Mezlini et al. Genome Medicine (2021) 13:68
https://doi.org/10.1186/s13073-021-00864-4

Genome Medicine

Check for
updates

Finding associations in a heterogeneous
setting: statistical test for aberration
enrichment

Aziz M. Mezlini! 23456 3457

, Sudeshna Das'2 and Anna Goldenberg

Abstract

Most two-group statistical tests find broad patterns such as overall shifts in mean, median, or variance. These tests
may not have enough power to detect effects in a small subset of samples, e.g., a drug that works well only on a few
patients. We developed a novel statistical test targeting such effects relevant for clinical trials, biomarker discovery,
feature selection, etc. We focused on finding meaningful associations in complex genetic diseases in gene expression,
miRNA expression, and DNA methylation. Our test outperforms traditional statistical tests in simulated and

experimental data and detects potentially disease-relevant genes with heterogeneous effects.

Background

Two-group statistical tests are widely used to character-
ize significant differences associated with an intervention
or a condition. In a case/control setting, these tests can
pinpoint variables of interest in the dataset analyzed. For
example, gene expression data has been extensively used
to characterize genes and pathways relevant to genetic
diseases. If a gene is found to be differentially expressed
(over-expressed or under-expressed) in the disease cases
when compared to healthy controls, then it can poten-
tially be associated with the disease. The differentially
expressed gene can be causal for the disease, in which
case it can become a candidate for therapeutic interven-
tion, or the association it can be non-causal: for example
a compensatory or a downstream consequence of the dis-
ease state itself (immune reaction, treatment effect, etc.).
Nevertheless, finding the differentially expressed genes
often generates candidates that are further tested for their
mechanistic involvement in the disease [1-3]. The typical
approach for finding differentially expressed genes relies
on statistical tests (e.g., Limma [4]) that look for a broad
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pattern such as a global shift in mean expression between
a target group (the cases) and a control group.

In this paper, we look for another mode of association
that does not present as the typical broad pattern of mean
difference typically targeted by the widely used statistical
tests. In this mode, the considered variable will contain a
significant number of outliers in cases (compared to con-
trols), while the remaining majority of the cases will not be
distinguishable from controls. To use the gene expression
example again, consider the scenario where 10% of disease
cases have an extremely low level of expression for a gene
of interest but only 1% of the controls do. In the rest of the
paper, we will call this hypothesized pattern of association
“aberration enrichment” to distinguish it from the broad
pattern of a mean/median/variance difference between
two groups targeted by the currently used approaches.
We will also describe the features/genes exhibiting this
aberration enrichment pattern as “aberration enrichment
features” or “features with heterogeneous effects”.

There are many reasons to believe this mode of aber-
ration enrichment exists and is particularly relevant for
the characterization of complex diseases. First, in com-
plex diseases, it is expected that the disease causes would
be spread across multiple genes, such that any particular
gene would only be causal in a small proportion of the
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patients. This remains likely even when multiple differ-
ent causal genes need to be hit to reach the disease state
(as it is known to be the case in cancer [5]). It is unlikely
in a complex disease to observe a single causal gene or
factor that can broadly separate cases and controls. If we
observe a single factor where the value for most patients
differs from the typical value in healthy controls, then
that factor is more likely to be a downstream consequence
of the disease than to be causal. Otherwise, the disease
would be mostly explained/caused by that one factor/gene
contradicting the definition of a complex disease.

Second, work by major consortia have recently high-
lighted the importance of looking at rare events and
outliers, rather than broad differences, to characterize dis-
ease biology. For example, work in the GTEX consortium
[6] established links between being an outlier for a gene’s
expression and having large impact rare cis-regulatory
variants nearby. They also further linked the expression
aberrations with diseases by selecting disease-associated
variants and showing that they were highly enriched in
variants predicted to generate expression outliers [6]. The
pattern of aberration enrichment we are targeting in this
paper corresponds to the expression outliers and could
result from rare regulatory events involving SN'Vs, indels,
and structural and epigenetic variants such as the ones
investigated in the GTEX paper [6].

Third, there are many known genetic diseases where a
portion of patients is explained by aberrant or outlier lev-
els of a variable of interest such as a gene’s expression
[7-10]. In the examples cited, a gene is associated with
the disease through the presence of harmful coding vari-
ants in a proportion of patients. The authors observed
that there were more patients without coding variants but
whose expression levels for that gene are abnormally low.
These expression aberrations were observed by manually
counting the number of individuals with extremely low
expression in a suspected causal gene. Providing a sta-
tistical test for automatically detecting aberration enrich-
ment can further empower and formalize such analyses.
Although these observations were mainly done in rare
or Mendelian diseases where the causal gene is known
through proven causal coding variation, the same mode of
action (presence of expression aberrations/outliers) could
also be relevant in more complex diseases.

The reasoning we made here for gene expression data
also holds for other types of quantitative omics data where
an enrichment in aberrations is a possible relevant pat-
tern for disease association. This includes miRNA and
noncoding RNA expression, protein expression, and DNA
methylation.

In this paper, we present a new statistical test that aims
at detecting novel associations through aberration enrich-
ment: The presence of outlier values in a small but sig-
nificant proportion of the cases. Outliers may be present
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in the data for many reasons including natural biological
variability and technical artifacts and are not necessarily
associated with a phenotype of interest. The focus here is
not on outlier detection per se (such as in [11, 12]) but
on finding consistent aberrations (in the same direction)
that are significantly enriched in a subset of cases when
compared to controls. Genes/factors discovered through
this pattern of aberration enrichment can shed light on
novel mechanisms and disease subtypes [13] undetected
by previous methods looking for broad signals.

This pattern of aberration enrichment is discussed in
the literature under other names. For example, OSACC
[14] aims to identify signals that are present in a subset of
the cases. They look for the best subset of individuals that
leads to a stronger SNP association compared to taking all
cases and all controls. In their case, the subset selection
is guided and defined by a continuous known covariate
variable, such as age (the context is finding G*E associa-
tions). In clinical trials’ literature, the pattern is known as
heterogeneous treatment effects [15] where a drug could
be working well in a subset of patients but still fail to
show efficacy when considering all participants because
the statistical methods used are looking for a mean effect.
This has previously been discussed as “the trouble with
the averages” [16]. Other related methods developed in
2005-2007 such as COPA [17] and Outlier-sum [18] rely
on specific definitions of outliers and then look for an
enrichment of these.

Using simulations, we show that our test is well cal-
ibrated and more powerful in detecting the aberra-
tion enrichment pattern compared to 11 other meth-
ods including widely used statistical tests, such as t-
test and Limma, Wilcoxon, Levene, and Kolmogorov-
Smirnov tests. We then use our test to examine 12
real/experimental datasets from GEO [19] spanning vari-
ous cancers, neurodegenerative and auto-immune condi-
tions, and 3 different data types (gene expression, miRNA
expression, and DNA methylation). We discover new
meaningful disease associations that were not captured by
the traditional approaches.

Our test is available as a R package (aziztest) with
usage examples: https://cran.r-project.org/web/packages/
aziztest/index.html.

It can be installed using:
(“aziztest”)

The rest of the code used to generate our results on
simulations and experimental data can be found here [20]:
https://github.com/azizmezlini/Aberration_Enrichment_
Code.

install.packages

Methods

Overview of our statistical test

The test presented in this paper is motivated by GSEA
(Gene Set Enrichment Analysis) [21, 22]. GSEA takes a
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ranked list of genes and an annotated gene set (for exam-
ple a pathway) and tests if the set is enriched at the top
or bottom of the ranked list. An enrichment score is iter-
atively computed while walking through the ranked list.
The score is incremented every time a positive gene (from
the set) is encountered and is decremented every time
a negative gene is encountered. The maximum enrich-
ment score is saved and its significance is assessed by a
permutation test.

