. The unique feature of DeClust is that it directly

models inter-tumor heterogeneity and integrates cancer
subtypes into deconvolution models to improve the accur-
acy of both cell compartment deconvolution and subtyp-
ing. The advantages of such a strategy were demonstrated
by comparing with various deconvolution methods and al-
ternative strategies for cancer subtyping in both simulated
and TCGA datasets. In simulated datasets, DeClust
achieved comparable accuracy with the reference-based
method (CIBERSORT) in estimating cell compartment
frequency, but outperformed CIBERSORT_Kmeans with



Wang et al. Genome Medicine (2020) 12:24

respect to inferring cancer cell-intrinsic subtypes. Further,
DeClust was demonstrated to be able to reliably estimate
compartment-specific reference profiles. We note, how-
ever, that given the simulated datasets are simplified rep-
resentations of the inter- and intra-tumor heterogeneity in
real data, the accuracy achieved here is likely overesti-
mated for both DeClust and CIBERSORT.

To test performance on real data, we applied DeClust
and a few other alternative methods to 13 TCGA data-
sets. DeClust estimated tumor purity with accuracy com-
parable to the best methods assessed in this study, with
the particular benefit of having the smallest MAD from
orthogonal measurements. Because different methods
vary with respect to their definition of tumor purity, and
because there is presently no gold standard, definitive
comparisons were limited. Nevertheless, DeClust dem-
onstrated a number of advantages. First, DeClust uncov-
ered a significant association between the stromal cell
proportion and patient survival outcomes in KIRC that
was not apparent using other methods. Second, stromal
profiles estimated by DeClust for each of the 13 TCGA
datasets helped shed light on the heterogeneity of stro-
mal compartments across tumor types. For example,
KIRC and BLCA stromal profiles indicated distinct stro-
mal cell compositions and pathway activities, which we
corroborated with scRNAseq data. However, further
studies are needed to demonstrate whether such differ-
ences in cellular composition are causally linked to their
disparate effects on prognosis. Finally, we demonstrated
direct generation of cancer cell-intrinsic subtypes, a
unique attribute of DeClust. Compared to the subtypes
inferred by TCGA or other methods assessed in the
paper, the DeClust subtypes better reflected the contri-
bution of cancer cells, as evidenced by an increased asso-
ciation with somatic alterations and decreased
association with tumor purity. Since identifying subtype-
specific genetic alterations is an important strategy for
identification of potential driver genes and associated
therapeutic targets [42, 43], DeClust could be a useful
tool for such purposes, and helping to uncover genetic
associations that are otherwise obscured by the non-
cancer cell compartments.

Whether cancer cell-intrinsic subtypes, subtypes based
on other cellular components of the microenvironment,
or their interactions are more clinically relevant likely
depends at least in part on the specific type of cancer.
DeClust identified poor prognosis subtypes in KIRC,
KIRP, and LUAD, which were enriched for CDKN2A de-
letions, highlighting that for these cancer types, cancer
cell-intrinsic molecular programs are key drivers of
prognosis. On the other hand, the BLCA TCGA sub-
types, based on the contribution of various cellular ele-
ments, were better associated with survival than the
DeClust subtypes (Fig. 6b), indicating the stromal and
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immune compartments of BLCA are key contributors to
prognosis (Fig. 3a, ¢). Indeed, key signals contributing to
BLCA TCGA subtyping were from fibroblasts (Fig. 9b)
while key signals to DeClust subtyping were from cancer
cells (Fig. 9c) based on our scRNAseq data.

It is worth noting that cancer cell-intrinsic subtypes
and immune subtypes were independent (Add-
itional file 1: Figure S17) and cancer cell-intrinsic sub-
types were generally more closely linked with patient
survival (Additional file 1: Figure S18) (detailed in Add-
itional file 2: Supplementary Methods and Results).
However, the impact of heterogeneity in the TME on
survival was at times only apparent within the context of
specific DeClust subtypes highlighting the complex
interplay between the cancer cellular compartment with
other cellular components of the TME (Additional file 1:
Figure S18, S19 and S20). Thus, combining cancer cell-
intrinsic subtyping with subtyping based on TME might
be the optimal strategy and our model can be further ex-
tended to address such an approach.

