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Abstract

Background: The clinical utility of personal genomic information in identifying individuals at increased risks for
dyslipidemia and cardiovascular diseases remains unclear.

Methods: We used data from Biobank Japan (n = 70,657–128,305) and developed novel East Asian-specific
genome-wide polygenic risk scores (PRSs) for four lipid traits. We validated (n = 4271) and subsequently tested
associations of these scores with 3-year lipid changes in adolescents (n = 620), carotid intima-media thickness (cIMT)
in adult women (n = 781), dyslipidemia (n = 7723), and coronary heart disease (CHD) (n = 2374 cases and 6246
controls) in type 2 diabetes (T2D) patients.
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Results: Our PRSs aggregating 84–549 genetic variants (0.251 < correlation coefficients (r) < 0.272) had comparably
stronger association with lipid variations than the typical PRSs derived based on the genome-wide significant
variants (0.089 < r < 0.240). Our PRSs were robustly associated with their corresponding lipid levels (7.5 × 10− 103 <
P < 1.3 × 10− 75) and 3-year lipid changes (1.4 × 10− 6 < P < 0.0130) which started to emerge in childhood and
adolescence. With the adjustments for principal components (PCs), sex, age, and body mass index, there was an
elevation of 5.3% in TC (β ± SE = 0.052 ± 0.002), 11.7% in TG (β ± SE = 0.111 ± 0.006), 5.8% in HDL-C (β ± SE = 0.057 ±
0.003), and 8.4% in LDL-C (β ± SE = 0.081 ± 0.004) per one standard deviation increase in the corresponding PRS.
However, their predictive power was attenuated in T2D patients (0.183 < r < 0.231). When we included each PRS (for
TC, TG, and LDL-C) in addition to the clinical factors and PCs, the AUC for dyslipidemia was significantly increased
by 0.032–0.057 in the general population (7.5 × 10− 3 < P < 0.0400) and 0.029–0.069 in T2D patients (2.1 × 10− 10 <
P < 0.0428). Moreover, the quintile of TC-related PRS was moderately associated with cIMT in adult women (β ±
SE = 0.011 ± 0.005, Ptrend = 0.0182). Independent of conventional risk factors, the quintile of PRSs for TC [OR (95%
CI) = 1.07 (1.03–1.11)], TG [OR (95% CI) = 1.05 (1.01–1.09)], and LDL-C [OR (95% CI) = 1.05 (1.01–1.09)] were
significantly associated with increased risk of CHD in T2D patients (4.8 × 10− 4 < P < 0.0197). Further adjustment for
baseline lipid drug use notably attenuated the CHD association.

Conclusions: The PRSs derived and validated here highlight the potential for early genomic screening and
personalized risk assessment for cardiovascular disease.

Keywords: Polygenic risk scores, Lipid traits, Subclinical atherosclerosis, Diabetes cardiovascular complications, East
Asians

Background
Circulating lipids including levels of total cholesterol
(TC), triglycerides (TG), high-density lipoprotein (HDL-
C), and low-density lipoprotein (LDL-C) are among the
most important, modifiable, and heritable risk factors for
coronary heart disease (CHD). Previous studies have
demonstrated a moderate-to-high heritability for varia-
tions in lipid levels, with estimates ranging from 20 to
60% [1]. Genome-wide association studies (GWASs) re-
cently identified a number of common susceptibility
variants for circulating lipids; however, the majority of
these variants confer small risk individually and have
limited predictive power for CHD risk [2].
It has been suggested that comprehensive genetic in-

formation could be used to quantify lifetime disease risk
before the manifestation of clinical risk factors, contrib-
uting to risk stratification for clinical utility [3]. Al-
though there were prior efforts to create polygenic risk
scores (PRSs) for lipid traits, these traditionally com-
prised only of genetic variants reaching genome-wide
significance, and only had limited success in improving
CHD risk prediction [4, 5]. With the development of
novel computational algorithms and the availability of
large datasets, increasing number of PRSs for common
diseases, which fully captured genome-wide variation,
have been derived and validated [6, 7]. These approaches
utilized full results from previous genome-wide associ-
ation studies and an external reference panel to con-
struct the PRSs mainly based on two strategies: (1)
liberalization of the significance thresholds for variant
inclusion while accounting for linkage disequilibrium

(LD) patterns in a population; and (2) assignment of
new weightings to variants using the Bayesian method
that infers the posterior mean effect for each variant by
assuming a prior effect from GWAS summary statistics,
the information of genomic correlation, and a pre-
specified proportion of causal variants. For example,
Khera et al. recently constructed six genome-wide PRSs,
incorporating information from 5218 to 6,917,436 com-
mon genetic variants, to predict the risks of developing
CHD, atrial fibrillation, type 2 diabetes (T2D), inflamma-
tory bowel disease, breast cancer, and severe obesity in
participants of mostly European ancestry [7, 8].
To further investigate the potential use of genetic in-

formation in identifying and screening individuals at
increased risks for dyslipidemia and diabetes cardiovas-
cular complications, we applied the recently developed
computational methods to optimize PRSs for four lipid
traits in multiple cohorts of East Asians at various stages
of the life-course, and subsequently tested their perform-
ance in the general population and patients with T2D.
Moreover, we evaluated the effect of the best-
performing PRSs on 3-year lipid changes in adolescents.
Finally, we examined the potential clinical implication of
these PRSs in subclinical atherosclerosis in adult women
and coronary heart disease in T2D patients.