In our test, we compute a ranked list of samples (cases
and controls) using the measurement of interest (such as
their expression levels for the gene being tested). Then
we walk through the ranked list of samples, increment-
ing the enrichment score every time a case is encountered
and decreasing it for every control. The increments and
decrements are weighted by a standardisation of the mea-
surement of interest w(absolute values of the Z-scores
truncated at 0.5 minimum), therefore giving more weight
to aberrations of larger scale.

The enrichment score at the K position is:

1 & 1 &
Sk=—Y wiXi—— > wi(1—-Xy),
k n £ (2431 1o < i ( i)

where n7 and ng are the total numbers of cases and con-
trols, w is the vector of weights, and X is the indicator of
being a case versus a control. For more details, see Addi-
tional file 1: Supplementary methods, where we give the
definitions and equations.

We are interested in the maximum cumulative enrich-
ment score in this iterative process. A large positive
enrichment score is indicative of an enrichment of cases
versus controls among the top of ranked samples in the
list.

Additionally, under the null hypothesis with cases and
controls uniformly ordered, the enrichment scores have a
higher variance later down the walk (Sx can reach higher
values by chance for higher k). This can introduce a posi-
tional bias and decrease the power of the test. We show
that this variance can be analytically computed without
approximations. Consequently, we can correct for the
positional bias by adding a standardization step for the
enrichment scores at every position (details and expanded
equations in the Additional file 1: Supplementary meth-
ods). The maximum standardized enrichment score is
taken and its significance is assessed with permutations.
Figure 1 shows an example of a standardized enrichment
score computed using CRBN gene expression levels on
Alzheimer disease data (see the “Alzheimer and Parkinson
disease” section).

Note that our test is looking for an enrichment of aber-
rations in a proportion of cases as compared to controls. It
is therefore not symmetric in terms of case/control labels.

Page 30f 19

Different associations might be detected if cases and con-
trols are switched. This is not the problem in a setting
where the focus is on identifying patterns associated with
the cases. In a general two-group comparison, we can run
our test in both directions.

Experimental data analysis

We downloaded and analyzed several public datasets
from GEO. This includes the following gene expres-
sion datasets: Alzheimer disease data GSE63063 [23],
Parkinson disease data GSE99039 [24], inflammatory
bowel disease data GSE73094 [25], heri. breast can-
cer data GSE47862 [26], and breast cancer metastasis
data GSE48091 [27]. We also used the following miRNA
expression datasets (breast cancer GSE73002 [28], ovarian
cancer GSE106817 [29]) and DNA methylation datasets
(Rheumatoid Arthritis GSE42861 [30], and schizophrenia
datasets GSE74193 [31] and GSE80417 [32]).

After standardization, we preprocess each dataset by
applying PEER [33] to remove known confounders (such
as gender, age or batch if provided in the data) and 30
hidden factors (100 for the miRNA/methylation datasets
which have more samples/features). Then, we test the
residuals for differential expression analysis using our test
and competing methods.

A full description of each dataset, including sample
sizes, phenotype, tissue of origin, and covariates, is avail-
able in Additional file 1: Supplementary methods: Experi-
mental data and preprocessing.

Results

Simulations

For our initial set of simulations, we start from Gaussian-
simulated variables and then create an aberration enrich-
ment pattern. We generate simulations by varying the
following parameters:

e n = Sample size. Number of cases. We simulate n
cases and n controls (here n = ng = n;. See
Additional file 1: Figure S7 for the imbalanced
setting).

e r = Proportion of the cases with an aberration in the
considered gene.

® m,s = Mean and the standard deviation of the initial
simulated Gaussian variable.

e d = Multiplier controlling the magnitude of the
aberration. The proportion r of affected individuals
will have their average expression shifted d x s away
from the rest of the cases and controls.

Simulations provide a controlled setting to assess the
validity and power of our test in comparison to the widely
used parametric and non-parametric approaches such as
t-test and Wilcoxon, Levene, and Kolmogorov-Smirnov
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Fig. 1 Example of a computed enrichment score. All individuals were ranked by decreasing expression of the CRBN gene. The x axis corresponds to
the ranked individuals. In the second panel, cases correspond to black vertical bars and controls are white vertical bars. The enrichment score goes
up whenever we encounter a case and goes down whenever we encounter a control. The maximum standardized score reached is 4.93 and
corresponds to an uncorrected p value of 3.4E—06 and FDR of 0.003 for our test. There are 52 cases (19% of all cases) and 9 controls (4% of all
controls) among the individuals to the left of the maximum. This was taken from the Alzheimer data in the “Alzheimer and Parkinson disease”
section and it corresponds to the CRBN expression distribution. Note that Limma and Wilcoxon do not detect this gene as significant when
simultaneously testing all 25,000 genes (uncorrected p values are respectively 0.002 and 0.01)

tests. The pattern of aberration enrichment simulated
here could still be captured by traditional methods test-
ing for a shift in mean or variance between cases and
controls. We first simulate a variable with an aberration
enrichment pattern of association by sampling the cases
and controls from a Gaussian (our test makes no Gaussian
assumptions. Similar results with other non-Gaussian dis-
tributions are included in the Additional file 1: Figure S8)
and then perturbing a proportion r of the cases . The per-
turbation is a shift by d times the standard deviation in
one selected direction (an increase or a decrease). Figure 2
is an example of what the simulated data looks like given
different parameter choices.

We then tested the ability to detect these introduced
aberration enrichment signals for our and the other para-
metric and non-parametric tests. Varying the sample sizes
and the simulations parameters, we assess how often each
method is able to detect the association given a nominal
p value threshold of 0.05 or a more stringent Bonferroni
threshold of 2 x 107° (typically used in gene expres-
sion analyses to correct for multiple hypothesis testing).
In these simulations, we are generating one variable at
a time and are assessing the power to detect that true

association. In Additional file 1: Figures S6-S8, we verify
that our test has no false positives in these experiments.
Additionally, type-1-error of the different methods is dis-
cussed in the next section in a full realistic simulation set-
ting with large numbers of associated and non-associated
variables and again later on experimental data (for exam-
ple in Fig. 7d). For every set of simulation parameters, we
repeat the experiment 200 times. The signal is considered
detected if the p-value is less than the chosen threshold in
more than half of the repeats.

Power comparison
Figure 3 shows that variation in parameter space leads to
three distinct outcomes.

e When either the proportion r or the sample size n is
too small, no test can detect the association. The
number of cases with an observable aberration is too
low to generate enough statistical power (white
region).

e When the proportion r and the sample size n are
large, the number of cases with aberrations is high
enough to create a significance shift in the mean (or
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Fig. 2 Examples of considered scenarios for aberration enrichment pattern. r controls the proportion of individuals affected among the cases and d
is the magnitude of the effect within those individuals.ar = 0.05,d = 3,n =500 b r = 0.15,d = 1.5, n = 500. Note that the aberration enrichment
pattern often appears as a heavier tail for cases rather than a secondary cluster of cases especially for lower values of r. Intuitively, d affects the
location of the red area relative to the mean of the distribution while r more specifically affects the size of the red area
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variance) of the distribution of the cases compared to
the distribution of the controls. In this case, most
methods are able to detect the differential expression
(black/ gray/ blue).

e Between these two regions, there is a domain where
only our test is powerful enough to detect the
association due to aberration enrichment
(vermillion-red region).

Overall, we found that our test performs best, fol-
lowed by the Levene test and the ¢-test. Wilcoxon had a
lower power than the ¢-test, and finally, the Kolmogorov-
Smirnov test was the least powerful (Kolmogorov-
Smirnov test results not shown here for clarity purposes.
See Table 1). The Levene test performed slightly better
on average than the ¢-test in this context (with d = 3).
Figure 4 further shows there is a large difference in power
between our test and the other tests in terms of magnitude

of p values, which was often several orders of magnitude
lower for our test. This is especially true for the lower
values of r (the signal is present in a smaller proportion
of patients). For example, when r < 0.05 the p values
returned by our test are often more than 4 orders of mag-
nitude (10,000 times) smaller than those returned by any
other methods.

