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Abstract

Background:The hospital-adapted A1 group of Enterococcus faeciumremains an organism of significant concern in
the context of drug-resistant hospital-associated infections. How this pathogen evolves and disseminates remains
poorly understood.

Methods: A large, globally representative collection of short-read genomic data from the hospital-associated A1
group of Enterococcus faeciumwas assembled (n = 973). We analysed, using a novel analysis approach, global
diversity in terms of both the dynamics of the accessory genome and homologous recombination among
conserved genes.

Results:Two main modes of genomic evolution continue to shape E. faecium: the acquisition and loss of genes,
including antimicrobial resistance genes, through mobile genetic elements including plasmids, and homologous
recombination of the core genome. These events lead to new clones emerging at the local level, followed by the
erosion of signals of clonality through recombination, and in some identifiable cases producing new clonal clusters.
These patterns lead to new, emerging lineages which are able to spread globally over relatively short timeframes.

Conclusions:The ability of A1 E. faeciumto continually present new combinations of genes for potential selection
suggests that controlling this pathogen will remain challenging but establishing a framework for understanding
genomic evolution is likely to aid in tracking the threats posed by newly emerging lineages.

Background
Enterococcus faecium, a commensal of the gastrointes-
tinal tract, is a common cause of serious hospital-
associated infections [1]. Therapy is complicated by re-
sistance to multiple antibiotics, including vancomycin; as
a consequence, the World Health Organization includes
vancomycin-resistantE. faecium (VRE) on its list of pri-
ority multidrug-resistant pathogens.E. faecium tends to
persist in the hospital environment, leading to outbreaks

without clear transmission chains and the dissemination
of antimicrobial resistance from a variety of sources [2],
making the control of hospitalE. faecium challenging.

Vancomycin resistance occurs in 30–50% of isolates in
some countries and is considered the greatest threat to
successful treatment. Vancomycin resistance is almost
always linked to the presence of thevanA and/or vanB
gene cluster, whose relative frequencies vary in space
and time [3, 4]. Optimal therapy for VRE infections re-
mains uncertain; daptomycin and linezolid are the most
commonly utilised last-line antibiotics. Besides plasmid-
mediated linezolid resistance leading to sporadic out-
breaks, resistance to last-line antibiotics remains
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uncommon [5]. Mutations in any of three genes (liaF,
liaS, liaR) linked to cell wall stress responses, or in genes
for cardiolipin synthase (cls) or glycerophosphoryl dies-
ter phosphodiesterase (gdpD), may confer daptomycin
resistance, while mutations in 23S rRNA, the Cfr rRNA
methyltransferase gene oroptrA may lead to linezolid re-
sistance [6, 7]. It remains unclear whether these resist-
ance mutations arise preferentially on particular gene
sequences or are associated with specific circulating
clones.

Isolates ofE. faecium can be placed in two genomically
distinguishable groups, also referred to in the literature
as “lineages” or “clades”: a hospital-associated lineage
(clade A) and a community-associated lineage (clade B)
[8]. Clade A is further split into clade A1, represented by
human clinical isolates, and several non-A1 sub-clades
[9] that, together with clade B isolates, are rarely found
in hospitalised patients [10]. Previous genomic studies of
A1 E. faecium have revealed substantial levels of genome
plasticity and evidence of clonal outbreaks in individual
hospitals [2]. At the scale of national or regional surveil-
lance, patterns of A1 evolution become more complex;
for example, new clone(s) have been reported that have
outcompeted and ultimately replaced existing clones
(e.g. vanA ST1421 in Australia or vanB ST192 in
Germany) [3, 4]. How local institutional and regional
factors, including infection control and antimicrobial
stewardship, shape the global population structure of
hospital E. faecium, and specifically clade A1, remains
uncertain.