Methods
Study subjects
The design of this study is shown in Fig. 1. Participants
included in the validation and testing datasets for asses-
sing the predictive ability of PRSs and in the analyses for
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the cardiovascular outcome were of southern Han
Chinese ancestry residing in Hong Kong.
Data used for the development of PRSs for four lipid

traits came from the BioBank Japan (BBJ) Project [9],
which is one of the largest non-European single-descent
biobanks with detailed phenotypes. It comprised 128,305
Japanese individuals in the TC analysis, 105,597 individ-
uals in the TG analysis, 70,657 individuals in the HDL-C
analysis, and 72,866 individuals in the LDL-C analysis.
Details of the study design of the BBJ Project have been
previously described [10]. Briefly, the BBJ Project is a
multi-institutional hospital-based registry that collected
DNA, serum, and clinical information of approximately
200,000 patients from 66 hospitals affiliated with 12

medical institutes between fiscal years 2003 and 2007.
All study participants had been diagnosed with one or
more of the 47 target diseases (including lung cancer,
esophageal cancer, gastric cancer, colorectal cancer, liver
cancer, pancreatic cancer, gallbladder / cholangiocarci-
noma, prostate cancer, breast cancer, uterine cervical
cancer, uterine corpus cancer, ovarian cancer,
hematological cancer, cerebral infarction, cerebral
aneurysm, epilepsy, bronchial asthma, pulmonary tuber-
culosis, chronic obstructive pulmonary disease, intersti-
tial lung disease / pulmonary fibrosis, myocardial
infarction, unstable angina, stable angina, arrhythmia,
heart failure, peripheral arterial diseases, chronic hepa-
titis B, chronic hepatitis C, liver cirrhosis, nephrotic

Fig. 1 Study design and workflow. A polygenic risk score (PRS) for each lipid trait was derived by (1) association statistics from the Biobank
Japanese Project and (2) linkage disequilibrium (LD) between genetic variants from a reference panel of 504 East Asians in 1000 Genomes Project.
A total of 34 candidate PRSs were developed using two strategies: (1) the “pruning and thresholding” approach, which involves pruning the
genetic variants based on the pairwise threshold of LD r2 (0.2, 0.4, and 0.6), and subsequently applying a p value threshold (1, 0.5, 0.1, 0.05, 0.01,
1 × 10−3, 1 × 10−4, 1 × 10−5, and 5 × 10−8) to the association statistics. And (2) the LDPred computational algorithm, a Bayesian method that
estimates the posterior mean causal effect for each variant by assuming a prior effect size from summary statistics and LD information from an
external reference panel. Multiple LDpred scores were calculated by varying the tuning parameter ρ (1, 0.3, 0.1, 0.03, 0.01, 3 × 10− 3, and 1 × 10− 3)
which are the fractions of markers with non-zero effects. The optimal PRS for each lipid trait was chosen based on maximal correlation with the
corresponding lipid trait in a total of 4271 individuals in the validation datasets, and then tested for the associations with lipid metabolism,
changes in lipid levels, and cardiovascular risk in multiple independent cohorts

Tam et al. Genome Medicine           (2021) 13:29 Page 3 of 18



syndrome, urolithiasis, osteoporosis, diabetes mellitus,
dyslipidemia, graves’ disease, rheumatoid arthritis, hay
fever, drug eruption, atopic dermatitis, keloid, uterine fi-
broid, endometriosis, febrile seizure, glaucoma, cataract,
periodontitis, and amyotrophic lateral sclerosis) by phy-
sicians at the cooperating hospitals as described in the
previous reports [10].
Details of the study design, ascertainment, inclusion

criteria, and phenotyping procedures of the participants
involved in the validation and testing stages are de-
scribed in “Cohort Descriptions” (See Additional File 1:
Supplementary Methods). Individuals who were receiv-
ing lipid-lowering medication at the time of examination
were excluded from the data used to assess the predict-
ive ability of PRSs for lipid traits. The validation dataset
consists of 4271 individuals at different stages of the life-
course from four cohorts of Chinese ancestry: (1) 909
children enrolled in the follow-up visit of the Hypergly-
cemia and Adverse Pregnancy Outcome (HAPO) study
at the Hong Kong center [11]; (2) 1973 adolescents re-
cruited from a community-based school survey for risk
factor assessment [12]; (3) 441 healthy adults enlisted
from hospital staff, a territory-wide health awareness,
and promotion program selected by stratified random
sampling with computer-generated codes in accordance
to the distribution of occupational groups, and the
community-based pharmacogenetics studies in hyper-
tension and dyslipidemia [13, 14]; and (4) 948 adult
women attended the HAPO follow-up study [11]. The
best PRSs for lipid traits were further evaluated in four
independent testing datasets, comprising 426 adults re-
cruited from hospital staff, and a territory-wide health
awareness and promotion program, as well as a total of
7723 individuals drawn from three prospective cohorts
of Chinese patients with T2D: (1) 4917 patients from the
Hong Kong Diabetes Register (HKDR), which was estab-
lished as a quality improvement program at the Prince
of Wales Hospital at the Chinese University of Hong
Kong since 1995 [15]; (2) 1941 patients; and (3) 865 pa-
tients enrolled in the Hong Kong Diabetes Biobank
(HKDB) phase 1 and phase 2 studies, respectively [16],
which aims to establish a territory-wide registry and bio-
bank of individuals with diabetes for large-scale genetic
replication studies, biomarker discovery, and epidemi-
ology research.
Analyses for the associations between PRSs and 3-year

changes in lipid traits were performed in a subset of 620
adolescents who attended both the baseline and the
follow-up assessment (baseline 2003–2004, follow-up
2006). In the analysis for subclinical atherosclerosis, a
total of 781 adult women with carotid intima-media
thickness (cIMT; a marker of subclinical atherosclerosis)
measurement were drawn from two prospective cohorts
primarily designed to assess the impact of gestational

hyperglycemia on the pregnancy outcomes in women
and offspring (n = 654 in the adult women of cohort 1
[11] and n = 127 in the adult women of cohort 2 [17]).
We further evaluated the influence of PRSs for lipid
traits on the risk of CHD using data generated from two
prospective studies, the HKDR Study and the HKDB
Study. A total of 2374 cases with T2D and CHD, and
6246 T2D patients without CHD events were examined.