We also explored different scenarios by varying the
other simulation parameters. We found that changing
the mean m or variance s of the Gaussian had no effect
on performance. In contrast, changing the value of the
d parameter (perturbation magnitude multiplier) had a
clear effect on performance in Fig. 5. Higher values of d
meant more cases became clear outliers for the expres-
sion of the considered gene, which makes the aberration
enrichment signal easier to detect for our test. Higher d
also means a higher effect on the overall mean/variance of
the cases; therefore, the power increases for all methods.
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Fig. 3 Ability of the different tests to detect the association, depending on simulations parameters n (sample size) and r (proportion of affected
cases). In a, a nominal p value threshold of 0.05 is used. In b, a lower p value threshold of 2 x 10~° was used to mimic a realistic data analysis

scenario where correction for multiple tests is required. We compare our test (O), the Levene test (L), t-test (T), and Wilcoxon (W). A method is able to
detect the signal if the p value is lower than the threshold in the majority of 200 reruns. Here we show the results for d = 3. White is for the set of
experiments where no method detected the signal, vermillion (red-orange) is when only our test detected the signal, light blue is when our test and
the Levene test both detected it, gray is when our method, the t-test and the Levene test detected it and black is when all considered methods can
detect the signal (including the Wilcoxon test)
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Table 1 Comparison of the false-positive rate and the power of our test, and 11 other approaches and statistical tests. The average

performance over 1000 simulations is shown here

Power False discovery rate

Sample size n 200 300 400 600 200 300 400 600

Our test 0.072 0.297 0.651 0.838 0.095 0.092 0.084 0.087
COPA75 0.016 0.039 0.107 0.202 0.081 0.079 0.1 0.084
COPA9 0.033 0.109 0312 0511 0.064 0.071 0.076 0.09

COPA95 0 0.076 0.251 0429 0 0.055 0.079 0.075
Outlier-sum 0.038 0.172 0418 0.618 0.063 0.083 0.093 0.099
Wilcoxon 0.006 0.016 0.053 0111 0.104 0.087 0.089 0.099
Kolmogorov-Smirnov 0.002 0.007 0.024 0.052 0.078 0.086 0.091 0.077
Logistic regression 0.01 0.036 0.156 0.34 0.062 0.074 0.065 0.092
ANOVA 0.01 0.036 0.156 0.34 0.062 0.074 0.065 0.092
Limma 0.016 0.046 0.172 0358 0.09 0.091 0.079 0.103
t-test 0.016 0.045 0.172 0.357 0.091 0.09 0.079 0.102
Levene 0.007 0.03 0.118 0.256 0.086 0.086 0.091 0.11

Fisher Combination t+L 0.053 0.189 0.548 0.792 0.228 0.205 0.184 0.176
K-Means+ chi-squared 0.003 0.006 0.021 0.04 0.078 0.08 0.065 0.079

Inversely, lower values of d negatively affect the perfor-
mance of all methods. The ordering of the methods is
overall maintained across the values of d with our test
having the best performance in all scenarios followed by
Levene/T-test and then Wilcoxon. However, we observe
that the lower values of d are more severely affecting the
Levene test compared to other methods. For d < 2, the ¢-
test start outperforming the Levene test (dark blue instead
of light blue). This is expected because higher magnitude
of perturbations have a larger effect on the variance.
Next, we studied the limitations of our test by increas-
ing the values of r. For r = 1, there is no heterogeneity,
i.e., all cases are affected the same way, while lower val-
ues of r correspond to the aberration enrichment (or

heterogeneous response) scenario targeted by our test.
Figure 6 shows that our test continues to be more pow-
erful up to r < 0.5 with a large difference in p value
magnitude for r < 0.3. For larger values of r > 0.7,
there is no longer an advantage over using a ¢ test. We
observed that the Levene test performance drops dramat-
ically for the higher values of r and can no longer find
the signal that is detectable by all other methods (pink
region). For r = 1, we are essentially simulating cases that
are mean shifted from the controls with no effect on the
variance.

Other scenarios, such as very low values of  (Additional
file 1: Figure S1) and lower values of d < 1 (Additional file
1: Figure S2 and S3), settings with imbalanced number of
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Fig. 4 Comparison of the p value magnitude between our test and a t-test test, b Levene test, ¢ Wilcoxon test, depending on the simulation
parameters n (sample size) and r (proportion of affected cases). Here we show the results for d = 3. The colors indicate the difference in log10
between the p values returned by both method. For example b indicates that our test’s p value is two orders of magnitude smaller (x 10~2) than
that of the Levine test. We capped the maximal difference at 4 for visual clarity. We ran 108 permutations to compute the p values for our test;
therefore, we set the minimal p value to 10~ for all methods in order to avoid artifacts of p values estimation accuracy
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Fig. 5 Ability of different tests to detect the simulated association, depending on simulations parameters n (sample size), r (proportion of affected
cases), and d. p value threshold of 2 x 1076, A method is able to detect the signal if the p value is lower than the threshold in the majority of 200
reruns. We compare our test (O), the Levene test (L), t-test (T), and Wilcoxon (W) test

cases and controls (Additional file 1: Figure S7), and other
non-Gaussian distributions (Additional file 1: Figure S8),
can be found in the supplementary materials. Overall, we
conclude that our test can be a powerful alternative to
currently used methods for scenarios with d > 0.7 and

r < 0.5. Large gain in statistical power are obtained espe-
cially in settings with d > 1.5 and r < 0.3, meaning that
less than 30% of the case group are different from the con-
trols. We recommend using our test when heterogeneity is
suspected.
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Fig. 6 Results under less heterogeneity, i.e. higher values of r. a Ability of the different tests to detect the association for higher values of r. A method
is able to detect the signal if the p value is lower than the threshold in the majority of 200 reruns. Here we show the results for d = 3. We compare
our test (O), the Levene test (L), t-test (T), and Wilcoxon (W) test. b Comparison of the p value magnitude between our test and the best out of t-test,
Levene test, and Wilcoxon test, depending on simulations parameters n (sample size) and r (proportion of affected cases). Here we show the results
for d = 3. The colors indicate the difference in log10 between the p values returned by both method. For example b indicates that our test's p value
is two orders of magnitude (100 times) smaller than that of the Levine test. We capped the maximal difference at 4 for visual clarity
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Simulating gene expression data

In the previous section, we showed that our test was more
powerful than a ¢-test, Wilcoxon test, and Levene test to
detect the aberration enrichment pattern under the sim-
plistic assumption of perturbed Gaussian when simulating
a single variable at a time. In the differential expression lit-
erature, there are approaches that work on genome-wide
expression datasets (instead of a single gene) and that are
more powerful than a ¢-test [34] for finding differentially
expressed genes. Here we generated simulations based on
real/experimental microarray expression data. The goal is
to assess the performance of our test (power and type-
1-error control) in comparison to other methods in the
realistic setting typically considered when analyzing dif-
ferential expression. By perturbing only a subset of the
genes (ground truth positives), we can also assess whether
the different methods are well calibrated by analyzing the
rate of false positives.

This setting also allows us to compare to the widely
used method Limma [4] that is applicable to genome wide
expression datasets. Limma uses empirical Bayes to bor-
row information across genes in order to empower the
detection of differential expression, especially for lower
sample sizes. Its efficiency has been proven in meth-
ods reviews publications where it always showed better
or on par power and false-positive control compared to
all state-of-the-art methods, for both microarray [34, 35]
and RNA-Seq experiments [36, 37]. We also compare to
several widely used approaches and statistical tests includ-
ing ¢-test, Wilcoxon test, Levene test, ANOVA, logistic
regression, and the Kolmogorov-Smirnov test.

