
RESEARCH Open Access

Phenome-wide investigation of the causal
associations between childhood BMI and
adult trait outcomes: a two-sample
Mendelian randomization study
Shan-Shan Dong1†, Kun Zhang1†, Yan Guo1, Jing-Miao Ding1, Yu Rong1, Jun-Cheng Feng1, Shi Yao1,
Ruo-Han Hao1, Feng Jiang1, Jia-Bin Chen1, Hao Wu1, Xiao-Feng Chen1 and Tie-Lin Yang1,2*

Abstract

Background: Childhood obesity is reported to be associated with the risk of many diseases in adulthood. However,
observational studies cannot fully account for confounding factors. We aimed to systematically assess the causal
associations between childhood body mass index (BMI) and various adult traits/diseases using two-sample
Mendelian randomization (MR).

Methods: After data filtering, 263 adult traits genetically correlated with childhood BMI (P < 0.05) were subjected to
MR analyses. Inverse-variance weighted, MR-Egger, weighted median, and weighted mode methods were used to
estimate the causal effects. Multivariable MR analysis was performed to test whether the effects of childhood BMI
on adult traits are independent from adult BMI.

Results: We identified potential causal effects of childhood obesity on 60 adult traits (27 disease-related traits, 27
lifestyle factors, and 6 other traits). Higher childhood BMI was associated with a reduced overall health rating (β =
− 0.10, 95% CI − 0.13 to − 0.07, P = 6.26 × 10−11). Specifically, higher childhood BMI was associated with increased
odds of coronary artery disease (OR = 1.09, 95% CI 1.06 to 1.11, P = 4.28 × 10−11), essential hypertension (OR = 1.12,
95% CI 1.08 to 1.16, P = 1.27 × 10−11), type 2 diabetes (OR = 1.36, 95% CI 1.30 to 1.43, P = 1.57 × 10−34), and arthrosis
(OR = 1.09, 95% CI 1.06 to 1.12, P = 8.80 × 10−9). However, after accounting for adult BMI, the detrimental effects of
childhood BMI on disease-related traits were no longer present (P > 0.05). For dietary habits, different from
conventional understanding, we found that higher childhood BMI was associated with low calorie density food
intake. However, this association might be specific to the UK Biobank population.
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Conclusions: In summary, we provided a phenome-wide view of the effects of childhood BMI on adult traits.
Multivariable MR analysis suggested that the associations between childhood BMI and increased risks of diseases in
adulthood are likely attributed to individuals remaining obese in later life. Therefore, ensuring that childhood obesity does
not persist into later life might be useful for reducing the detrimental effects of childhood obesity on adult diseases.
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Background
Obesity is a worldwide health problem. The prevalence
of adult obesity has increased dramatically since the
1980s [1]. It is particularly worrisome that the rate of
increase in childhood obesity has been nearly double that
in adults [1]. Childhood overweight and obesity often per-
sist in adulthood, which increases the risks of premature
mortality and physical morbidity across the lifespan [2].
Compelling observational studies have reported that

childhood obesity is associated with the risk of many
complex diseases in adulthood, such as coronary artery
disease (CAD) [3], cancers [4], diabetes [5], and polycys-
tic ovary syndrome symptoms [6]. However, results from
observational studies are unable to fully account for
confounding factors (e.g., socioeconomic status). There-
fore, whether the relationship is causal is uncertain.
Mendelian randomization (MR), which uses genetic

markers of the exposure as instruments, is now widely
used to assess the causal relationship between exposure
and outcome [7]. As shown in Fig. 1a, MR must satisfy
three assumptions [7]: (1) the selected instruments must
be associated with the exposure, (2) the instruments
must not be associated with confounding factors, and (3)
the instruments must influence the outcome only
through the exposure (no horizontal pleiotropy exists).
Conventionally, one-sample MR could be performed by
using the two-stage least squares analysis method. For
example, a previous study [8] using one-sample MR
showed that abdominal adiposity might have a causal
unfavorable effect on cardiometabolic risk factors in
children and adolescents. Recently, two-sample MR
analysis methods using summary-level GWAS data have
been developed [9]. With a large amount of GWAS
summary data deposited in public databases, two-sample
MR analysis provides a cost-efficient way to investigate
the potential causal effects of childhood obesity on adult
traits. Using this method, previous studies have demon-
strated the causal adverse effects of childhood body mass
index (BMI) on adult cardiometabolic diseases [10] and
osteoarthritis [11]. Using SNPs associated with adult
BMI as instruments, two recent MR phenome-wide
association studies [12, 13] have shown the causal effects
of adult obesity on many other traits/diseases. The
causal effects of childhood obesity are suspected but
have not been systematically characterized.

Another interesting question is whether the causal
effect of childhood BMI on the later health outcomes is
independent from adult BMI. It was reported that
childhood obesity was associated with an increased risk
of multiple comorbidities in adulthood even if the
obesity did not persist [14]. However, a recent study [15]
showed that the observational association between child-
hood overweight and adult type 2 diabetes (T2D) only
hold if the overweight continued until puberty or later
ages. Multivariable MR [16] can be used to determine
whether several exposures affect an outcome through
the same pathway or whether the exposures have inde-
pendent effects. A study [17] using multivariable MR
showed that the causal adverse effects of large body size
in early life on CAD and T2D is depend on adult body
size. Systematically assessing the influences of childhood
BMI on adult traits and whether these effects are inde-
pendent from adult BMI might be useful for subsequent
decision on the timing of preventive strategies.
In this study, we performed a MR phenome-wide asso-

ciation study to assess the causal effects of childhood
BMI on adult traits/diseases using 2-sample MR with
current available GWAS summary data (data collected
before August 2019). Multivariable MR was also used to
determine the independent effects of childhood BMI
after accounting for adult BMI. Our results offer a
systemic view of the causal effects of childhood BMI on
adult traits.