Outcome variables
In the BBJ Project, the measurements of TC, TG, and
HDL-C were retrieved from medical records. LDL-C were
either retrieved from medical records or derived from the
Friedewald’s formula as TC −HDL-C − (TG / 2.2) when
LDL-C is not available and TG < 4.5mmol/l [9, 10].
All participants included in the validation and testing

stages were examined in the morning after an overnight
fast. Fasting blood samples were collected for the mea-
surements of lipid profiles (TC, TG, HDL-C, and calcu-
lated LDL-C). TC (enzymatic method), TG (enzymatic
method without glycerol blanking), and HDL-C (direct
method using PEG-modified enzymes and dextran
sulfate) were measured on a Roche Modular Analytics
system (Roche Diagnostics GmbH, Mannheim,
Germany) using standard reagent kits supplied by the
manufacturer of the analyzer. LDL-C was calculated by
using Friedewald’s formula for TG < 4.5 mmol/1 [18].
Among the adolescents who attended both the baseline
and the follow-up study, we used the longitudinal data
on lipid levels to calculate the 3-year changes in four
lipid traits as (lipidfollow-up − lipidbaseline) / lipidbaseline.
Dyslipidemia/abnormal lipid levels were defined

according to the thresholds used in clinical practice
guidelines [19]: (1) TC ≥ 5.1 mmol/l; TG ≥ 1.1mmol/l;
and LDL-C ≥ 3.4 mmol/l in children; (2) TC ≥ 5.1mmol/l;
TG ≥ 1.4mmol/l; and LDL-C ≥ 3.4 mmol/l in adolescents;
(3) TC ≥ 5.2 mmol/l; TG ≥ 1.7 or ≥ 1.97mmol/l; and LDL-
C ≥ 1.8 or ≥ 2.6mmol/l in adults or patients with T2D.
In the two cohorts of adult women, cIMT was mea-

sured with a L12–5-MHz linear transducer using meth-
odology described in our previous study [20]. Three
cIMT measurements were made in the plaque-free
section of both right and left common carotid arteries,
along the thickest point on the far wall and within
approximately 1.5 cm proximal to the flow divider. The
mean cIMT was calculated by averaging six measure-
ments from both sides. The intra-class correlation coeffi-
cients for inter- and intraoperator reliability for cIMT
measurement were 0.98 (95% CI 0.93–1.0) and 0.98
(0.91–0.99), respectively.
Coronary heart disease (CHD) outcome was defined

based on the discharge principal diagnoses of hospital
admissions and mortality until June 2017. We retrieved
the data of hospital admissions from the Hong Kong
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Hospital Authority Central Computer System, which re-
cords the admissions to all public hospitals as well as
deaths and causes of death. Hospital discharge principal
diagnoses coded by the International Classification of
Diseases, Ninth Revision (ICD-9) were used to identify
the outcome event. The CHD ascertainment was based
on a composite of (1) acute myocardial infarction (code
410); or (2) nonfatal ischemic heart disease (codes 411
to 414); or (3) death due to CHD (not including death
due to heart failure), which occurred either at baseline
or during follow-up. Among the T2D patients from the
HKDR and HKDB studies, we have examined a total of
2374 CHD cases and 6246 controls who had duration of
T2D more than 10 years and were free from cardiovas-
cular diseases including CHD, stroke, and peripheral
vascular disease.

Genotyping, quality control, and imputation
Individuals in the BBJ project underwent genotyping
with either the Illumina HumanOmniExpressExome
BeadChip or a combination of the Illumina HumanOm-
niExpress and HumanExome BeadChips. Exclusion cri-
teria for samples and quality control (QC) criteria for
single nucleotide polymorphisms (SNPs) have been pre-
viously reported [9]. Genotype data were imputed to the
1000 Genomes Project Phase 1 v3 East Asian reference
panel using minimac [21]. Imputed SNPs with an imput-
ation quality r2 < 0.7 were excluded from the subsequent
association analysis.
DNA samples included in the validation and testing

stages were genotyped using one of four arrays: (1) Illu-
mina Omni2.5 + Exome Array, (2) Illumina HumanOmni
ZhongHua-8 BeadChip, (3) Infinium® Asian Screening
Array, and (4) Infinium® Global Screening Array. We
have applied the same standard QC procedures on each
genome-wide SNP array data. The per-individual QC of
genotype data consists of four steps: (1) sex checking
based on the genotype call from chromosome X; (2) de-
tection of low-quality samples based on call rate and
heterozygosity rate; (3) detection of possible familial re-
lationship or duplicated individuals using estimates of
identity-by-descent (IBD); (4) detection of population
stratification by performing principal component (PC)
analysis (See Additional file 1: Fig. S1). Only biallelic
autosomal SNPs were included in the per-marker QC.
SNPs were excluded from further analysis if (1) Hardy–
Weinberg equilibrium (HWE) p < 1 × 10− 4 and (2) minor
allele frequency (MAF) < 1%; or 3) call rate < 95%. In
particular, SNPs with MAF ≥ 1% but ≤ 5% are excluded
if their call rate is < 99%.
Within each individual cohort, we imputed the geno-

type data to the 1000 Genomes Project phase III refer-
ence panel (October 2014) using the Michigan
Imputation Server [22]. SNPs with MAF < 1%,

imputation quality score r2 < 0.5, or ambiguous strands
(A/T or C/G) were removed. Finally, ~ 4.5 million SNPs
overlapped among all derivation and validation datasets
were included in the score derivation. In the testing
datasets, all SNPs used in the calculation of PRSs had an
imputation quality score r2 > 0.3.

Construction of polygenic score
In general, the form of a PRS is β1x1 + β2x2 +… + βkxk +
… + βnxn where βk is the per-allele effect size for lipid
level associated with SNP k, xk is an indication function
of the effect allele (e.g., the number of effect alleles) at
SNP k, and n is the total number of SNPs involved in
the candidate PRS. To derive the PRS for each lipid trait,
we used (1) publicly available association statistics (in-
cluding the effect allele, the estimated β-coefficient for
the effect allele, and the p value of each genetic variant)
from a recent genome-wide association study (GWAS)
in the Japanese population contributed by the BBJ Pro-
ject [9] and (2) LD between genetic variants from a ref-
erence panel of 504 East Asians contributed by the 1000
Genomes Project [23]. For each lipid traits, a total of 34
candidate PRSs were built using two different strategies.
The first 27 PRSs were constructed by the “pruning

and thresholding” approach, which was implemented
using the “clumping” procedure in PLINK v1.90 [24].
This is a greedy algorithm, iteratively choosing a set of
SNPs to form clumps around the index SNPs [i.e., these
SNPs are significant at a provided p value threshold (1,
0.5, 0.1, 0.05, 0.01, 1 × 10− 3, 1 × 10− 4, 1 × 10− 5, and 5 ×
10− 8) in the BBJ GWAS]. Each clump is composed of
SNPs which are within 250 kb from the index SNP and
are also in LD with the index SNP based on the pairwise
threshold of r2 (0.2, 0.4, and 0.6) [7]. Given a threshold
of p value and r2, a candidate PRS was computed based
on the resultant index SNPs of each clump and the cor-
responding estimated β-coefficient for its effect allele as
weights using the “score” procedure in PLINK v2.0 [24].
Seven additional PRSs were developed by the LDPred