Moreover, two less widely used approaches were devel-
oped in 2005-2007 with the exact same aim as our test:
detecting signal that is present in only some of the cases.
Both tests rely on predefined definitions of outliers and
look for an unusual enrichment of outliers in the cases.
COPA [17] uses specific quantiles in the cases as the test
statistic (0.75, 0.9, 0.95), while Outlier-sum [18] defines
outliers using the interquartile range and then takes the
sum of the outliers as the test statistic. In both meth-
ods, case/control label permutations are used to assess
significance.

We use the 238 healthy controls from GSE63063 [23]
from the Gene Expression Omnibus (GEO). The dataset
contains 25,549 features/genes. We created our dataset by
sampling gene expression from the gene expression data
and adding Gaussian noise ¢ ~ N(0, 8%) for a simulated
n cases and # controls. We repeat the simulation 1000
times while downsizing the data to 1000 random genes
in every simulation for efficiency purposes. We randomly
selected a set of g genes as disease-associated among the
1000 genes in the data. The controls were left untouched
but a proportion r of the cases were perturbed in every
disease-associated gene, similarly to what we did in the
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“Power comparison” section (the expression values for the
considered gene and the selected cases, were shifted in
one direction by a factor of d times the standard devi-
ation of the gene). We fixed the simulation parameters
tor = 01,d = 2,5 = 0.01, g = 10 and varied the
sample size n. We ran our method and 11 other tests on
each simulated dataset and for every choice of sample size,
then we assessed the type 1 error and the power of each
method. More specifically, we measured the false-positive
rate using an FDR threshold of 0.1 and the true-positive
rate (proportion of the true genes that were detected).

Table 1 shows that our test outperforms all other meth-
ods with a large margin similarly to what we observed in
the previous section. Across the 1000 simulation reruns,
the power of our test is always significantly superior: p
values < 2.7 x 107% in a pairwise comparison with every
other method (¢-test). Almost all approaches are well cal-
ibrated and do not show inflation for type-1 errors. Given
that we used FDR < 0.1 as the criterion for determin-
ing positive calls in every simulation, we expect the false
discovery rate to be very close or lower than 0.1 for all
methods.

In Table 1, applying Limma or ¢-test results in very
similar p-values and an equivalent performance between
these two methods. It seems that borrowing information
across genes might not be helping Limma to noticeably
improve performance over the ¢-test, for the sample sizes
considered n > 200 and in the setting of an aberration
enrichment pattern. Additionally, we verified that using a
logistic regression or ANOVA results in p values that are
equivalent to the ¢-test p values in this setting.

Our test is more adapted to the detection of aberration
enrichment pattern than Limma, ¢-test or the Levene test,
confirming our previous conclusion that when the signal
is detectable, there is a considerable difference in power
between our test and existing statistical tests and differen-
tial expression methods. This performance gap becomes
even wider for smaller values of r (proportion of affected
cases) as shown in Additional file 1: Figure S4, where we
repeated the same experiment with » = 0.05. This is
expected given that there will be less of an impact on the
mean or variance of the cases’ distribution when fewer
individuals show aberrant levels for the gene of interest,
therefore giving a larger advantage to our test since it does
not rely on detectable broad differences between all cases
and controls.

Comparing our test to the other methods that were
also designed to detect the aberration enrichment pat-
tern (COPA[17] and outlier-sum [18]), we observe a better
performance for our test. Unlike the other methods, we
do not rely on the choice of thresholds or on strict def-
inition of outliers. Individuals can still contribute to the
enrichment even when they are not clear outliers on their
own. This distinction results in an even larger gap in
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performance between our method and these outlier-based
methods when the effect sizes are smaller (d < 1.5) and
less affected cases present as clear outliers. In Additional
file 1: Table S7, we run the same experiment with a slightly
lower d = 1.5. Our test still performed best compared to
all methods, while the performance of Outlier-sum and
COPA deteriorated to below the performance of a ¢-test.
Furthermore, the test statistics used in COPA and Outlier-
Sum makes little use of controls and are affected by how
heavy-tailed the data distribution is (see Additional file
1: Figure S8). Therefore, we observed that comparing or
ranking test statistics (as proposed in [17]) is actually
not informative of which variables are going to be most
significant. Computationally expensive case-control label
permutations on every tested variable are the only way
to assess whether a test statistic correspond to a possible
association.

We also compared to the baseline of using a clustering
algorithm on the data (here K-Means with K = 2), fol-
lowed by a chi-squared test. Clustering is an unsupervised
approach for describing the heterogeneity in the data and
can be an alternative approach to identify a subgroup of
cases that are affected corresponding to the aberration
enrichment pattern. Our simulated data corresponds in
fact to two distributions: (1) the controls and unaffected
cases that are sampled with noise from the original gene
expression distribution and (2) affected cases that were
perturbed afterward by a shift of d * s. Nevertheless, this
clustering baseline did not perform well in this scenario.
This is expected as in our simulations the affected cases do
not necessarily form a visually separable cluster on their
own. As illustrated in the example of Fig. 2, the affected
cases often correspond to a heavier tail rather than a
separate mode in the distribution.

Finally, we used a joint test of scale and location by
combining both ¢-test and Levene test with the Fisher’s
method as proposed in [38] (Fisher Combination). Com-
bining ¢-test (or Limma) and the Levene test in one joint
scale-location test gives higher power than either test
used separately as shown in Table 1. However, the joint
test is not well calibrated in this setting as illustrated by
the high false-positive rates limiting its applicability in an
experimental data setting. Moreover, our test is still more
powerful than the combined test.

We conclude that our test is indeed well calibrated and
that it is significantly more powerful than current tests to
detect true associations when the signal takes the form
of an aberration enrichment rather than a global shift
in mean. Among the well-calibrated approaches, Outlier-
Sum and COPA came second and third in performance,
beating the methods that are looking for a mean dif-
ference (¢-test, Limma, ANOVA, Logistic regression), a
variance difference (Levene), or a median difference (non-
parametric Wilcoxon).
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Results on experimental data across diseases

We downloaded, preprocessed and analyzed case-control
gene expression datasets from Gene Expression Omnibus
(GEO). The sample sizes for each dataset are summa-
rized in Additional file 1: Table S1. The preprocessing
involved removing 30 hidden (latent) factors with PEER
[33] as was done in GTEX study on rare expression aber-
rations [39]. Since the simulation showed that Limma was
as good or better than ¢-test, we ran Limma and our sta-
tistical test for each of our experimental data studies and
analyzed the genes detected by each method. Our results
on Wilcoxon test can be found in the Additional file 1:
Table S6. As we can see in Table 2, there was a number of
differentially expressed genes that were detected by both
methods. In this analysis, we focus on the novel genes
that were only found by our test. Additionally, whenever
an association is found by our test, we can identify which
subgroup of individuals and which interval of aberrant
expression contributed to the test statistic and compute
an estimated value of r (proportion of cases affected)
for that gene (see Additional file 1: Supplementary
methods).

Alzheimer and Parkinson disease
The GEO dataset GSE63063 [23] contains gene expression
of 284 Alzheimer disease patients (AD), 189 mild cogni-
tive impairment patients (MCI), and 238 healthy matched
controls measured in blood. We ran Limma and our test
to find genes that are differentially expressed between
Alzheimer patients and healthy individuals. In this analy-
sis, we want to find novel genes that would not be picked
up by Limma or genes that are much more significant
by our test. Those genes would be above the diago-
nal in Fig. 7a. We observe that genes such as UQCRH,
ATP6VID, CRBN, POMP, and EIF3E fit this criterion
with the first two below Bonferroni significance thresh-
old and the last three with FDR< 0.01. UQCRH is part
of the KEGG pathway for Alzheimer disease, listed in
both the organism specific and the conserved biosystems.
CRBN or Cereblon (FDR = 0.003) is known to play a
role in memory and learning and it has been previously
associated with mental retardation [40]. It is also used
in ubiquitination/proteasomal degradation of Tau [41]
which could be relevant for Alzheimer disease [42]. MYL6
only reaches significance by using our test (Bonferroni-
corrected) while being under the significance threshold
using Limma.