Standard genomic analyses of bacterial evolution em-
ploy phylogenetic modelling of mutations occurring in
the core genome, identified either by mapping to a refer-
ence or identifying SNPs in core genes in de novo as-
semblies. Both approaches disregard much of the
information that impacts inferences of genomic relation-
ships. In addition, when substantial ongoing recombin-
ation is the main driver of genomic diversity,
phylogenetic methods fail to accurately capture co-
ancestry relationships, i.e., they fail to link genomes that
share the most recent ancestors for the largest propor-
tion of their genome (and may instead group together
genomes which have independently acquired a similar
recombinant sequence) [11, 12]. Accordingly, we
adopted a combined analysis approach to examine the
population structure and evolutionary dynamics of this
important hospital pathogen by using similarity in gene
content and proximity in co-ancestry to recover genomic
relationships. Our approach attempts to maximise the
utilisation of genomic information for a large, globally
representative collection of A1E. faecium isolate se-
quences. It defines genomic relationships based on the
presence or absence of genes within the pan-genome,
with subsequent fine-tuning based on admixture

patterns of core-genome SNPs. These data have allowed
us to investigate the size and structure of the Group A1
pan-genome, the population structure that has formed
during its worldwide dissemination, and signatures of re-
peated acquisition of antimicrobial resistance, providing
a new description of the mechanisms involved in the on-
going evolution of a globally significant pathogen.

Methods
Defining A1 group isolates
Short-read sequence data from a total of 1100E. faecium
isolates were contributed by study investigators. Of
these, 321 were newly sequenced and uploaded to NCBI
under project number PRJNA63689 [13], with the
remaining sequences (n = 774) downloaded from NCBI.
Five isolates failed quality checks (using fastQC v0.11.9)
after adapter trimming using trimmomatic v0.38 [14]
and were excluded. To enable previous grouping, the
dataset was supplemented with 52 [clade A1 (n = 14),
clade A2 (n = 28) and clade B (n = 10)] additional se-
quences from Lebreton et al. [8]. Reads were mapped to
Aus0004 (a closed annotated Australian genome, Gen-
Bank: CP003351) using bwa [15]. Single nucleotide poly-
morphisms (SNPs) were identified in each isolate using
FreeBayes [16] with alleles filtered for read depth (> 20),
and mapping quality, requiring 90% of reads to support
a variant allele call. The final SNP matrix included only
variant sites present in > 75% of isolates. Using hierBAPS
[17] with 2 levels of hierarchy and maxK of 20, isolates
were assigned to A1 (n = 997), A2 (n = 109) and B (n =
41) groups [8]. Isolate details and associated metadata
can be found in Additional file1: Table S1.

Pan-genome analysis and clustering of A1 hospital-
associated isolates
Non-enterococcal reads, based on taxonomic k-mer
matches using kraken2 [18], were discarded to prevent
subsequent spurious gene calls as a result of contamin-
ation. Sequences were assembled using SPAdes v3.13.1
[19] under the “careful” option, with assemblies failing
quality metrics excluded (n = 24). Contigs < 2000 bp
were removed and discarded from individual assemblies,
which were annotated using prokka v1.13 [20] prior to
pan-genome discovery using panaroo v1.1.2 [21] under
the “sensitive” mode. This setting is optimised to find all
genes present in all isolates with homologous genes clas-
sified when gene sequences differ by > 5% between iso-
lates. The identified panaroo core-genome was larger
than previous estimates and therefore the analysis was
duplicated using Roary [22].

The panaroo output, a gene presence-absence matrix,
was used to cluster isolates after initial dimension reduc-
tion using Barnes-Hut t-Distributed Stochastic Neigh-
bour Embedding in R with the Rtsne v0.15 package
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https://github.com/jkrijthe/Rtsne [23]. The optimal
number of clusters was evaluated with aid of the fviz_
nbclust function within the R factoextra v1.0.6 package
https://github.com/kassambara/factoextra[24].

Subsequently, cluster membership was refined using
the ChromoPainter tool embedded in FineSTRUCTURE
v2.1.3 [25] with a starting mean recombination rate of
2.3 × 10−7. This method models each genome as a suc-
cession of haplotype fragments from other genomes in
the collection and assigns the closest matching sequence
as the donor haplotype with switches between donors
occurring at ancestral recombination breakpoints. All
these genome sections can then be ascribed or“painted”
according to their inferred origins among groups of re-
lated donor sequences. Isolates with similar admixture
patterns across the majority of their genome, represent-
ing a continuous line of ancestry, signify specific line-
ages. These lineages coalesce to form clusters with
isolates expected to share the greatest proportion (al-
ways > 35%) of their co-ancestry with another isolate
assigned to the same cluster. Conversely, highly admixed
isolates, as a result of numerous recombination events,
could not be assigned to any pan-genome assigned clus-
ter and were excluded from further analysis. For
admixed regions, the likely“donor” isolate (and by infer-
ence the country of origin) can be found by looking for
the isolate that contains the most similar sequence in
the alternative clusters.