computational algorithm, a Bayesian method that esti-
mates the posterior mean causal effect for each variant
by assuming a prior effect size from summary statistics
(e.g., association statistics from the BBJ GWAS) and LD
information from an external reference panel (e.g., LD
reference panel from the 1000 Genomes East Asians)
[25]. Multiple LDpred scores were calculated by varying
the tuning parameter ρ (1, 0.3, 0.1, 0.03, 0.01, 3 × 10− 3,
and 1 × 10− 3), which are the fractions of markers with
non-zero effects. It is recommended to include the 1.2
M HapMap3 SNPs for this analysis. Thus the number of
variants was down sized to 902,892, using only the vari-
ants included within the HapMap3 data (https://www.
broadinstitute.org/medical-and-population-genetics/
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hapmap-3) and overlapped among all derivation and val-
idation datasets.
Optimal PRS for each lipid trait was chosen based on

maximal pooled Pearson correlation with the corre-
sponding measured lipid trait in a total of 4271 individ-
uals in validation datasets. The best-performing PRS for
each lipid trait was transformed to a z-score and then
further classified into five categories using the quintile
thresholds defined in the largest cohort (e.g., the HKDR
cohort) in this study. These scores and their quintiles
were then tested for the associations with (1) corre-
sponding lipid level in adults from general population
and T2D patients (testing datasets), (2) 3-year changes
in corresponding lipid level in adolescents, (3) cIMT in
adult women, and (4) the risk of CHD in T2D patients.
Additional PRSs for four lipid traits comprised of (1)

only the lead variants and (2) both the lead and inde-
pendent variants previously reaching genome-wide
significance in European populations were generated to
compare the predictive power with the best-performing
PRSs derived in the current study [2, 26–32]. Only 85
TC-related, 87 TG-related, 102 HDL-C-related, and 70
LDL-C-related lead variants were available in our data-
sets. When both the lead variants and the independent
variants were considered, the numbers of variants associ-
ated with TC, TG, HDL-C, and LDL-C were increased
to 229, 259, 328, and 201, respectively.

Statistical analysis
All analyses were performed using PLINK v1.9 (https://
www.cog-genomics.org/plink/1.9/, 31 December, 2019)
and v2.0 (https://www.cog-genomics.org/plink/2.0/, 31
December, 2019) [24], LDpred v1.0.6 software package
[25], IBM SPSS Statistics 25, and R 3.4.4 (http://www.r-
project.org/, 31 December, 2019) unless specified other-
wise. A 2-tailed p value < 0.05 was considered statistically
significant. Data are presented as percentages (n), mean ±
SD, or geometric mean (95% CI). Comparison between
groups was performed by chi-squared test, unpaired Stu-
dent’s T-test, or Mann-Whitney test, as appropriate.
Within each cohort, associations between PRSs and

lipid traits were assessed by Pearson and Spearman cor-
relations, and linear regression with the adjustment of
PCs, sex, age, and body mass index (BMI). A pooled cor-
relation across individual cohorts was calculated using
the Fisher Z transformation approach [33]. Results for
either linear or logistic regression from individual co-
horts were combined by inverse-variance weighted
meta-analysis using a fixed effects model. The propor-
tion of variance for a lipid trait explained by the corre-
sponding optimal PRS was computed as the R2 obtained
from a full model including both PRS and covariates
(PCs, sex, age, and BMI) minus the R2 obtained from a
model including covariates alone. The best-performing

PRSs were tested for associations with the 3-year
changes in lipid levels in adolescents and cIMT in adult
women using linear regression adjusted for covariates. In
the analysis for 3-year changes, we adjusted for PCs, sex,
and age at follow-up, BMI at baseline and follow-up, and
the corresponding lipid trait at baseline. In the analysis
for cIMT, we adjusted for (1) PCs and age and (2) PCs,
age, BMI, and systolic blood pressure (SBP). To examine
the association between the best-performing PRSs for
lipid traits and the risk of CHD in T2D patients, we fur-
ther conducted a logistic regression analysis adjusted for
covariates as follows: model 1 included PCs, sex, age,
and duration of diabetes; model 2 included the covari-
ates in model 1 and BMI; model 3 included the covari-
ates in model 2 and smoking status; model 4 included
the covariates in model 3, HbA1c, and SBP; model 5 in-
cluded the covariates in model 4, estimated glomerular
filtration rate (eGFR), and log-transformed albumin-
creatinine ratio (ACR); model 6 included the covariates
in model 5 and the use of lipid-lowering drugs.
To evaluate the discriminative power of our best PRSs

to identify those with clinically defined dyslipidemia, we
calculated the area under the receiver operating charac-
teristic (ROC) curve, denoted as the area under curve
(AUC) based on the predicted risks for each individual
obtained from the logistic regression analysis. The AUC
can vary from 0.5 (no discrimination) to 1 (prefect dis-
crimination). Moreover, we presumed that associations
for lipid measurements may be confounded by some
clinical risk factors (e.g., sex, age, and BMI). Therefore,
we explored whether our PRSs predict the risk of dyslip-
idemia independently of the clinical risk factors. Three
different models were considered: model 1—sex, age,
BMI, and PCs; model 2—PRS only; and model 3—sex,
age, BMI, PCs, and PRS. The contribution of PRS to
AUC on top of sex, age, BMI, and PCs was computed as
the AUC obtained from model 3 minus the AUC ob-
tained from model 1. We compared two correlated
AUCs using the DeLong method [34].
We further calculated the positive predictive value

(PPV), negative predictive value (NPV), sensitivity and
specificity of high PRS (top 20% vs. the remaining 80%
of the PRS distribution) to assess their precision for
diagnosing dyslipidemia. PPV is the proportion of indi-
viduals who actually have the disease among all those
who have a positive prediction (i.e., true positive/[true
positive + false positive]). Negative predictive value is
the proportion of individuals who actually do not have
that disease among all those who have a negative predic-
tion (i.e., true negative/[true negative + false negative]).
Sensitivity is the proportion of individuals who have a
positive prediction among all those who actually have
the disease (i.e., true positive/[true positive + false nega-
tive]). Specificity is the proportion of individuals who
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have a negative prediction among all those who actually
do not have that disease (i.e., true negative/[true negative
+ false positive]). In this analysis, a positive prediction is
the prediction that an individual has a high PRS (top
20% of the PRS distribution), while a negative prediction
is the prediction that an individual has a low PRS
(remaining 80% of the PRS distribution).