The top 10 aberration enrichment genes (which exhibit
a highly heterogeneous signal corresponding to an esti-
mated r < 0.3), with FDR < 0.1 by our test,
are CRBN (ILMN1668582), PPCDC, FBPI, DDX17,
SYT13, GPER, DISC1, LRP3, TLR2, and DNAJAI. Even
though the expression levels were measured in blood,
at least 4 of the genes found are known for their
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Table 2 Experimental data findings: number of genes detected
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Threshold Bonferroni FDR < 0.1

Method Our test Limma n Our test Limma n
Alzheimer vs ctr 23 25 19 69 100 50
Parkinson 0 0 0 0 0 0
cD 2 0 0 2 2 1
uc 1 0 0 1 2 0
IBD inflammation 8 0 0 49 0 0
Breast cancer 15 9 6 406 224 118
Breast metastasis 2 0 0 4 0 0

functions in the brain (GPER, DISC1, TLR2, DNAJA1).
Furthermore, at least 2 genes have been shown to be
involved in Alzheimer disease in the literature. For exam-
ple, DNAJA1 mediates Tau clearance [43] and TLR2 is a
major receptor for Alzheimer’s AB with a proven role in

activating neuroinflammation [44]. These novel associa-
tions would not be detectable by other methods, showing
the importance of going beyond differential expression
and looking for heterogeneous effects and the aberration
enrichment pattern.

>

Significant genes

LOC653658

B Under-expressed
@ Over-expressed

T T T T T
0 20

)
=2

S

1

o

D 0
S 7
4]

=

T

S o
-
=z

P

3

= o -
C

S

=

©

=

)

Qo

<<

Limma Negative Log p-value

@

oo o
S © ~
=1
=)
Ke]
| < -
°
)
I
@
o N A
(@]
o 4
T T T T T
0 1 2 3 4

Expected —logyo(p)

B

CRBN expression levels

B controls
B cases
o -
=
‘@ N
j
[
(=]
- -
o - =

T T T T
-04 -0.2 0.0 0.2 0.4

Expression levels

Q  ©
<
E]
<)
° .
| < —
o
9]
>
I
2
o N A
(@]

o -

Expected —logqo(p)

Fig. 7 Results on Alzheimer's disease. a Genes differentially expressed or aberration enriched in Alzheimer versus healthy controls, discovered using
our test versus Limma. The genes that have FDR < 0.1 for either method are plotted. Gene names are added for all the significant genes by our
method and the top 10 heterogeneous associations (r < 0.3). Red lines correspond to the Bonferroni significance threshold. b Distribution of
expression levels in cases and controls for the gene CRBN discovered by our test. € QQ plot of the p values returned by our test on the Alzheimer
data. d QQ plot of the p values returned by our test after randomly permuting the samples




Mezlini et al. Genome Medicine (2021) 13:68

The majority of associations uncovered in Fig. 7a are
in the form of an under-expression of the considered
gene in Alzheimer patients. Exceptions to this are CRBN,
DDX17, GPER, DISCI, LRP3, and TLR2. Note that DISCI
and TLR2 are on the DisGenet [45] Late onset Alzheimer
disease gene set, but that we found no significant enrich-
ment using DisGenet for any method (our test, Limma,
Wilcoxon). This is unsurprising, given that the purpose
of our method is to find novel heterogeneous associations
that are hard to discover with previous approaches and
that the curated datasets put more focus on associations
made on Single Nucleotide Polymorphisms data rather
than large-scale gene expression data we are using here.

In Fig. 7b, we plotted the distribution of CRBN expres-
sion levels in cases and controls to better show the nature
of the association, where a subgroup of cases have aber-
rant overexpression of the gene. Figure 7c shows that there
could be a large number of genes exhibiting some aber-
ration enrichment signal in association with Alzheimer.
Comparing the QQ plot in Fig. 7c to the one in Fig. 7d
where we permuted the labels confirms that the associa-
tions discovered are not spurious hits due to a badly cal-
ibrated statistical test but signals that are truly associated
with the case-control labels.

We performed a similar analysis of Parkinson disease
(IPD) and found no associated genes using any of the con-
sidered methods. The dataset (GSE99039 [24]) consisted
of whole blood gene expression data for 205 IPD cases and
233 controls.

Inflammatory bowel disease

The inflammatory bowel disease data (GSE73094 [25])
contains the gene expression of 712 pre-selected genes,
including 440 genes in IBD GWAS risk loci and 15 house-
keeping genes, in 608 samples from Crohn’s disease (CD)
patients, 331 from Ulcerative Colitis (UC) patients, and
50 samples from non-IBD individuals. The samples were
taken from the colon and terminal ileum. Overall, 374
of the samples were taken during inflammation and 609
taken from non-inflamed tissues (6 samples with missing
inflammation status were removed).

We first looked for genes associated with CD versus UC
and vice-versa by considering the not inflamed samples
which were more numerous than the inflamed ones. This
resulted in 181 UC and 314 CD non-inflamed samples.
After preprocessing (see Additional file 1: Supplementary
methods), we looked for genes associated with CD and
genes associated with UC by comparing each group to the
other.

Only one gene was significantly associated with UC.
Cllorf9 was detected by our test. The gene is also called
MYRF and was previously mentioned in the IBD literature
as part of a co-expression cluster of upregulated genes [46]
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and the nearby SNP rs4246215 was previously associated
with IBD in GWAS [47, 48].

Two genes were found to be significant for CD: BTNL2
and IRF4. Both were detected as significant only with our
test (Bonferroni and FDR). IRF4 was discovered by Limma
too with FDR = 0.09 (FDR = 6E — 4 by our test). BNTL2
was not a broad effect (r = 0.15), and therefore, it was not
detected by other methods.

We also looked for genes associated to inflammation
status across all conditions by taking all samples from the
original data (374 inflamed and 609 non inflamed) and
correcting for disease type as a confounder.

In Fig. 8, 8 genes were found to be significantly asso-
ciated with inflammation: PLF4, ITLNI, IL24, S26A3,
PIGR, RNT2, SL9A4, and FAMS5D. All of them were only
detected with our test.

Breast cancer

The heritable breast cancer data (GSE47862 [26]) contains
gene expression in peripheral blood in 158 women with
heritable breast cancer and 163 healthy controls. The top
3 associated genes by our test were Entrez-id 100129342,
PIK3C2B, and CR2. We identified a large number of asso-
ciated genes with heterogeneous effects (estimated r <
0.3). The top 10 genes of our gene list are PSIP1, SLCO2BI,
TLX3, CDKALI, MCMDC2, GPAAI, B4GALTI, FUT4,
PIGR, and CDCA?7 (FDR < 0.025). Most of these genes
(9/10) have substantial evidence in the literature of their
involvement in breast cancer. For example, it is known
that silencing CDCA?7 in triple-negative breast cancers
reduced tumorigenicity and invasion in [49], while the
forced expression of GPAA1I in [50] was shown to increase
them. PSIP1 has also been shown to directly promote
tumorigenicity in breast cancer [51]. The expression of
SLCO2B1 was shown to be significantly correlated with
histological grade in ER+ breast cancer [52]. TLX3 is also
known as T Cell Leukemia Homeobox 3 and is a transcrip-
tion factor oncogene. rs9368197 in an intron of CDKALI
is associated with breast cancer risk [53]. Knock-down of
the B4GALT1 gene and the inhibition of its function has
been shown to inhibit the estrogen-induced proliferation
of breast cancer cell lines [54]. FUT4 has been proposed
as an effective diagnosis biomarker of breast cancer [55].
PIGR is known to be upregulated in breast cancer and
other cancers [56].

Given the large number of associations ,we run a gene
set enrichment analysis on Reactome [57]. The top mod-
ule was TP53 regulation of metabolic genes. It was not
significant after correcting for multiple hypothesis.