Methods
The outline of the experimental approach used in this
study is shown in Fig. 1b. The STROBE-MR checklist
(https://peerj.com/preprints/27857/) [18] was used for
reporting this work.

Summary data resources
Childhood BMI
The childhood BMI GWAS summary dataset was
from the Early Growth Genetics consortium (http://
egg-consortium.org/childhood-bmi.html, “EGG_BMI_
HapMap_DISCOVERY.txt.gz”). The phenotype used in
this GWAS was sex- and age-adjusted standard devi-
ation scores of childhood BMI at the latest time point
(oldest age) between 2 and 10 years [19]. The GWAS
included 47,541 European children in total.
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Adulthood outcomes
GWAS summary data were obtained from the following
resources: (1) 3513 GWAS summary data on up to 456,
422 array-genotyped and imputed UK Biobank individ-
uals (aged between 40 and 69 at recruitment) from the
Genome-wide Complex Trait Analysis (GCTA) website;
(2) 778 GWAS summary datasets for up to 452,264 UK
Biobank individuals from the Gene ATLAS database
(http://geneatlas.roslin.ed.ac.uk/); and (3) 839 GWAS
datasets from the LDhub GWAShare Center (http://ldsc.

broadinstitute.org/); 4) 90 datasets from various other
resources (Additional file 1: Table S1). All datasets were
collected before May 2019.
Next, we filtered the GWAS summary datasets first

using the following criteria:

1) GWAS with small sample size and limited statistical
power might fail to detect SNP-trait associations
[20]. To avoid potential horizontal pleiotropy, it is
necessary to make sure that the outcome data we

Fig. 1 a Schematic diagram of an MR analysis. Since genetic alleles are independently segregated and randomly assigned, SNPs are not
associated with confounding factors that may bias estimates from observational studies. Three assumptions of MR are as follows: (1) the selected
instrument is predictive of the exposure, (2) the instrument is independent of confounding factors, and (3) there is no horizontal pleiotropy (the
instrument is associated with the outcome only through the exposure). b The analysis pipeline of the current study
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collected have enough sample size to detect SNP-
trait associations. Here we only kept data sets with
N > 50,000 and both cases and controls are > 10,000
for binary phenotypes. When the significance
threshold is P < 5 × 10−8, GWAS with this sample
size has over 90% power to detect SNPs with explained
phenotypic variance portion of over 1 × 10−3. The
statistical power was calculated using the formula
presented in the work of Visscher et al. [20]. The same
cutoff has also been used in a previous study which
aimed to analyze pleiotropy in multiple traits [21].

2) Confounding by ancestry could occur if instruments
associated with exposure had different frequencies
in different ethnic groups [22]. The exposure data
we used for childhood BMI is from the European
ancestry. Therefore, we only kept the GWAS
summary data set which is based on European
population or > 80% of the samples are European.

3) Exclude sex-specific GWAS, unless the trait is only
available for a specific sex (e.g., breast cancer).

4) Exclude adolescent traits, parent or sibling traits
(e.g., illnesses of father). We also removed traits
related to adult obesity, since 11 of the 15
childhood BMI SNPs are in linkage disequilibrium
(LD) with adult BMI variants.

5) If a trait has more than one GWAS dataset, we only
kept the dataset with the greatest number of
subjects for this trait.

Finally, a total of 903 datasets remained, including 863
datasets specifically for the UK Biobank population
(Additional file 2: Fig. S1). For all 903 datasets, the URLs
for detailed phenotype description and data access are
listed in Additional file 1: Table S2. All outcomes were
recoded to make sure the variables followed increasing
patterns. For example, overall health rating was origin-
ally coded from 1 to 4 to refer excellent, good, fair, and
poor, respectively. Under such situation, an allele posi-
tively associated with this trait is actually a risk factor of
overall health rating. To avoid misunderstanding, we
recoded these traits by changing the plus or minus sign
of the beta value in the association results.

Estimated standardized effect size of SNPs
To enable comparison of effect sizes across studies, we
obtained the estimated standardized effect size (β) and
standard error (se) as a function of minor allele
frequency and sample size as described previously [23]
using the following equation:

β ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1 − pð Þ nþ z2ð Þp ; se ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1 − pð Þ nþ z2ð Þp

where z can be calculated as β/se from the original

summary data, p is the minor allele frequency, and n is
the total sample size.

Genetic correlation analyses
As a phenome-wide study, our hypothesis-free MR ana-
lyses with many independent statistical tests might suffer
from the problem of multiple testing burden [24]. On
the other hand, if two traits are causally related and both
of them have non-zero heritability, there should be
genetic correlations between them [24]. Therefore, to
solve the problem of multiple testing burden, we firstly
screened the large publicly available GWAS summary
results for evidence of genetic correlation with childhood
BMI using LD score regression [25]. Formal MR ana-
lyses were subsequently performed to assess the causal
effects. As an analytical strategy to mine the phenome
[24], this analysis process has also been used in a previ-
ous study [26]. We used genetic correlation analysis to
select data potentially associated with childhood BMI for
further MR analysis; therefore, we used P < 0.05 as the
cutoff to preserve all datasets with suggestive evidence.
All traits were classified into three main categories—life-
style factors, disease-related traits, and others. All
disease-related traits were further classified according to
the International Classification of Diseases 11th Revision
(ICD-11) [27].