The pre-computed DeClust subtypes and compartment-
specific gene expression profiles for each of the 13 TCGA
datasets (accessible through our DeClust R package) pro-
vide a useful resource for many future studies. For ex-
ample, they can serve as reference profiles in the
deconvolution of bulk tissue transcriptomic data. The
DeClust compartment-specific expression profiles are
tumor-type-specific, distinguishing them from the existing
reference profiles or fixed sets of marker genes sets that
are agnostic to the tumor type. The cancer subtype-
specific profiles can also be used to annotate cancer cell
clusters using scRNAseq data since the subtype profiles
generated from bulk tissue transcriptomic data represent
signals from mixed cellular composition.

There are potential limitations to DeClust. The strat-
egy of computational dissection of tumor gene expres-
sion data into three compartments by DeClust and other
methods [15, 31, 54] still underestimates the complexity
of cellular heterogeneity comprising tumors and TMEs.
The resolution of deconvolution could be improved by
dissection into more detailed components in the future.
The DeClust algorithm is potentially generalizable to re-
solving bulk tissue profiles across any number of com-
partments given more profiling data and computation
power available. The current DeClust algorithm only fa-
cilitates subtyping of tumors based on the cancer cell-
intrinsic gene expression profiles. However, different
subtypes of non-cancer compartments have also been
described [29]. Allowing simultaneous subtyping of both
cancer and non-cancer cellular compartments may facili-
tate improved prognostic stratification and identify cross
talk between cellular compartments critical to tumor
pathogenesis. The same tumor could contain cancer
cells representative of different subtypes as identified in
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our scRNAseq data. Thus, the flexibility of DeClust
could be further improved by allowing a mixture of dif-
ferent cancer cell-intrinsic subtypes in the same speci-
men. The expression profiles estimated by DeClust are
reference expression profiles at the cohort level and de-
convolution could be carried further at the individual
patient level. Our comparison of DeClust with other de-
convolution methods was limited in that we used the de-
fault parameters and input signature matrix of the
original algorithms, which might be less ideal for analyz-
ing TCGA datasets or addressing the problem of cancer
cell-intrinsic subtyping. Finally, we restricted the current
study to 13 solid tumor datasets in TCGA where the
tumor consists of the three main compartments, i.e.,
cancer cells, immune cells, and stromal cells (mainly fi-
broblasts). Not every solid tumor dataset fits this defin-
ition (Additional file 2: Supplementary Methods and
Results), and further efforts are needed to adapt DeClust
to address these tumor types.

Conclusions

We developed a reference profile-free deconvolution
method to infer cancer cell-intrinsic subtypes and
tumor-type-specific stromal profiles. The cancer-
intrinsic subtyping generated by DeClust together with
the deconvolution results may lead to mechanistic and
clinical insights across multiple tumor types.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513073-020-0720-0.

Additional file 1 : Figure S1. A schematic illustration of DeClust
algorithm. Figure S2 Flowchart of the study. Figure S3. Simulation
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Simulation results when gene expression was simulated under negative
binomial distribution. Details can be found in legend of Fig. 1. Figure
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estimated by DeClust (y-axis) and reference proles used by EPIC (x-axis).
(B) Exemplary scatter plot of reference expression prole versus immune
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Figure S17. Proportions of different immune subtypes within each sub-
types defined by DeClust. Figure $18. Comparison of immune subtypes
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association of overall survival and immune subtypes within each cancer
cell-intrinsic subtype defined by Declust.(B) Kaplan-Meier curves of im-
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association of overall survival and immune/stromal cell fraction within
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opposite. Only cancer subtypes and cell fractions with at least one signifi-
cant association (p < 0.05) are shown here. The cell fractions were esti-
mated by CIBERSORT, EPIC or DeClust, and both the absolute fraction
(Ab) and relative fraction (Re) were assessed.(B) Kaplan-Meier curves of
high and low CAF fraction within BLCA_luminal-papillary subtype. (C)
Kaplan-Meier curves of high and low resting NK cells within BLCA_basal-
squamous_1 subtype. Figure S$21. BICs calculated according to the
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red dotted line indicates the number of subtypes select for further ana-
lyses. Figure S22 PCA plot of cancer, immune, and stroma expression
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