If we consider only the very heterogeneous effects (esti-
mated r < 0.1), we find the following associations with
FDR < 0.1: CMKLRI, CASC5(KNL1), SUSDI, RASSF4,
AOC4P, ADHFE1, FAM71C, and RRN3P3. CASC5(KNLI)
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is known as Cancer Susceptibility Candidate Gene 5 Pro-
tein. RASSF4 is a member of the RASSF family of tumor
suppressors. AOC4P is a IncRNA involved in hepatocellu-
lar carcinoma and colorectal cancer [58] and ADHFEI is a
breast cancer oncogene [59].

The breast cancer metastasis data (GSE48091 [27]),
measures the gene expression in primary breast cancer tis-
sue in 166 cases where metastasis happened and 340 cases
without metastasis. Only 2 genes reached the Bonferroni
significance threshold for association with metastasis sta-
tus: TAOK1 and BC042012, and 2 more had low FDR:
RALB and CA428624 and they were only significant with
our test (FDR = 0.02). Both TAOKI and RALB were found
to be underexpressed. TAOK1I had a relatively low p-value
by Limma (E-04) but the 3 other associations are spe-
cific to our test and correspond to low values of r. TAOK1
was previously listed as a metastasis-associated genes in
basal-like breast tumors [60] (through expression). RALB,
also known as RAS Like Proto-Oncogene B, is known
for its role in invasion and metastasis across cancers and
specifically for breast cancer [61].

For both breast cancer datasets, we found interesting
heterogeneous associations that would not be detected
by tests looking for the broad differences between all
cases and controls, illustrating the value in looking for
aberration enrichment.

Results across other types of -omics data

We ran our test on publicly available miRNA expression
and DNA methylation datasets that we downloaded from
GEO. Given the larger size of these datasets (thousands of
samples in miRNA datasets and more than 450k features
for methylation data), we used k = 100 for the number
of hidden confounders removed (using the PEER correc-
tion). Table 3 summarizes our findings with kX = 100. The
results with k = 30 are presented in the Additional file 1:
Table S3.

Our test returned a larger number of associations in
these datasets, most of which were not discovered by
Limma (see Table 3). In fact, using Limma or a ¢-test
resulted in few to no associations, especially in methy-
lation data. We did observe bimodality or mutimodality
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Table 3 Experimental data findings: number of genes detected
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Threshold Bonferroni FDR < 0.1

Method Our test Limma n Our test Limma n
RA methylation 119 2 1 506 3 3
Schizo. cortex 22 0 0 139 0 0
Schizo. blood 75 0 0 530 0 0
Breast miRNA 427 0 0 564 0 0
Ovarian miRNA 364 5 4 849 23 23

in the methylation levels of many sites and that can par-
tially explain the poor performance of ¢-test and Limma.
Non-parametric methods such as our test and Wilcoxon
might be better suited for methylation data. Wilcoxon
test returned a larger number of associations compared
to Limma and ¢-test (see Additional file 1: Table S4).
These associations were still fewer in numbers than our
test and partially overlapped with our associations that
corresponded to broad effects (large values of r).

In our analysis, given the large number of associ-
ations by our test, we prioritize those that affect a
small proportion of cases (lower estimated values of r)
rather than broad signals; these were also not found by
Wilcoxon/Limma/¢-test. Additionally, the large number
of associations allows us to perform gene set enrichment
analysis for the associated probes that are annotated to
genes. Note that some of these associated probes are
co-located and annotated with the same gene name. How-
ever, most of the genes we discuss below only have one
associated probe.

In each dataset, to verify that our test is still well cal-
ibrated, we performed random label permutations and
showed that we find no associations under the null.

DNA methylation in rheumatoid arthritis

The Rheumatoid Arthritis methylation data (GSE42861
[30]) measures DNA methylation for 354 RA patients and
335 controls. A large number of sites were found to be
associated by our test. The top associations (FDR< 1074,
r < 30%) involve multiple sites near HLA genes such
as HLA-DQAI, HLA-DPB2, HLA-DRBI, and HLA-DMB,
along with other genes: SLC43A2, MBD1/CXXC1, ALLC,
LPP, ESYT2, and NMB. Note that we also find other HLA
genes such as HLA-B, HLA-DRBS, HLA-DQBI, and HLA-
DRBE6 that are associated with FDR < 0.01. HLA-DRBI
is the strongest causal gene for RA [62]. In our data, 53
methylation sites were annotated to HLA-DRBI. Among
these, 4 were found to be strongly associated by our test
exclusively: cg04026937 (FDR = 1.3e — 03), cg06204447
(FDR = 8.1e — 05), ¢g18052547 (FDR = 1.4e — 02), and
€g23899527 (FDR = 2.2e — 05). One (cg00598125) was
found to have some association by Wilcoxon (FDR = 0.06)
and was sub-significant by our test (FDR = 0.19) and

did not correspond to an aberration enrichment pattern
of association (r = 0.6). We also looked at loci that are
dysregulated in less than 10% of patients with FDR< 0.1.
Among the 12 loci we find CHI3L1 (hypomethylated in
r = 9%) which is a rheumatoid arthritis autoantigen [63],
SNW1 (hypomethylated in r = 7%) which is a nuclear
factor kappa B (NF) regulatory gene involved in RA patho-
genesis [64] and CAV1 (hypermethylated in r = 9%)
which is involved in NF-kappa-B activation in a T-cell
receptor/CD3-dependent manner [65]. Among the genes
mentioned above, HLA-DQAI, HLA-DQBI, SLC43A2,
MBD1/CXXC1, and NMB and one site near each of HLA-
DRBI are associated by Wilcoxon with FDR< 0.1. These
common associations always correspond to the higher val-
ues of r (r €[0.26 — 0.3] when we selected only the hits
with r < 0.3). All other associations are uniquely found by
our test and many of which correspond to lower values of
r <0.2.

An enrichment analysis on Reactome [57] shows several
immune system modules are enriched in the candidates
returned by our test with » < 0.3 and FDR < 0.1. The
module Class I MHC-mediated antigen processing and
presentation is strongly enriched (FDR < 8 x 10~1°). The
responsible genes are CLCN7, TRIM41, ERICHI1, HLA-B,
TAP1, UBE2E2, UBAP2L, CBLB, and TAPBP. The corre-
sponding submodules: Endosomal/Vacuolar pathway, ER-
Phagosome pathway and Antigen Presentation: Folding,
assembly and peptide loading of class I MHC, are particu-
larly enriched (FDR < 8 x 10~'%). The module Interferon
Alpha/Beta signaling is also enriched because of genes
ZNF605, HLA-B, TAPI (FDR < 8 x 1071°),

While other methods are unable to recover the previ-
ous modules, the associations with Wilcoxon agree with
our test on other modules containing HLA-DRBS5, HLA-
DQAI, HLA-DRB1, HLA-DQBI : TCA signaling, PD-1
signaling, Interferon Gamma signaling, MHC class II anti-
gen presentation (the latter also containing HLA-DMB,
CAPZB, TAP1, HLA-DOB). This is not surprising since
MHC class II antigen presentation is very well known to
be involved in RA [66]. Finally, there are several mod-
ules related to NOTCH signaling which is also known
to play a role in RA [67] (containing the following asso-
ciated genes NCOR2, HDAC4, HDAC2, SNW1I, ERICH],
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FBXW7, MIB2, PSEN2, RBPJ], NOTCH4). Overall, our
test detected several associations with potentially disease-
relevant genes and pathways, some of which were not
detected using any other approach.

DNA methylation in schizophrenia

The schizophrenia methylation datasets (GSE74193 [31]
and GSE80417 [32]) respectively describe the DNA
methylation in dorsolateral prefrontal cortex and whole
blood. After preprocessing (Additional file 1: Supplemen-
tary methods), the first dataset had 191 schizophrenia
cases and 335 controls and the second dataset had 305
cases and 333 controls.