Instruments selection
Fifteen independent SNPs with P < 5 × 10−8 identified
from the original GWAS study [19] for childhood BMI
were used as instruments (Additional file 1: Table S3).
The genetic risk score of these SNPs explained 2.0% of
the variance in childhood BMI [19]. To avoid potential
confounding, we looked up each instrument SNP and
their proxies (r2 > 0.8) in the PhenoScanner GWAS data-
base (http://phenoscanner.medschl.cam.ac.uk) [28, 29] to
assess any previous associations (P < 0.0033 (0.05/15))
with 4 plausible confounders selected based on previ-
ously published studies: birth weight [19, 30, 31], years
of educational attainment and age completed full time
education [32–34], and maternal smoking around birth
[35–38]. Two SNPs were associated with a potential
confounder (rs12041852, maternal smoking around
birth, P = 7.43 × 10−5; rs12507026 (in LD with rs13130484),
years of educational attainment, P = 0.0028), resulting a set
of 13 SNPs for further analysis. In addition to the GWAS
which reported these SNPs, 11 of the 13 loci have also been
reported to be associated with childhood obesity in other
previously published studies (Additional file 1: Table S4).
For each outcome, we also used the RadialMR [39] package
to further exclude outlying pleiotropic SNPs. RadialMR
[39] identified outlying genetic instruments via modified Q-
statistics. Among the 13 SNPs, 9 SNPs were in LD with
adult BMI variants (Additional file 1: Table S3). The effect
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sizes (se) of the rest 4 SNPs were 0.042 (0.007), 0.045
(0.008), 0.041 (0.007), and 0.139 (0.025) respectively.

MR analyses
We used four complementary methods of two-sample
MR (inverse variance weighted (IVW) method, MR-
Egger method, weighted median method, and weighted
mode method) to estimate the causal effects. They make
different assumptions about horizontal pleiotropy. When
the horizontal pleiotropy is balanced (i.e., the pleiotropic
effects are independent of SNP-exposure effects), there
should be no bias in the effect derived from MR. If the
horizontal pleiotropic effects are biasing the estimate in
the same direction (directional pleiotropy), the causal
estimates will be biased (except for the MR-Egger
method).
The IVW method assumes balanced pleiotropy [40].

We obtained the IVW estimate by meta-analyzing the
SNP specific Wald estimates using multiplicative
random effects. Cochran’s Q statistic [41] was used to
check for the presence of heterogeneity, which can
indicate pleiotropy. Cochran’s Q statistic [41] follows a
χ2 distribution with L − 1 degrees of freedom (L refers
to the number of instruments) under the null hypothesis
of homogeneity.
The MR-Egger method is based on the INSIDE

assumption (instrument strength independent of the
direct effects) [40]. It requires that the SNPs’ potential
pleiotropic effects are independent of the SNPs’ associ-
ation with the exposure [40]. MR-Egger is also based on
the no measurement error in the SNP exposure effects
(NOME) assumption, which can be evaluated by the
regression dilution I2 (GX) [42]. When I2 (GX) < 0.9,
adjustment methods should be considered [42]. There-
fore, simulation extrapolation (SIMEX) correction
analysis was performed to estimate the causal effect
when I2 (GX) < 0.9 [42]. The intercept term of the MR-
Egger method represents an estimate of the directional
pleiotropic effect [43]. We also calculated the Rucker’s Q
′ statistic [44] to measure the heterogeneity in the MR-
Egger analysis. Rucker’s Q′ follows a χ2 distribution with
L − 2 degrees of freedom under the null hypothesis of
no heterogeneity (L refers to the number of instruments)
[44]. Generally, we have Rucker’s Q′ ≤Cochran’s Q [44].
If the difference Q −Q′ is sufficiently extreme with
respect to a χ2 distribution with the 1 degree of freedom,
we would infer that directional pleiotropy is an import-
ant factor and MR-Egger model provides a better fit
than the IVW method [45].
The weighted median method estimates the causal

effect under the assumption that at least 50% of the total
weight of the instrument comes from valid variants [46].
Compared with IVW and MR-Egger, this method has
greater robustness to provide a consistent causal effect

estimate even when up to 50% of the SNPs are invalid
instruments [46]. The mode-based method provides a
consistent effect estimate when the largest number of
similar individual-instrument estimates come from valid
instruments, even if the majority of instruments are in-
valid [47].
We also used MR pleiotropy residual sum and outlier

(MR-PRESSO) global test [48] to detect horizontal
pleiotropy. The analyses of the four MR methods were
carried out using the TwoSampleMR package in R. We
chose the main MR method as follows:

a. If no directional pleiotropy was detected (P > 0.05
for tests of Q, MR-Egger intercept, Q −Q′ and
MR-PRESSO), use IVW.

b. If directional pleiotropy was detected and P > 0.05
for the test of Q′, use MR-Egger.

c. If directional pleiotropy was detected and P < 0.05
for the test of Q′, use weighted median.

We also checked the consistency of the directions in
all four MR methods. Only significant results with the
same direction in all methods were remained to make
sure the positive results we selected are robust under
different assumptions.
Effect estimates are reported in β values for continu-

ous outcomes and converted to ORs for dichotomous
outcomes.

Sensitivity analysis
For outcomes with significant MR analysis results, leave-
one-out sensitivity analysis was carried out to check
whether the causal association was driven by a single
SNP. Over 95% of the outcome datasets we used are
specifically for the UK Biobank population. To check
whether the significant results could be replicated in
other datasets, we performed MR analysis for 5 out-
comes (CAD, disease count, hypertensive disease, osteo-
arthritis, and T2D) with available summary data from
resources without UK Biobank participants. The datasets
for disease count, hypertensive disease, and osteoarthritis
were from the Genetic Epidemiology Research on Adult
Health and Aging (GERA) cohort [49]. The datasets for
CAD and T2D were obtained from the studies performed
by Nikpay et al. [50] and Scott et al. [51], respectively.
Detailed phenotype description and data access URLs are
listed in Additional file 1: Table S5.