Final refined clustering of A1 isolates can be found in
Additional file 1: Table S1.

Phylogenetic and spatial analysis
Maximum clade credibility trees were constructed on
cluster-specific SNP matrices, excluding isolates with
unknown collection dates, following masking of identi-
fied recombination sites using ClonalFrameML [26]. For
each relevant cluster, several population models (con-
stant, exponential and skyline) in combination with vari-
ous clock models (strict, relaxed exponential and
random) were run for 3 × 108 iterations using BEAST
v2.6.1 [27]. Resulting trees were pruned, and a maximum
clade credibility tree was obtained from the optimally
performing model.

A spatial analysis was performed for Cluster 2, with in-
clusion of a geographical trait based on latitude and lon-
gitude co-ordinates and phylogenetic nodes assigned to
a geographical location based on ancestral state recon-
struction. Transmission links for isolates and nodes were
inferred using genomic, spatial and temporal variables
and visualised using SpreaD3 [28] under a discrete trait
model. All isolates and nodes are represented by a net-
work of connecting lines depicting the likely“origin”
and “destination”. Lines are coloured according to“des-
tination” location.

MLST, resistome, virulome and plasmidome analysis
Multi-locus sequence typing was performed using the de
novo assemblies. Isolate resistomes were predicted using
AMRfinder specifying E. faecium [29]. Mutation-based
resistance for daptomycin was predicted by annotation
of variants against the Aus0004 genome. A median-
joining network of the liaFSR genes was constructed
using NETWORK v10.0 [30]. 23S rRNA-based linezolid
resistance was predicted as previously described [31].
The virulome was predicted using blastn against the
downloaded virulence factor database [32]. To determine
genes likely associated with plasmids, we implemented
mlplasmids [33] using de novo assemblies with a poster-
ior probability cut-off of 0.7.

Statistical analysis
Statistical analyses for associations were performed using
the appropriate two-sided statistical test following con-
sideration of the data distribution. Ap value < 0.05 was
considered significant, with all calculations performed
using the R stats package v 3.4.4 [34].

Results
Defining group A1 isolates in a global collection of
hospital E. faecium
Groups that had previously publishedE. faecium gen-
ome data were invited to contribute. Participants were
requested to provide short-read sequence data repre-
senting randomly selected isolates, spread across time,
from collections of vancomycin-susceptible and
vancomycin-resistantE. faecium originating from hospi-
talised patients in any country, ensuring that isolates
from the same hospital were not enriched for known
outbreaks, based on local epidemiological data.

Sequence variation identified through mapping reads
to a reference genome was used to cluster isolates with
hierBAPS [17], recovering the previously published A1
(n = 997), A2 (n = 109) and B (n = 41) groups. Of the A1
isolates, 24 subsequently failed de novo assembly quality
filters and were excluded, leaving 973 A1 isolates origin-
ating from 31 countries, spanning a 30-year period
(1986–2016) for analysis in this study.

Heterogeneity among group A1 hospital E. faecium
isolates
To study the relationships amongE. faecium A1 isolates,
a pan-genome analysis based on de novo-assembled ge-
nomes, investigating large-scale variation comprising the
presence and absence of genes and distinct forms of
genes, was undertaken using Panaroo [21]. The 973 A1
isolates were separated into 10 clusters (Fig.1a).

Recognising the role of homologous recombination as
a dominant, recurring force in the continuing genomic
evolution of E. faecium, the assignment of isolates to
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pan-genome clusters was refined using chromosome
painting [25]. This analysis traces the signal of co-
ancestry shared between isolates, based on reads mapped
to a reference core genome sequence of 1926 genes
(those present in > 95% of isolates), and provides a“fin-
gerprint” that distinguishes all but the most closely re-
lated isolates. Chromosome painting identified 78

isolates, typically visualised at the edges of the pan-
genome clusters (Fig.1a, b), whose core genomes re-
vealed substantial ancestry in multiple clusters. For the
remaining 895 isolates, aggregating fragments of se-
quence including those transferred between lineages, a
mean of 81% (IQR 75–89%) of an isolate’s core genome
shared co-ancestry with other isolates within the cluster.