In the brain, the top loci with proportion of affected
cases r < 30% are by the genes HLA-DRB6,
SOX20T/S0OX2, intergenic region at loci cg23330385,
NAALADL2, LIN7A, SOATI1, HLA-DRBI1, ALDH3B2,
LOC81691, NMNAT?2, CNRIP1, TTC23L, and SLC16A12
(all associations are with FDR< 0.01).

At least 4 of these genes have been implicated with
schizophrenia in the literature. For example, LIN7A
is at the overlap of several rare CNVs associated
with schizophrenia in [68] and induced overexpression
of CNRIPI is known to cause a schizophrenia like-
phenotype in mice [69]. NMINAT?2 is important for the
maintenance of neurons and is known to be neuroprotec-
tive in several models of neurological disorders [70], while
HLA-DRBI is the most frequently reported genetic asso-
ciation to schizophrenia [71]. Furthermore, looking at the
sites with lower proportion of affected samples (r < 10%),
we find the 6 associated sites with FDR< 0.1: CYFIPI,
ST6GALNACI, ABCAS, CPSF6, Cé6orf25, and intergenic
site cg25008182. The site near the STEGALNACI gene is
hypomethylated in 7% of the cases, and is known to be
associated (through hypomethylation) with schizophre-
nia and bipolar disorder in an identical twin methylation
study who are discordant for these diseases [72]. CYFIPI,
here hypermethylated in 8% of the cases, was previously
associated with schizophrenia and autism through CNVs
and is known to regulate the balance between synaptic
excitation and inhibition [73]. The ABCAS8 gene is impor-
tant for lipid metabolism in oligodendrocytes, myelin
formation and maintenance, and ABCA13 from the same
subfamily is associated to schizophrenia through GWAS
[74]. The genes listed above are uniquely found by our test
except for NMINAT2 which was found with FDR= 0.08
by Wilcoxon and FDR= 0.002 by our test. This shows
that looking for aberration enrichment in addition to tra-
ditional approaches can lead to novel associations that
might improve our understanding of disease.

The Reactome gene set analysis found an overlapping
group of gene sets previously found by Wilcoxon and
our test of rheumatoid arthritis, such modules contain-
ing the genes HLA-DRBS5, HLA-DQA2, HLA-DRBI : TCA
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signaling, PD-1 signaling, Interferon Gamma signaling,
MHC class II antigen presentation (the latter also contain-
ing RACGAPI and ITFG1). In schizophrenia, these mod-
ules are only detected through our test and not through
Wilcoxon. This result is not surprising and is consis-
tent with the strong associations between the HLA locus
and schizophrenia found in different studies [75]. We
also report the following modules of unknown relevance
to schizophrenia: Glucuronidation with FDR=8.81F — 04
(genes UGTIA3 to UGTIAI0) and Phase II - Conjuga-
tion of compounds with FDR=5E — 03 (SLC35B3, GGT7,
MGST3, and UGT1A3 to UGT1A10).

In blood, the results were less interesting with a very
large number of associated sites in Table 3 (Wilcoxon also
found 61 and 242 sites by Bonferroni and FDR respec-
tively) and less obvious associations with schizophrenia in
previous literature among our immediate top genes. The
top 10 associations with » < 0.1 that are close to genes
are near AP2S1, MYH7, DSCR3, Cl4orfi82, TMCOI,
PRR25, LOC389333, SELS, XKR6, and DGKZ. All of these
associations have FDR< 0.05. DSCR3 (Down Syndrome
Critical Region Gene 3) has previously been associated
with neuroticism in a genome wide linkage study [76].
C140rf182 has been associated with schizophrenia in a
whole genome sequencing study done in discordant twins
[77]. DGKZ is located within a schizophrenia GWAS loci
and is further known to be dysregulated in schizophrenia
patients [78, 79].

Both in brain and in blood, our test is recovering
novel associations with genes/loci potentially relevant
to schizophrenia which would not be picked by other
methods because of the heterogeneous nature of these
associations (aberration enrichment).

miRNA in breast and ovarian cancer

The breast cancer miRNA data (GSE73002 [28]) describes
the serum miRNA levels of 1280 breast cancer cases and
2686 non-cancer controls. The ovarian cancer miRNA
data (GSE106817 [29]) describes the serum miRNA levels
of 399 ovarian cancer cases and 3647 non-ovarian cancer
controls (includes 859 samples from other cancers). After
preprocessing (see Additional file 1: Supplementary meth-
ods), we ran Limma and our test on both datasets. Overall
963 and 2565 miRNAs measurements were made in the
breast cancer and ovarian cancer dataset respectively. Out
of those measured miRNAs, a relatively large proportion
was found to be associated to the cancer status according
to our test as shown in Table 3. We attempted to use larger
values for the number of PEER factors k but this did not
substantially reduce the number of associated hits (Addi-
tional file 1: Table S2). For example, in the breast cancer
dataset, our test uncovered 483 associated miRNAs for
k = 30. Using k = 100 or k = 200 only reduced that num-
ber to 427 and 425 respectively. Similarly in the ovarian
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cancer dataset, 462 associations were detected by our test
for k = 30 and that number reduced to 364 and 352 for
k = 100 and k = 200 respectively. Using Limma or a ¢-
test returned very few to no associations while Wilcoxon
returned a smaller number of associations than our test.

To show that these associations are not artifacts from
our test, we performed random permutations of the labels
and found zero associations, meaning that there does not
seem to be an inflation for type 1 errors for our test.

One possible explanation of these results is that cancer
generates a large number of effects that are not homoge-
neous across patients. This is a well-known phenomenon
[80]. Heterogeneous downstream effects of cancer might
include events such as large copy number changes, struc-
tural variants, large effects on chromatin conformation
and epigenetics. Any of these events can result in dysregu-
lation of miRNAs and any single event could be happening
in a smaller proportion of cancer cases. The heterogene-
ity of cancer presentations across patients could also lead
to a heterogeneity of downstream effects that would be
observed as a large number of associations by our test.
This result is consistent with the large number of asso-
ciations we also observed in gene expression data in the
breast cancer dataset compared to non-cancerous dis-
eases. In the “Breast cancer” section, we observed 453
genes with FDR< 0.1 and 1506 genes with FDR< 0.2 in
association with breast cancer.

Under this assumption of numerous heterogeneous
downstream effects, it is difficult to pinpoint miRNA dys-
regulations that would be drivers of cancer among a very
large number of associations. This is particularly problem-
atic when we have a high proportion of associated features
among all features (> 20% of miRNAs have FDR < 0.1
in our data). This shows the limitations of directly apply-
ing our test to cancer, where there is an accumulation of
heterogeneous passenger events.

However, we argue that our test can be used in this con-
text, but not for the task of feature selection (identifying
relevant cancer miRNAs). Instead, we use it for identi-
fying features (in this case, miRNAs) that are helpful for
classifying individuals into cases vs controls. The argu-
ment here is that even if (most of) the associations are just
downstream heterogeneous effects, they can still be used
as biomarkers of cancer.

For each dataset, we split the data into a discovery
cohort and a held-out cohort (not to be used for feature
selection or training). We run our test on the discovery
data to uncover miRNAs with heterogeneous associa-
tions. Many of our associations are found with » < 30% ,
meaning the considered miRNA'’s association is produced
by only a proportion of individuals with extreme values
(overexpressed or underexpressed). We define the inter-
vals of expression that are responsible for the association
(using the index at which the standardized enrichment
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score is maximal; see Fig. 1 as an example), then we
assign a value of zero to all other individuals that are
not in the interval of interest. This manually introduced
non-linearity helps the model focus on meaningful dys-
regulations rather than considering the full expression
spectrum as a whole for each miRNA. We use a lasso-
penalized logistic regression classifier (R package glmnet
[81]). More details about this experiment can be found in
Additional file 1: Supplementary methods.