Estimating the number of independent outcomes
As our analysis involved a large number of summary
data, we expected that some of these outcomes might be
highly correlated with each other. Therefore, we used
PhenoSpD [52] to estimate the number of independent
outcomes to correct for multiple testing. We used the
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LD score regression method [25] to create a correlation
matrix between each outcome. The matrix was used as
an input for PhenoSpD to assess the number of inde-
pendent outcomes through matrix spectral decompos-
ition. Suppose the number of independent outcomes is
n, then the significant threshold was set as 0.05/n after
multiple testing correction.

Polygenic risk score (PRS) analyses for dietary habits with
significant MR results
We used the SNP instruments in MR analysis as
markers to construct PRSs for childhood BMI and adult
BMI. UK Biobank samples were used as the target data-
sets. We only used samples with the ethnic background
of European ancestry. Samples with missingness > 5%
and mismatching phenotypic and genotypic sex and
samples that have withdrawn consent were excluded.
PRSs were calculated using the software PRsice [53].
The correlations between PRSs and dietary traits were
tested with age, sex, and top 10 principal components as
covariates. Logistic regression was used for binary phe-
notypes and linear regression was used for continuous
phenotypes.

Instruments for adult BMI and multivariable MR analysis
For outcomes with significant MR analysis results, we
also carried out MR analyses for adult BMI. Over 95% of
the outcome data we used were from the UK Biobank
population. In two-sample MR analysis, overlap in par-
ticipants between the exposure and outcome can cause
bias towards the risk factor-outcome association [54].
Therefore, we used the adult BMI SNPs reported by
Locke et al. [55] rather than the SNPs reported by Yengo
et al. [56] since 65% (450,000/700,000) in Yengo et al.
are the UK Biobank participants. To avoid potential
confounding caused by ancestry [22], we only used the
reported SNPs by Locke et al. from the European-
descent individuals. Among the total 77 SNPs, one SNP
(rs12016871) was not present in the 60 summary data
sets of the outcomes, so we used the rest 76 independent
SNPs as instruments (Additional file 1: Table S6). Multi-
variable MR analysis [16] was then used to determine
whether childhood BMI and adult BMI affect the out-
comes through the same pathway or whether they have
independent effects. SNPs from the univariable MR ana-
lysis were used after performing linkage disequilibrium
clumping to account for instrument correlation between
the two sets.

Reverse-direction MR analyses
For the 60 traits with significant causal effects, we also
performed reverse-direction MR to assess potential
reverse causal effects. For each exposure, we used the
clumping algorithm in PLINK [57] to select independent

SNPs for each trait (r2 threshold = 0.001, window size =
1Mb and P < 5 × 10−8). The 1000G European data
(phase 3) were used as the reference for LD estimation.
For exposures with less than 3 significant SNPs available
for MR, we used SNPs meeting a more relaxed threshold
(P < 1 × 10−5). This relaxing statistical threshold method
for genetic instruments has been used in previous MR
studies [26]. The MR analyses process was the same as
previously described.

Results
Genetic correlation analyses
According to the cross-trait LD score analyses, 263
outcomes showed genetic correlation with childhood
BMI (Fig. 1b, Additional file 1: Table S2), including 249
outcomes specific for the UK Biobank population. We
manually checked the cohorts involved in these out-
comes and found that samples in these studies were not
overlapped with those in the childhood BMI study.
These outcomes (138 disease-related traits, 80 lifestyle
factors, and 45 other traits) were subjected to subse-
quent MR analysis.

Assessment of pleiotropy
The results of assessment of pleiotropy are shown in
Additional file 1: Table S7. No significant evidence of
pleiotropy was detected by the Cochran’s Q test and
MR-PRESSO global test (P > 0.05). MR-Egger’s intercept
test detected evidence of directional pleiotropy for 2 out-
comes (P < 0.05, Additional file 1: Table S7, Additional
file 2: Fig. S2A). The difference Q −Q′ is sufficiently
extreme with respect to a χ2 distribution with the 1
degree of freedom in additional 7 outcomes (P < 0.05,
Additional file 1: Table S7, Additional file 2: Fig. S2B).
Since Rucker’s Q′ test did not detect evidence of hetero-
geneity in these 9 outcomes, MR-Egger was chosen as
the main method for them. For the other outcomes
without evidence of directional pleiotropy, we chose
IVW as the main MR method.
The NOME assumption violation (I2 (GX) < 0.9) was

detected in all outcomes (Additional file 1: Table S7).
Therefore, we also carried out MR-Egger with SIMEX
analyses.

MR results
The results of PhenoSpD showed that the independent
outcome number was 145, setting the Bonferroni P value
threshold for our main MR analysis at P < 3.45 × 10−4

(0.05/145). In addition to multiple testing corrections of
the main MR method, P < 3.45 × 10−4 of the weighted
median method was also set as a cutoff to obtain
confident results supported by at least two MR methods.
Sixty significant associations were detected (Additional file 1:
Table S8). A total of 27 disease-related traits, 27 lifestyle
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factors, and 6 other traits were included. For better illustra-
tion, we summarized the MR findings in Figs. 2, 3, 4, and 5.
The performances of the four methods were similar.

Using the threshold of P < 3.45 × 10−4, the IVW and
weighted median methods supported the causal associa-
tions between childhood BMI and all 60 traits. But the
numbers of associations supported by the weighted
mode and MR-Egger methods were only 1 and 3
outcomes, respectively. The difference may be due to the
fact that the power of weighted mode and MR-Egger
methods is smaller than that of the IVW and weighted
median methods [47]. At the suggestive significant level

of 0.05, 59 of the 60 associations were supported by at
least three methods. The weighted mode and MR-Egger
method detected the associations with 58 and 29 out-
comes, respectively. This is consistent with the previous
report that MR-Egger has the lowest power of the four
methods to detect a causal effect [47].