Results
Derivation, validation, and testing of PRSs for four lipid
traits
The clinical characteristic of the individuals who were
involved in assessing the predictive performance of PRSs
for lipid traits (n = 4271 and 8149 in validation and test-
ing datasets, respectively) is depicted in Additional file 2:
Table S1. By using the association statistics from the BBJ
Project and the LD reference panel from 1000 Genomes
East Asians, we utilized two different methods to build
34 candidate PRSs for each lipid trait: (1) the first 27
PRSs were derived based on a pruning and thresholding
approach, and (2) 7 additional PRSs were developed
using the recently proposed LDPred computational algo-
rithm (See Fig. 1). We validated these scores in 4271 in-
dividuals from four cohorts at different stages of the life-
course (childhood, adolescence, and adulthood) and
chose the best-performing PRSs for each lipid trait by
selecting the PRS which had the maximum pooled Pear-
son correlation with the corresponding measured lipid
trait (See Additional File 1: Fig. S2, and Additional File
2: Tables S2–5). Proportion of phenotypic variance in
lipid levels explained by each candidate PRSs are shown
in Additional File 1: Fig. S3.
Here we report results for PRSs giving the highest pre-

diction accuracy (See Table 1 and Additional File 1: Fig.
S4). The four optimal PRSs for TC, TG, HDL-C, and
LDL-C were derived by the pruning and thresholding
approach, comprising of 229, 142, 549, and 84 SNPs, re-
spectively. All the SNPs included in TG- and LDL-C-
related PRSs achieved genome-wide significance in the
BBJ study (P = 5.0 × 10− 8), whereas only 95 (58.5%) and
231 (42.1%) SNPs were previously reported as genome-
wide significant in the TC- and HDL-C-related PRSs,
respectively. These PRSs were robustly associated with
their corresponding measured lipid levels, with pooled
correlation coefficients ranging from 0.256 for TG to
0.304 for TC. The meta-analysis results demonstrated an
increase of 5.3% in TC (P = 7.5 × 10− 103), 11.7% in TG
(P = 1.3 × 10− 75), 5.8% in HDL-C (P = 9.3 × 10− 83), and
8.4% in LDL-C (P = 2.4 × 10− 93) per one standard devi-
ation (1-SD) increase in the corresponding PRS, after
adjusting for PCs sex, age, and BMI. The proportion of
phenotypic variance in lipid levels explained by the cor-
responding PRSs ranged from 6.3 to 10.9% for TC, 5.6

to 8.6% for TG, 6.4 to 9.4% for HDL-C, and 6.3 to 10.9%
for LDL-C in validation datasets.
We further tested the predictive capability of the four

optimal PRSs on lipid traits in additional 426 adults
from the general population and 7723 patients with T2D
(See Table 1 and Additional File 1: Fig. S4). The Pearson
correlations between these PRSs and the corresponding
lipid measurements in the adults were generally
comparable with the validation datasets, except for total
cholesterol (0.251 < correlation coefficients (r) < 0.272).
However, the pooled correlations were consistently
lower in T2D patients compared with the validation
datasets (0.185 vs 0.304 for TC; 0.206 vs 0.256 for TG;
0.231 vs 0.282 for HDL-C; and 0.183 vs 0.281 for LDL-
C). Likewise, these PRSs explained only 3.0–3.9% of the
variance for TC, 5.0–7.3% for TG, 5.2–8.3% for HDL-C,
and 3.5–3.7% for LDL-C in T2D patients. With the
adjustments for PCs sex, age, and BMI, there was an
elevation of 4.0% in TC (P = 1.5 × 10− 66), 16.7% in TG
(P = 2.3 × 10− 126), 7.0% in HDL-C (P = 3.2 × 10− 116), and
5.9% in LDL-C (P = 3.2 × 10− 62) per 1-SD increase in
corresponding PRS in patients with T2D. The discrep-
ancy between validation and testing datasets may reflect
(1) the differences in characteristics of T2D patients and
individuals of the general population and 2) some over-
fitting due to small sample size and different age groups
in the validation datasets.
The best-performing PRSs for the four lipid traits built

in the current study had considerably greater abilities to
predict variation in plasma lipids than the four PRSs
which comprised of only the 70–102 lead variants previ-
ously reaching genome-wide significance in European
populations. The latter four PRSs had correlations of
only 0.089 < r < 0.191 with the corresponding lipid traits
in adults from the general population (See Additional
File 2: Table S6). Although the correlations were mark-
edly increased to 0.215–0.240 when the PRSs involved
both the lead and independent variants, our four optimal
PRSs still had better performance than these scores (See
Additional File 2: Table S6). Similar results were also ob-
served in patients with T2D, except the PRS for HDL-C
(Additional File 2: Table S6).

Predictive power of PRSs for identifying individuals with
clinically defined dyslipidemia
We assessed the contribution of the lipid-specific PRSs
for predicting the risk of developing dyslipidemia. AUC
was used to assess the discriminatory power of the
model with and without inclusion of PRS on top of clin-
ical factors (sex, age, and BMI) and PCs. In the model
incorporating the corresponding PRS alone, the AUCs
for predicting abnormal levels of TC ≥ 5.2 mmol/l, TG ≥
1.7 mmol/l, TG ≥ 1.97 mmol/l, and LDL ≥ 2.6 mmol/l
varied between 0.63 and 0.67 in the general population;
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but was relatively lower in T2D patients, varying from
0.57 to 0.64 (See model 2 in Additional File 2: Table S7).
We then examined whether the addition of these PRSs
improved the risk prediction above and beyond trad-
itional clinical risk factors. Risk assessment based on sex,
age, BMI, PCs, and corresponding lipid-specific PRS sig-
nificantly increased the AUC by 0.032–0.057 in the gen-
eral population (7.5 × 10− 3 < P < 0.0400) and 0.029–0.069
in T2D patients (2.1 × 10− 10 < P < 0.0428), compared
with the model incorporating the clinical factors and
PCs only (See Additional File 2: Table S7). Interestingly,
we further observed that the model incorporating the
lipid-specific PRS alone had higher prediction accuracy
for abnormal levels of TC and LDL-C than the model
involving the clinical risk factors and PCs only in chil-
dren and adolescents (See model 1 vs model 2 in Add-
itional File 2: Table S8).
We then evaluated the precision of the high PRSs for