We report our results in Table 4 where we used a
combination of feature selection and a logistic regression
classifier to differentiate cancer patients and healthy con-
trols. We select either the top 300 features by Limma or
the top 300 heterogeneous features (r < 0.3) by our test.
We optionally transform the top features of our test by
assigning a value of zero to all individuals outside of the
interval of expression that drove the association (Top Het-
ero. transformed column). We also compare to using all
features or only the features previously used in the lit-
erature for this classification problem (a set of 5 and 10
miRNAs respectively for the breast cancer data and the
ovarian cancer data).

Using the features selected by our test leads to a much
better classification performance compared to when we
use the top features returned by Limma or when we use all
features in the classifier. Our approach reaches AUC and
AUPR over 0.94 for both datasets which is a much better
performance than other feature selection approaches
such as using Limma. The transformation of keeping
only the expression values within the aberrant interval
defined by our test is very helpful. This is consistent with
our previous observation in simulation experiments that
a logistic regression is not good at handling/detecting
features with  heterogeneous effects (see the
“Simulating gene expression data” section). The non-
linear data transformation based on our test results
seems to address this limitation of logistic regression. In
fact, using a non-linear classifier such as random forest
(R package RandomForest [82]) leads to a very similar
performance to using transformed features in the logistic
regression case, but our approach is easier to interpret.
The Random Forest AUPR is 0.92 and 0.98 on the held-
out data respectively for the ovarian cancer and the breast
cancer datasets (see Table 4). However, the random forest
performance is unchanged (£0.01 AUPR) whether we use
Limma’s top features or those of our test and whether we
transform the features or not.

It is very important to note that the problem of classi-
fying cancer cases from controls has already been solved
with very high accuracy for the same miRNA datasets [28,
29]. A full classification performance is achievable even
with few features because of the very broad difference
observed between data originating from cases and con-
trols. For example, running Limma, Wilcoxon or our test
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Table 4 Cancer-control classification performance on held-out data with area under the precision-recall curve (AUPRC) after feature

selection by different methods

Features Top 300 Limma Top 300 heterogeneous Top Het. features All features Literature
features features transformed features

Ovarian cancer 0.695 0.743 0.948 0.696 0.503

Breast cancer 0.530 0.612 0.965 0.632 0.541

on the non-preprocessed data results in almost all miR-
NAs being strongly differentially expressed. In this proof
of concept, we used processed data where 100 hidden
PEER factors were removed. Some of these factors corre-
spond to broad signal of cancer that could easily separate
cases and controls. In fact, we verify that using 20 of those
hidden factors as features, we can recover a perfect clas-
sification with logistic regression or random forest. By
removing the 100 hidden factors from the data, we made
the classification problem harder than the one previously
solved on the original data. In this proof of principle,
our goal is to prove that heterogeneous disease signals do
exist and that they have predictive value beyond broad
signal. Using our test to detect and process these hetero-
geneous signals, we showed that we can improve upon the
performance of a linear classifier in an interpretable way.

Discussion

In this paper, we presented a statistical test for detect-
ing a pattern of association different from an overall shift
in mean or variance between cases and controls. We call
this pattern “aberration enrichment” or association with
“heterogeneous effects” Our test works in a case/control
setting with a continuous input variable (such as a gene’s
expression) and scales to hundreds of thousands of vari-
ables.

Through the use of simulations, we showed that our test
is more adapted at uncovering associations with hetero-
geneous effects compared to the widely used statistical
methods. Our test is well calibrated and uses permuta-
tions to assess the significance of the results. The power of
our test is inferior or on par to traditional approaches in
the classical setting, i.e., for detecting broad signal with no
heterogeneous effects, but becomes vastly superior when
the signal of interest concerns a smaller proportion of the
cases (r < 30%).

By applying our test to complex diseases and several
experimental gene expression datasets, we showcase its
ability to detect novel potentially disease-relevant genes
that would not be detected by traditional differential
expression methods. We further applied our test to other
omics data types (miRNA and methylation) and reported
novel associations.

Many of the genes found by our test do not exhibit a
broad signal across the disease cases. This makes their

association with the disease less likely to be a homo-
geneous downstream consequence of the disease itself.
However, that does not imply these genes are causal for
the disease. It is still possible that some confounding vari-
ables (such as the environment or a drug) is affecting a
subset of the cases. It is also possible that the considered
disease is heterogeneous enough to generate a multitude
of heterogeneous downstream effects on the measure-
ments that are unobserved in the controls. For example,
cancer may generate heterogeneous downstream conse-
quences such as large CNVs and chromosomal rearrange-
ments which would appear to our test as consistent out-
liers enriched in cancer cases but not in controls. Our
test cannot distinguish causal factors from heterogeneous
downstream consequences. Similarly to the widely used
differential expression approaches, our test can return a
very large number of associations in some contexts, thus
rendering a downstream search of causal elements very
difficult.

In real/experimental data, it is important to correct for
known and hidden confounders in order to remove broad
irrelevant signals and obtain a small set of associated
genes. Here we used PEER [33] to correct for confounders.
It is always possible that some complex/non-linear hidden
confounders or other broad effects (such as cell-type pro-
portion heterogeneity across patients) are not being fully
removed by PEER. It is also possible that this procedure
of removing hidden confounders might also be remov-
ing signals that are relevant to the causal mechanisms of
the disease in our experiments (leading to false negative
genes). Furthermore, the procedure of correcting for con-
founders generally works under the assumption that the
confounders affect the mean, but some confounders could
be affecting the variance of the measurement of interest
[83]. If that is the case, it is possible to identify false associ-
ations driven by confounders that have different variances
in cases and controls. Better upstream procedures for
correction which consider the effect of confounders on
variance will be beneficial for all the methods considered
but especially so for methods that look for beyond the
effect on the mean.

Currently, the need for permutations makes the method
slower than the widely used statistical tests. Especially if
we want to accurately measure very low p values. More
work needs to be done to better model our test statistic
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(the max over correlated standardized enrichment score
variables) in order to obtain a closed form solution. Cur-
rently the null distribution over test statistics is not ana-
lytically computed and it does not clearly fit any known
parametric distribution we tried. (The max over depen-
dant standardized weighted hypergeometric variables is
not easy to model. A polynomial approximation works to
fit the tail but it is hard to justify so we did not rely on
it.) In terms of running time, our test in its current form
can still be easily applied on a personal laptop and it takes
15 min to run on a full gene expression dataset with sam-
ple sizes under 500. It can take around 6 h on a full DNA
methylation dataset with up to 450,000 features.

The statistical test presented in this paper could be
applied to other datasets and other fields beyond com-
plex diseases and omics data. Wherever a 2-group test is
used (such as Wilcoxon, t-test, or the equivalent logistic
regression), our test could be a complimentary analysis,
especially where we might expect a non-homogeneous
difference between the groups. For example, in random-
ized clinical trials, we often compare a continuous mea-
sure of response (a change from baseline in a measure of
disease severity) between individuals who took the drug
and individuals who took a placebo in order to prove the
drug’s efficacy. In a heterogeneous treatment effect (HTE)
setting where the drug has a clear positive effect on only
a proportion of patients, i.e., responders, traditional tests
might be underpowered to detect the efficacy by testing
for the difference in mean between the two groups. Our
test could greatly benefit clinical trials because of the gain
in power for detecting the drug’s heterogeneous effect.

As a downstream analysis after a heterogeneous associ-
ation is detected by our test, one can pinpoint the group
of individuals with the aberration enrichment pattern and
attempt to characterize that group by finding common-
alities. Such an approach would be more focused than
unsupervised clustering methods, because it zooms in
on only the group that led to a statistically significant
association using the case-controls labels.

Conclusions

We present a novel statistical test that is particularly suited
for the detection of heterogeneous associations. Our test
showed vastly better performance on simulations com-
pared to existing approaches including other widely used
statistical tests. We showed the usefulness of our test
on experimental data analyses by applying it to different
genomics data types and recovering interesting disease
associations. Beyond our current results, our test can be
widely applicable to a large number of problems where
heterogeneous effects are suspected, including clinical
trials data with heterogeneous treatment effects.
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