Childhood obesity is a risk factor for general health
outcomes in adulthood
As shown in Figs. 2 and 3 and Additional file 1: Table
S8, there is evidence that childhood BMI causally affects
a total of 27 outcomes related to adult diseases,

Fig. 2 Summary view of the MR analysis results for the disease-related traits. Traits with significant positive associations with childhood BMI are
shown in red. Traits with significant negative associations with childhood BMI are shown in blue. The other traits are shown in black. Traits from
resources not specific to the UK Biobank population are shown in italic. For diseases from the UK Biobank population, those with pre-posed code
(e.g., K80 Cholelithiasis) are obtained from clinical diagnoses. Diseases without pre-posed code were obtained from questionnaire. The URLs for
detailed description for all phenotypes are listed in Additional file 1: Table S2
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Fig. 3 Summary Mendelian randomization (MR) estimates derived from the inverse-variance weighted, MR-Egger, weighted median, and weighted
mode-based methods for the 27 disease-related traits. Childhood BMI was used as exposure and significant associations were detected for these traits
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including 3 general health traits; 3 circulatory system
traits; 7 endocrine, nutritional, metabolic traits; 5 mus-
culoskeletal system traits; and 9 other traits.

Childhood BMI and general health
As shown in Fig. 3 and Additional file 2: Fig. S3, higher
childhood BMI was associated with reduced overall
health rating (β = − 0.10, 95% CI − 0.13 to − 0.07, P =
6.26 × 10−11) and an increased the number of self-
reported non-cancer illnesses (β = 0.09, 95% CI 0.06 to
0.13, P = 1.58 × 10−7). One SD increase in childhood
BMI was associated with 9% higher odds of long-
standing illness disability or infirmity (OR = 1.09, 95% CI
1.06 to 1.12, P = 8.50 × 10−11). Leave-one-out analysis
showed that no single SNP was driving the causal
estimates (Additional file 2: Fig. S3). There was no

association between childhood BMI and falls in last
year (P > 0.05, Additional file 1: Table S8).

Childhood BMI and circulatory system traits
We found that a 1 SD increase in childhood BMI was as-
sociated with 9% higher odds of CAD (OR = 1.09, 95%
CI 1.06 to 1.11, P = 4.28 × 10−11, Fig. 3, Additional file 2:
Fig. S4). The other two circulatory system traits with
significant associations are essential hypertension (OR =
1.12, 95% CI 1.08 to 1.16, P = 1.27 × 10−11) and high
blood pressure diagnosed by doctor (OR = 1.14, 95% CI
1.09 to 1.18, P = 3.12 × 10−11) (Fig. 3, Additional file 2:
Fig. S4). Analyses of treatment/medication conditions
also showed that higher childhood BMI increased the
risk of receiving blood pressure medication (Fig. 3,
Additional file 2: Fig. S5). In contrast, we did not detect

Fig. 4 Summary view of the MR analysis results for the lifestyle factors and other traits. Traits with significant positive associations with childhood
BMI are shown in red. Traits with significant negative associations with childhood BMI are shown in blue. The other traits are shown in black.
Traits from resources not specific to the UK Biobank population are shown in italic. The URLs for detailed description for all phenotypes are listed
in Additional file 1: Table S2

Dong et al. Genome Medicine           (2021) 13:48 Page 9 of 17



Fig. 5 Summary Mendelian randomization (MR) estimates derived from the inverse-variance weighted, MR-Egger, weighted median, and
weighted mode-based methods for the 27 lifestyle factors and 6 other hematological test traits. Childhood BMI was used as exposure and
significant associations were detected for these traits
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any association for acute myocardial infarction and
varicose veins of lower extremities (P > 0.05 in all four
MR methods; Additional file 1: Table S8). For the other
traits, suggestive association signals were detected in at
least one MR method, but the associations were no
longer significant after multiple testing corrections.

Childhood BMI and endocrine, nutritional, or metabolic
traits
We observed that a 1 SD increase in childhood BMI was
associated with 36% higher odds of T2D (OR = 1.36, 95%
CI 1.30 to 1.43, P = 1.57 × 10−34, Fig. 3, Additional file 2:
Fig. S6). We also found evidence that higher childhood
BMI caused increased risk the other 3 diabetes-related
traits (Fig. 3, Additional file 2: Fig. S6). Higher childhood
BMI also increased the risk of receiving Metformin, a
drug for T2D treatment (Fig. 3, Additional file 2: Fig.
S5). We observed adverse effects of childhood BMI on
self-reported hypothyroidism (OR = 1.06, 95% CI 1.03 to
1.09, P = 8.77 × 10−6) and non-cancer thyroid problems
(OR = 1.07, 95% CI 1.04 to 1.10, P = 7.78 × 10−7). For
lipid traits, childhood BMI was negatively correlated
with HDL cholesterol level (β = − 0.13, 95% CI − 0.19 to
− 0.07, P = 1.33 × 10−5). The associations with triglycer-
ides (β = 0.09, 95% CI − 0.04 to 0.14, P = 5.09 × 10−4) and
total cholesterol (β = − 0.07, 95% CI − 0.12 to − 0.02, P =
8.11 × 10−3) were suggestive. No association between
childhood BMI and LDL cholesterol level was detected
(P > 0.05 in all four MR methods; Additional file 1:
Table S8).

Childhood BMI and musculoskeletal system traits
As shown in Fig. 3 and Additional file 2: Fig. S7, we ob-
served adverse effects of childhood BMI on self-reported
osteoarthritis (OR = 1.07, 95% CI 1.05 to 1.10, P = 7.20 ×
10−8), arthrosis (OR = 1.09, 95% CI 1.06 to 1.12, P =
8.80 × 10−9), and related traits. We also found evidence
that childhood BMI was positively associated with adult
heel bone mineral density (BMD) (details in Add-
itional file 1: Table S2) (β = 0.20, 95% CI 0.15 to 0.24,
P = 3.40 × 10−20).