diagnosing dyslipidemia (See Additional File 2: Tables
S7 and S8). For example, individuals who carry a high
PRS (the top 20% of the PRS distribution) for TC had a
positive predictive value (PPV) of 69.2% in the general
population and 31.5–62.7% in T2D patients. Negative
predictive values (NPV) were 57.1% and 53.1–76.3%,
respectively.

Impact of PRSs on 3-year changes in lipid levels in
adolescents
In this analysis, we included 620 adolescents with lipid
profiles measured at baseline and during follow-up (See
Additional File 2: Table S9). As expected, we found
strong relationships between all four PRSs and their
corresponding lipid measurements at baseline (7.5 ×
10− 16 < P < 9.6 × 10− 13) and during follow-up (6.7 ×
10− 17 < P < 5.5 × 10− 8) among the subset of adolescents
(See Table 2 and Additional File 1: Fig. S5). Interestingly,
we observed that these PRSs were in addition also asso-
ciated with the 3-year changes in corresponding lipid
levels, after accounting for the baseline measurements
(1.4 × 10− 6 < P < 0.0130) (See Table 2 and Additional File
1: Fig. S5).

Association between PRSs and carotid intima-media
thickness (cIMT) in adult women
To explore the polygenic susceptibility to subclinical
atherosclerosis, we stratified the PRS for each lipid trait
into five categories according to the quintiles in two
independent cohorts of adult women and performed a
linear regression in each cohort, followed by a meta-
analysis to find its association with cIMT in two differ-
ent ways. First, we examined a linear trend across the
quintile categories. Second, we tested a hypothesis that a
high PRS for TC, TG, and LDL-C (a low PRS for HDL-
C) was associated with cIMT by comparing the top
(bottom) 20% with the remaining 80% of the PRS distri-
bution. Descriptive statistics for the 2 cohorts of adult
women are provided in Additional File 2: Table S10. In-
dependent of PCs and age, the best PRS for TC had a
positive but modest linear relationship with cIMT in
meta-analysis (P = 0.0182; see model 1 in Table 3). Fur-
ther inclusion of BMI and systolic blood pressure (SBP)
as covariates minimally affected this result (P = 0.0315;
see model 2 in Table 3).

The risk of CHD according to the quintile of PRSs in
patients with T2D
Next, we evaluated the role of four PRSs for lipid traits
in predicting the risk of CHD in two prospective cohorts
of T2D patients (total n = 2374 CHD cases and 6246
controls). Clinical characteristics of these patients are
summarized in Additional File 2: Table S11. With ad-
justments for PCs, sex, age, and duration of diabetes, the
best-performing PRSs for TC, TG, and LDL-C were sig-
nificantly but moderately associated with increased risk
for CHD in patients with T2D (2.7 × 10− 3 < P < 0.0219)
(See model 1 in Additional File 2: Table S12). These as-
sociations were also independent of other covariates, in-
cluding BMI in model 2, smoking status in model 3,
metabolic risk factors (HbA1c level and SBP) in model 4,
and renal function (eGFR and log-transformed ACR) in
model 5 (P < 0.05) (See models 2–5 in Additional file 2:
Table S12, and Fig. 2). We found that going up each
quintile of these PRSs raised the odds of CHD by

Table 2 Association between polygenic risk scores and longitudinal changes in lipid levels over 3 years in adolescents (n = 620)

Polygenic
risk score

Lipid trait Lipid traits at baseline (n = 620) Lipid traits at follow-up
(n = 620)

Three-year changes in lipid traits
(n = 620)

β SE Pa β SE Pb β SE Pc

PRSTC Total cholesterol 0.0507 0.0066 6.3 × 10−14 0.0480 0.0064 2.7 × 10−13 0.0151 0.0050 2.8 × 10−3

PRSTG Triglycerides 0.1076 0.0146 5.9 × 10−13 0.0843 0.0153 5.5 × 10−8 0.0361 0.0145 0.0130

PRSHDL HDL cholesterol 0.0496 0.0068 9.6 × 10−13 0.0615 0.0071 6.7 × 10−17 0.0285 0.0058 1.4 × 10−6

PRSLDL LDL cholesterol 0.0863 0.0104 7.5 × 10−16 0.0849 0.0106 4.7 × 10−15 0.0236 0.0080 3.1 × 10− 3

Lipid traits at baseline and follow-up were natural log (ln) transformed. The 3-year changes in lipid traits were transformed as ln(Y + 1). a P values were obtained
from linear regression with the adjustment for principal components, sex, age at baseline, and BMI at baseline. b P values were obtained from linear regression
with the adjustment for principal components, sex, age at follow-up, and BMI at baseline and follow-up. c P values were obtained from linear regression with the
adjustment for principal components, sex, age at follow-up, BMI at baseline and follow-up, and lipid trait at baseline
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approximately 5–7% (4.8 × 10− 4 < P < 0.0197) (See model
5 in Additional file 2: Table S12, and Fig. 2). On the
other hand, we further observed that for these PRSs, pa-
tients with diabetes who had a high (top quintile) PRSs
for TC or TG resulted in increasing risk of CHD by 15–
20% (5.7 × 10− 3 < P < 0.0445) (See model 5 in Additional
file 2: Table S12, and Fig. 2). However, these associations
were markedly attenuated when we further adjusted for
the use of lipid-lowering medications at baseline (See
model 6 in Additional file 2: Table S12).