Fig. 1 Clustering among global A1 isolates. a Clustering of 973 E. faeciumgroup A1 isolates based on the presence or absence of genes within
the pan-genome identified using Panaroo. Labelled clusters are represented on a reduced dimensionality 2-D grid with member isolates coloured
as shown in the legend. At a core-genome SNP level isolates within the same cluster are expected to share the same ancestry across the majority
of their genomes. Using ChromoPainter, substantial core-genome admixture was detected in the 78 grey-shaded isolates, resulting in their
exclusion from the designated pan-genome clusters. b The levels of admixture of the aforementioned 78 grey-shaded isolates in a (left) are
contrasted with estimated admixture of 78 randomly chosen isolates from the remaining 895 isolates. The x-axis label shows the initial cluster
assignment based on the pan-genome with the y-axis bars representing co-ancestry signals originating from other clusters, using the same
colours as in a
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Pan-genome and plasmidome
Panaroo identified 15,788 genes and gene variants
among A1 isolates, with a median genome size of 2781
identifiable genes. Along with 1926 genes present in >
95% of isolates, 2084“shell” genes were found in 10–
95% of genomes, arranged in groups of similar frequency
hinting at assemblages of genes shared across multiple
clusters. These estimates were recapitulated using Roary
[22] and are larger than previously reported, indicating
the influence of non-human isolates in limiting core-
genome size estimates in other studies [10]. A substan-
tial proportion (854; 40.9%) of genes were identified on
plasmids (Additional file 2: Figure S1), providing evi-
dence of plasmid gain contributing to cluster emergence
and diversification with 129 of the 366 cluster-associated
genes occurring on a plasmid in at least one isolate
(Fig. 2). The total frequencies of plasmid-derived genes
were similar across clusters. Most of the remaining 11,
778 genes (76% of the total) were found in no more than
a handful of closely related isolates (< 5% of isolates),
reflecting in each case a probable single acquisition from
an outside source. Although the average nucleotide di-
versity for core genes was low (pi = 0.0056); substantial
variability, through the identification of homologues with
> 5% divergence, in some ubiquitous genes including
housekeeping genes (adk, atpA and pstS) was noted.
These patterns likely indicate a single clonal expansion

leading to A1 with infrequent replacement of function-
ally constrained genes from outside theE. faecium
species.

Patterns of A1 dissemination and admixture
Genome-wide nucleotide diversity among A1E. faecium
isolates is small, stemming from its origin as a hospital-
restricted clone. Nevertheless, it is possible to detect
core genome lineages that have arisen by a combination
of mutation and admixture with non-A1E. faecium. Of
the 10 clusters, some (9, 10) were found almost entirely
in one geographic location (country), while others were
limited to geographical regions (clusters 3 and 4 in Asia
and clusters 5 and 7 in Europe). Samples in the
remaining clusters (1, 2, 6, 8) originated from highly
overlapping, indistinct territories within Europe or inter-
nationally (Additional file 2: Figure S2). The genome se-
quences assigned to each of the generalised European/
world clusters typically include many of the oldest sam-
ples (especially cluster 2) in contrast with geographically
specific clusters (Additional file2: Figure S3). The rela-
tionship between time-depth of sampling and diversity
suggests that A1 has evolved and disseminated over
timescales comparable with sampling times, i.e. decades.

We next focus on three selected clusters to examine
and illustrate distinct patterns of adaptation, admixture
between clusters and networks of spread. Cluster 5

Fig. 2 Cluster-associated genes. All 366 genes significantly associated (p < 0.05) with pan-genome clusters are depicted with chromosomal and
plasmid-derived genes coloured blue and red respectively. Of the 366 cluster-associated genes, 129 genes occurred on a plasmid in at least one
isolate. Genes (along the x-axis) are grouped by cluster (along the y-axis) as depicted in the legend. No gene was exclusively limited to any one
cluster, with the largest complement of genes associated with cluster 5 (n = 107)
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