Childhood BMI and other disease-related traits
As shown in Fig. 3 and Additional file 2: Fig. S8, we
found evidence that higher childhood BMI caused an in-
creased risk of cholelithiasis (OR = 1.26, 95% CI 1.18 to
1.35, P = 3.29 × 10−5), and the risk effect was supported
by three MR methods (IVW, weighted median, and MR-
Egger) after multiple testing corrections. Consistent with
findings about general health, higher childhood BMI was
also found to be associated with reduced health satisfac-
tion (β = − 0.13, 95% CI − 0.18 to − 0.08, P = 7.44 × 10−7).

Childhood BMI and adult lifestyle factors
As shown in Figs. 4 and 5, there is evidence that
childhood BMI causally affects a total of 27 adult
lifestyle factors, including 20 dietary habits, 4 smoking
behaviors, usual walking pace (including three categor-
ies: slow pace (less than 3 miles per hour), steady average
pace (3–4 miles per hour), and brisk pace (more than 4
miles per hour), details in Additional file 1: Table S2),
pub/social club (a type of leisure/social activities, details
in Additional file 1: Table S2), and alcohol intake frequency.

Childhood BMI and adult physical activities, smoking/
drinking behaviors
As shown in Fig. 5 and Additional file 2: Fig. S9, for
physical activities, we noticed that childhood BMI was
negatively associated with usual walking pace (β = − 0.12,
95% CI − 0.15 to − 0.08, P = 3.24 × 10−10). For smoking
behaviors, we observed positive associations between
childhood BMI and adult smoking status. Higher childhood
BMI was negatively associated with alcohol intake fre-
quency (β = − 0.13, CI − 0.17 to − 0.09, P = 2.74 × 10−11).

Childhood BMI and adult dietary habits
We observed a positive association between childhood
BMI and adult diet portion size (β = 0.26, 95% CI 0.18 to
0.34, P = 7.34 × 10−11, Fig. 5, Additional file 2: Fig. S10).
In contrast, higher childhood BMI was associated with
low calorie density food intake (Fig. 5, Additional file 2:
Fig. S10). For example, childhood BMI was positively as-
sociated with the intake of high-fiber foods (e.g., fresh
fruit intake, bran cereal, and wholemeal bread) and low
fat/sugar food (e.g., skimmed milk, never/rarely using
spread on bread, never eat sugar or food/drinks contain-
ing sugar). We also found negative associations between
childhood BMI and the intake of meat (beef, lamb/mut-
ton, and processed meat), full cream milk, and butter
spread on bread.

Childhood BMI and other traits
In the hematological test traits, we observed the positive
association between childhood BMI and several traits as-
sociated with reticulocyte (e.g., reticulocyte percentage,
β = 0.10, 95% CI 0.07 to 0.14, P = 9.15 × 10−8).
We did not observe significant association between

childhood BMI and education qualification related traits
(Additional file 1: Table S8). For socioeconomic status,
we observed suggestive evidence that childhood BMI
was negatively associated with average total household
income before tax (P < 0.05 in IVW, weighted median
and weighted mode methods but this association did not
meet our significant criterion). We did not detect any
association between childhood BMI and Townsend
deprivation index at recruitment (a measure of material
deprivation within a population which incorporates four
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variables: unemployment, non-car ownership, non-home
ownership and household overcrowding, details in
Additional file 1: Table S2) (P > 0.05 in all four MR
methods; Additional file 1: Table S8).

MR analyses in additional datasets without UK Biobank
participants and PRS analysis for dietary habits in the UK
Biobank data
We used several datasets (Additional file 1: Table S5)
without UK Biobank participants to check whether the
significant results could also be found in other studies.
The results were consistent with our previous findings
for disease-related traits (Additional file 1: Table S9,
Additional file 2: Fig. S11). For example, childhood BMI
was positively associated with disease count (β = 0.14, CI
0.06 to 0.22, P = 6.32 × 10−4). Higher childhood BMI in-
creased the risk of CAD (OR = 1.10, CI 1.06 to 1.12, P =
1.20 × 10−6), hypertensive disease (OR = 1.21, CI 1.11 to
1.32, P = 1.33 × 10−5), T2D (OR = 1.18, CI 1.12 to 1.24,
P = 8.85 × 10−11), and osteoarthritis (OR = 1.16, CI 1.06
to 1.26, P = 1.04 × 10−3).
We could not find available summary data in the

European population for the other significant traits. Spe-
cifically, for dietary habits, we carried out MR analysis
using adult BMI as exposure and 3 dietary habits from
the Asian population as outcomes instead. Sixteen SNP
instruments (Additional file 1: Table S10) were selected
from the GWAS study by Wen et al. [58] in 86,757
Asians recruited from 21 studies. The outcome data
were published by Matoba et al. [59], including up to
165,084 Japanese individuals collected by Biobank Japan
(Additional file 1: Table S11). As shown in Additional file 1:
Table S11, significant positive association between adult
BMI and coffee intake was observed (β = 0.17, CI 0.11 to
0.24, P = 1.08 × 10−7). However, no association was found
between adult BMI and meat/vegetable intake (P > 0.05).
We further carried out PRS analysis in the UK Biobank

population. As shown in Additional file 1: Table S12, PRS
for both childhood BMI and adult BMI is associated with
higher portion sizes, more fruit intake and other low
calorie density food intake, the direction of which was the
same as the MR analysis.

Multivariable MR analyses
The independent effects of childhood BMI after accounting
for adult BMI
For the 60 outcomes with significant MR analysis results,
we also carried out MR analyses for adult BMI. As it
might be expected, although the effect sizes were different,
at least suggestive associations (P < 0.05) were detected be-
tween adult BMI and these traits (Additional file 1: Table
S13). The results were similar to the results of Millard
et al. [12]. We performed multivariable MR analyses to
assess the causal effects of childhood BMI which might be

independent of adult BMI. As shown in Additional file 1:
Table S14, after accounting for adult BMI, the effects of
childhood BMI on adult traits were attenuated or no
longer present. At the significant level of P < 0.05, we
detected the associations between childhood BMI and 14
traits, including 12 dietary habits, heel BMD, and reticulo-
cyte percentage. Of note, the detrimental effects of
childhood BMI on disease-related traits (e.g., CAD, T2D,
and arthrosis) were no longer present (P > 0.05).