Discussion
Leveraging on the association statistics from the BBJ
project and the individual-level data from multiple

Chinese cohorts at various stages of the life-course, we
applied recently developed computational methods to
construct four novel East Asians-specific PRSs, which
aggregate genetic information from 84 to 549 common
SNPs. These PRSs were then used to identify individuals
at high risk of dyslipidemia. We also found associations
of lipid-specific PRSs with longitudinal changes in lipid
levels over 3 years, subclinical atherosclerosis, and dia-
betes cardiovascular complications.
It remains largely unknown how genetic factors influ-

ence changes in lipid levels across one’s lifetime. Using
longitudinal data in 620 adolescents, we have computed
the average changes in lipid levels to summarize both
the direction and magnitude of changes in lipids over a

Fig. 2 Odds ratio (OR) of coronary heart disease stratified by quintile of polygenic risk scores [a PRSTC, b PRSTG, c PRSHDL, and d PRSLDL] in T2D
patients (n = 2374 cases vs 6246 controls). Plinear refers to the p value testing for a linear trend across five quintiles of polygenic risk score. Ptop
refers to the p value testing for the association of a high polygenic risk score with coronary heart disease by comparing the top 20% of the
distribution with the remaining 80% of the distribution. Pbottom refers to the p value testing for the association of a low polygenic risk score with
coronary heart disease by comparing the bottom 20% of the distribution with the remaining 80% of the distribution. Within each individual
cohort, all p values were obtained from logistic regression with the adjustment of principal components, sex, age, duration of diabetes, body
mass index, smoking status, HbA1c, systolic blood pressure, estimated glomerular filtration rate, and log-transformed albumin-creatinine ratio.
Results from individual cohorts were meta-analyzed using fixed effects model
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3-year period. This study reveals that aggregation of
common genetic variants which were selected using a
liberal p value threshold for variant inclusion, while ac-
counting for LD patterns in the East Asian population,
provided independent information to predict dyslipid-
emia and longitudinal changes in lipids over 3 years, be-
yond other established risk factors such as sex, age, and
BMI. Although the determinants of lipid levels and de-
velopmental trajectories are multifactorial, our PRSs are
highly predictive for the corresponding lipid measure-
ments at different stages of the life-course. More import-
antly, the lipid-specific PRSs are better at predicting
abnormal levels of TC and LDL-C than the typical risk
factors at younger age. A few studies have prospectively
evaluated the lipid profiles, and their observations paral-
leled those herein obtained. For instance, a longitudinal
analysis of cardiovascular risk in a study of young Finns
assessed the association of GWAS-derived PRSs with
TG, HDL-C, and LDL-C trajectories from childhood to
adulthood in 2442 participants [35]. In support of our
findings, the authors demonstrated the significance of
PRSs as predictors of lipid levels at all ages; however, no
clear divergence of lipid trajectories over time between
PRS categories was found. Recently, Lu et al. conducted
a GWAS of blood lipid levels including more than
twenty thousand individuals from Han Chinese ancestry
[36]. In a subset prospective cohort of 6428 adults with
> 8.1 years of follow-up, they reported that the four
lipid-related PRSs were independently associated with
linear increases in their corresponding lipid levels and
risk of incident hyperlipidemia. Their C-statistics ana-
lysis further revealed significant improvement in the pre-
diction of incident hyperlipidemia beyond conventional
risk factors including the baseline lipid levels (1–2% in-
creases in C-statistics). Taken altogether, these findings
suggest that PRSs can provide a robust prediction for
average lipid levels and lipid changes across a person’s
lifetime. These findings also highlight the influence of
genetics on lipid variation in early life. In contrast to
most of the conventional risk factors, genetic informa-
tion can be measured at an early age. It may play a role
in disease risk prediction when clinical risk factors have
yet to manifest.
Variant selection is one of the challenges in the con-

struction of PRS. Compared with typical PRSs based on
genome-wide significant variants, our results showed
that addition of less-significant SNPs in the computation
of PRS consistently improved the polygenic risk predic-
tion for some lipid levels across different age groups in
the Chinese population, although decreases in perform-
ance were noted in T2D patients. These findings also
highlight the need for ethnic−/population-specific PRSs.
In the context of the overwhelming abundance of
GWAS in European populations, PRSs for complex traits

and diseases have predominantly been derived and
tested in European populations. Nevertheless, it has been
suggested that PRSs do not transfer well between ances-
tral groups [37]. Previous studies demonstrated generally
lower predictive power of European ancestry-derived
PRSs in non-European ancestry individuals, supporting
the observation of our current study [38]. For example,
the Million Veteran Program, which consists of ~ 300 K
individuals in which > 70% are Caucasians, recently re-
ported that a total of 826 independent lipid variants ex-
plained about 8.8–12.3% of the phenotypic variance in
lipid levels, comparatively higher than that observed in
this study (See Additional file 2: Table S6) [2]. These
findings highlighted issues regarding ethnic-based SNP
bias, whereby certain genetic variants may not have the
same phenotypic effects in different ancestral popula-
tions [39]. GWAS favor the identification of common
genetic variants in the discovery population. Differences
in LD and variant allele frequencies across populations
might impact the heritability for the same phenotype in
other populations (e.g., low-frequency variants display
larger average effects on phenotype compared with com-
mon variants). We further noted that even though the
current PRSs for lipid traits were developed and vali-
dated in populations of East Asian descent, they consist-
ently predict the lipid levels far more accurately in the
general population (validation datasets) than among sub-
jects with T2D (testing datasets), regardless of the choice
of computational algorithms and the type of lipids (See
Additional File 1: Fig. S2, and Additional File 2: Tables
S13 – S16). In fact, many factors, including environmen-
tal factors, may differ across populations within the same
ancestry, and thereby modify effects such as gene-
environment interaction, leading to problems of compar-
ability across diverse human populations [40]. Because
of limited studies in non-European populations, this
study highlighted the possibility of constructing custom
PRSs in other specific populations, such as East Asians
where there are accumulating GWAS, to facilitate the
development of precision medicine. However, there is a
need for further large-scale GWAS or meta-analyses in
these non-European populations.
Although PRSs are likely to be ethnic-specific, their