Positive association between adult BMI and heel BMD was
no longer present after accounting for childhood BMI
We also analyzed whether the effects of adult BMI are in-
dependent of childhood BMI. As shown in Additional file 1:
Table S15, at the significant level of P < 0.05, the associa-
tions between adult BMI and 70% (42/60) of the traits
remained after accounting for childhood BMI. Of note,
while the positive association between childhood BMI and
heel BMD was significant after accounting for adult BMI
(β = 0.11, CI 0.02 to 0.20, P = 0.0211, Additional file 1:
Table S14), the association between adult BMI and heel
BMD was no longer exist after accounting for childhood
BMI (P > 0.05, Additional file 1: Table S15).

Reverse-direction MR analyses
The independent outcome number for the 60 traits was
33, setting the Bonferroni P value threshold for the main
MR analysis at P < 1.52 × 10−3 (0.05/33). Similar to the
forward MR analysis, confident results supported by
both main MR method and weighted median MR
method were considered as significant. As shown in
Additional file 1: Table S16, we did not detect significant
association for childhood BMI. Significant associations
between 6 traits and adult BMI were detected
(Additional file 1: Table S17 and Additional file 2: Fig.
S12), including 3 diabetes traits, overall health rating
(β = − 0.36, CI − 0.45 to − 0.27, P = 2.41 × 10−14), alcohol
intake frequency (β = − 0.30, CI − 0.40 to − 0.21, P =
6.86 × 10−10), and usual walking pace (β = − 0.25, CI − 0.38
to − 0.13, P = 3.53 × 10−5). In addition, we observed sug-
gestive positive association between portion size and adult
BMI (β = 0.22, CI 0.06 to 0.37, P = 6.09 × 10−3).

Discussion
In this study, with GWAS summary data from public
resources, we carried out two-sample MR analyses to
investigate the causal effects of childhood BMI on adult
outcomes with genetic correlation. We identified poten-
tial causal effects of childhood obesity on 60 adult traits.
Compared with previous studies of childhood BMI
which only focused on a few traits [10, 11], here we pro-
vided a phenome-wide investigation of the causal associ-
ations between childhood BMI and adult outcomes.
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Childhood obesity is a risk factor for general health
outcomes in adulthood
We observed that childhood obesity is a risk factor for
general health outcomes in adulthood. Consistently,
previous studies have demonstrated that high childhood
BMI was associated with increased mortality and
morbidity [2] in adulthood.
Specifically, we observed adverse effects of higher

childhood BMI on CAD and T2D. This is consistent
with the results of a previous MR study by Geng et al.
[10]. We also replicated their finding about the negative
association between childhood BMI and HDL choles-
terol level, which is a well-known trait inversely related
with CAD [60]. In addition, positive association between
childhood BMI and high blood pressure was supported
by different MR methods. Our analyses on treatment/
medication conditions further showed that higher child-
hood BMI increased the risk of receiving CAD and T2D
related medications, including blood pressure medica-
tion and metformin. Observational studies have also
shown that higher childhood BMI is related to increased
incidence of diabetes [61], CAD [3], and hypertension
[62]. These data supported that childhood obesity might
be a determinant of adult CAD/T2D risk.
Consistent with another MR study on childhood BMI

[11], we detected positive association between childhood
BMI and adult osteoarthritis, especially hip and knee
pain. A previous observational study suggested that obesity
from childhood had an accumulative effect on knee osteo-
arthritis development [63]. Similarly, a study by McFarlane
et al. [64] on the 1958 British birth cohort observed a sig-
nificant association with knee pain at the age of 45 years
with high BMI from as early as age 11 years [64]. Moreover,
another study [65] reported that the childhood overweight
measures were significantly associated with adulthood knee
mechanical joint pain among males. Therefore, it is possible
that the effect of childhood obesity on the knee joint can
persist into adulthood.

The adverse effects of childhood BMI on disease-related
traits were no longer present after accounting for adult BMI
Our multivariable MR analysis results showed that the
positive associations between childhood BMI and
increased risks of adult diseases (e.g., CAD, T2D, and
arthrosis) were no longer present (P > 0.05) after
accounting for adult BMI. Consistently, Richardson et al.
[17] showed that the causal adverse effects of large body
size in early life on CAD and T2D is depend on adult
body size. A recent observational study [15] has shown
that the association between childhood overweight and
adult T2D only holds if the overweight continued until
puberty or later ages. These findings suggest that there
is a window of opportunity to mitigate the detrimental
impact of childhood obesity. Indeed, a previous study

[66] observed reversal of T2D and improvements in
cardiovascular risk factors after surgical weight loss in
adolescents. Therefore, ensuring that childhood obesity
does not persist into later life might be useful for
reducing the detrimental effects of childhood obesity on
adult diseases. On the other hand, since 70% of obese
adults were not obese in childhood or adolescence [67],
targeting obesity reduction in adults is still very import-
ant to reduce the overall burden of obesity.

The significant association between higher childhood BMI
and low calorie density food intake in adulthood
For dietary habits, it was unexpected that higher
childhood BMI was associated with low calorie density
food intake. However, positive associations between
childhood obesity and healthy diet habits have been re-
ported in observational studies previously. For example,
a healthy diet score was associated with increased odds
of overweight/obesity in children from the UK [68].
Similarly, less frequent intake of energy-dense foods was
associated with larger waist circumference in Swedish
children [69]. It is possible that subjects suffering from
childhood obesity may reduce their intake of unhealthy
foods to lose weight.
The PRS analysis using UK biobank data also detected

the association between higher childhood/adult BMI and
low calorie density food. However, our MR analysis in
the Asian population did not find any significant associ-
ation between adult BMI and meat/vegetable intake.
Therefore, it is likely that the association between BMI
and low energy dense food is specific to the UK biobank
population. Our current results might be affected by the
fact that the enrolled individuals in the UK Biobank
demonstrated a “healthy volunteer bias” [70], with lower
rates of obesity and fewer self-reported health conditions
than the general population.

Positive association between adult BMI and heel BMD
was no longer present after accounting for childhood BMI
We observed a positive association between childhood
BMI and adult heel BMD. A previous MR study reported
that adiposity is causally related to increased BMD at all
sites except the skull in 5221 subjects from the Avon
Longitudinal Study of Parents and Children [71]. In
adults, MR analysis suggested that adiposity might be
causally related to BMD at the femur [72]. Protective
effect on osteoporosis of higher BMI in adults has also
been reported previously [73]. We also observed a posi-
tive association between adult BMI and adult heel BMD.
However, after accounting for childhood BMI, the posi-
tive association of adult BMI and heel BMD vanished,
suggesting that this association depend on childhood
BMI. It is widely accepted that most of the skeletal mass
is acquired by the age of 20. Several studies have
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suggested that peak bone density is achieved by the end
of adolescence [74, 75]. The risk of developing osteopo-
rosis is influenced to a large extent by the levels of peak
BMD. Our results implicated that the increasing effect
on BMD of obesity might mainly work in childhood.
Investigations taking peak BMD into consideration in
adults are further needed to confirm our findings.

The reverse-direction causal effects
In the reverse-direction MR analyses, we did not detect
significant association between the 60 traits and child-
hood BMI. Meanwhile, 6 traits were detected to be caus-
ally associated with adult BMI. For example, we noticed
that diabetes diagnosed by doctor was negatively associ-
ated with adult BMI. This might be as expected since
lipolysis, proteolysis, and acute fluid loss during diabetes
could cause weight loss [76]. Of note, we detected a
negative causal effect of alcohol intake frequency on
adult BMI. Consistently, Tolstrup et al. [77] reported
that obesity was inversely associated with drinking
frequency for a given level of total alcohol intake. A
previous study [78] on alcohol-dependent individuals
reported that subjects consuming the highest levels of
alcohol had decreased fat mass. In addition, high alcohol
consumption might impair nutrient absorption [79].
However, while frequently drinking moderate amounts
of alcohol may protect individuals from weight gain,
heavy drinking is more consistently related to weight
gain [80]. In forward MR analysis, a causal negative
effect of adult BMI on alcohol intake frequency was
detected. These results highlight a bidirectional relation
between obesity and alcohol intake. Further studies are
needed to detail the mechanism link between obesity
and alcohol consumption. We also detected a negative
causal effect of usual walking pace on adult BMI.
Forward MR analysis showed a causal negative effect of
adult BMI on usual walking pace. Previous studies have
reported that obese adults prefer to walk at a slower
speed than their lean counterparts [81, 82]. As a most
common type of physical activity in daily life, walking is
the principal component of non-exercise activity thermo-
genesis [83]. Since higher levels of physical activity are
consistently associated with weight loss maintenance [84],
increasing usual walking speed may be an active and
useful strategy for weight management.

General limitations of the study
The limitations of the current study should be ad-
dressed. Firstly, because there are inevitably overlapping
loci between childhood BMI and adult BMI, it is hard to
identify which of these causal effects are due to early-life
obesity, as opposed to late-life effects. However, child-
hood BMI GWASs conducted to date are notably
smaller in sample size compared to adulthood GWASs;

it is hard to obtain variants only associated with
childhood BMI and not with overall BMI. When data for
larger scale GWASs on childhood BMI are available, the
power will be improved to identify more SNPs specific-
ally associated with childhood BMI with smaller effects,
and then the results of our analysis might be updated.
Secondly, although our analyses supported that our
results were not affected by pleiotropy, we cannot rule
out the possibility of a shared genetic basis rather than a
causal relationship. Thirdly, since we used GWAS sum-
mary data from the public database for our analyses, we
cannot assess the effects of population stratification on
our results. Summary data from multiple multi-ethnic
populations might lead to biased association results
since different ethnic populations have different LD
structures and allele frequencies [85]. The summary data
we used here were mainly derived from the European
population. However, since we did not subset to the
European-only results, there is a potential of bias from
significant distinctions in disease outcomes between
European and non-Europeans. UK Biobank is an unpar-
alleled resource of extensive health information from
500,000 individuals [86]. Over 95% of our results are
derived from the UK Biobank population. However, the
UK Biobank data were reported to be skewed as wealth-
ier and more educated [70]; this might affect the
generalization of our results. Lastly, we did not take sex
into account in both exposure and outcomes. Besides,
clinical and public health decisions about potential inter-
ventions ideally require evidence about the effect size of
the exposure on outcomes. However, this must be
approached with care since Mendelian randomization
estimate the effects on outcomes of a lifelong exposure
to exposure risk SNPs, rather than an intervention at a
specific time in life for a specific duration [22]. There-
fore, the effect sizes from MR analyses in our study
should not be considered equivalent to those from an
RCT of a short-term intervention [87].

Conclusions
In summary, using public GWAS datasets, we carried
out 2-sample MR analyses to investigate the causal ef-
fects of childhood BMI on adult outcomes. We identified
potential causal effects of childhood obesity on 60 adult
traits. Our results suggested that the adverse effect of
obesity might start early from childhood, but the positive
association between childhood BMI and diseases-related
traits in adulthood can be attributed to individuals
remaining obese in later life.
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