utility has been confirmed in different populations [38].
In addition to multiple studies demonstrating the ability
of PRS to predict dyslipidemia or cardiovascular diseases
(CVD), emerging insights suggest that individuals at ex-
treme ends of the risk continuum, according to inherit-
ance of common variants, have disease risk that may be
comparable to individuals carrying monogenic gene mu-
tations. For example, a study of genome-wide PRSs by
Khera et al. found that 8% of European ancestry individ-
uals in the UK Biobank have a PRS-defined risk of cor-
onary artery disease risk that was comparable or higher
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than those who harbor rare Familial Hyercholesterole-
mia mutations [7]. Another study of 53 Finnish families
of familial combined hyperlipidemia (FCH) showed that
approximately a third of the affected FCH individuals
had high polygenic burden (the top 10% of the PRS dis-
tribution), which is comparable to that observed in indi-
viduals with similar lipid levels in the general population
[41]. Therefore, individuals at the tails of the risk distri-
bution may potentially be targeted for intensive treat-
ments to lower CHD risk.
Among T2D patients, we found at least marginally sig-

nificant associations of PRSs for TC, TG, and LDL-C
with CHD risk, independent of established clinical risk
factors. The TC-related PRS was also moderately associ-
ated with cIMT in adult women, supporting the ob-
served association for CHD in patients with T2D.
Although we have not specifically investigated the asso-
ciation between our new PRSs and risk of CVD in a gen-
eral population, numerous studies have confirmed the
association of PRS that capture the overall genetic risk
of lipid traits, with subclinical atherosclerosis and car-
diovascular outcomes [4, 5, 42, 43]. In a study of 10,399
Europeans drawn from the Erasmus Rucphen Family
Study and the Rotterdam Study, the accumulation of
32–52 common SNPs with small effects on four lipid
levels was significantly associated with carotid plaque, a
surrogate marker of cardiovascular disease [5]. Similar to
our findings, both TC and LDL-C risk scores were nom-
inally associated with elevated cIMT (increased 0.004–
0.006 mm per SD increase in score) and increased risk of
CHD (hazard ratio, 1.08–1.10 per SD increase in score)
[5]. Recently, further studies have utilized Mendelian
randomization (MR) approaches to examine the causal
roles of TG, HDL-C, and LDL-C in CHD [4, 42, 44–46].
Holmes et al. developed two kinds of PRSs based on
SNPs with established associations with TG, HDL-C,
and LDL-C and performed MR meta-analyses in 62,199
participants with 12,099 CHD events [42]. The unre-
stricted PRSs included all independent SNPs each asso-
ciated with a specific lipid trait identified from a prior
meta-analysis; and the restricted PRSs excluded any
SNPs also associated with either of the other two lipid
traits. Their MR analyses showed that a genetically ele-
vated LDL-C and TG, regardless of the types of PRSs,
resulted in an increased causal odds ratio (OR) for CHD
risk. The causal OR of LDLs is similar in magnitude to
that reported in randomized trials of statin-lowering
therapies in individuals at low risk of vascular disease
[47]. The MR analysis further demonstrated the causal
role of LDL-C in cIMT, supporting the use of cIMT as
an appropriate surrogate marker of therapies that modu-
late LDL-C. However, several previous MR analysis
using different genetic instruments failed to identify a
clear causal role of HDL-C in CHD [42, 46]. Few studies

so far have examined the utility of PRS generated from
the general population in subjects with T2D. Our overall
findings, despite modest sample sizes, suggest a
population-specific PRS for LDL-C and TG also identi-
fies increased risk of CHD among subjects with T2D,
consistent with these findings. In addition, we noted
higher risks of CHD in T2D patients with higher genetic
risk for dyslipidemia (e.g., individuals in the top 20% of
the PRSs for TC and TG). This association was substan-
tially attenuated by the adjustment of baseline lipid-
lowering therapies, suggesting that individuals at high
genetic risk may derive the greatest benefit from early
intervention to reduce CVD. Indeed, non-prescribing
and non-adherence are common in real-world practice
[48]. Our PRSs can be considered as candidates to mo-
tivate behavioral changes such as drug adherence.
There are several limitations in this study. First, our

PRSs were derived and tested in individuals of East
Asians descent only, with limited generalizability. Be-
cause of the discrepancy in genomic structure, culture,
and environmental factors, as well as potential differ-
ences in phenotypic effect of genes across ethnicities,
these East Asians-specific PRSs might not have optimal
predictive power in other ethnic groups. Second, only
common genetic variants with MAF > 1% were included
in the PRSs in the current study. The addition of low-
frequency variants, gene-gene, and gene-environmental
interaction to current PRSs would enable more precise
prediction. Third, we acknowledged that our multiple
study cohorts with a relatively small sample size may not
be able to accurately and comprehensively estimate both
the phenotypic variation and the genetic diversity in our
population. In fact, several genome-wide PRSs for lipid
traits comprised of millions of SNPs have been derived
in the non-Asian populations and demonstrated to per-
form better than more limited scores [49, 50]. One ex-
planation for the modest number of SNPs in our PRSs is
that the total level of genetic variation covered in our
validation datasets is less than that in previous larger
studies. Therefore, fewer SNPs were required to differen-
tiate the genetic diversity in the current study. Fourth,
we assigned the weight to each unfavorable allele in
current PRSs for lipid traits based on its contribution to
the corresponding lipid levels. The effect of each genetic
variant on subclinical atherosclerosis and the risk of
CHD might not be linearly related to its effects on lipid
traits. Furthermore, because of the comparatively short
duration of follow-up in the HKDB study (i.e., 2 years),
patients might develop CHD in the future.

Conclusions
We have applied a systematic approach to derive and
validate four PRSs for lipid traits in the East Asian popu-
lation. These PRSs were strongly associated with their
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corresponding measured lipid levels and longitudinal
changes in lipid levels over 3 years, which began to
emerge in childhood and adolescence, though there was
reduced association in T2D patients. Independent of
conventional risk factors, patients with a higher genetic
susceptibility to dyslipidemia had an increased risk for
CHD. Further adjustment for lipid drug use notably
attenuated this association. We also found a modest as-
sociation of TC-related PRSs with subclinical athero-
sclerosis (e.g., cIMT) in adult women. Altogether, this
study highlights the potential utility of polygenic risk
predictors in clinical therapy as they facilitate the identi-
fication of at-risk individuals from early life, before the
presence of clinical manifestation, which may help to
empower earlier intervention among at-risk individuals.
To provide best performance, PRSs specific for diverse
human populations may be required.
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