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Whole-genome sequencing of
phenotypically distinct inflammatory breast
cancers reveals similar genomic alterations
to non-inflammatory breast cancers

Xiaotong Li"?, Sushant Kumar'?, Arif Harmanci®, Shantao Li', Robert R. Kitchen'?, Yan Zhang'®’, Vikram B. Wali?,
Sangeetha M. Reddy®®, Wendy A. Woodward'®"", James M. Reuben'®'?, Joel Rozowsky'?, Christos Hatzis?,
Naoto T. Ueno”'®, Savitri Krishnamurthy'”, Lajos Pusztai® and Mark Gerstein'="1%"

Abstract

Background: Inflammatory breast cancer (IBC) has a highly invasive and metastatic phenotype. However, little is
known about its genetic drivers. To address this, we report the largest cohort of whole-genome sequencing (WGS)
of IBC cases.

Methods: We performed WGS of 20 IBC samples and paired normal blood DNA to identify genomic alterations. For
comparison, we used 23 matched non-IBC samples from the Cancer Genome Atlas Program (TCGA). We also
validated our findings using WGS data from the International Cancer Genome Consortium (ICGC) and the Pan-
Cancer Analysis of Whole Genomes (PCAWG) Consortium. We examined a wide selection of genomic features to
search for differences between IBC and conventional breast cancer. These include (i) somatic and germline single-
nucleotide variants (SNVs), in both coding and non-coding regions; (i) the mutational signature and the clonal
architecture derived from these SNVs; (i) copy number and structural variants (CNVs and SVs); and (iv) non-human
sequence in the tumors (i.e, exogenous sequences of bacterial origin).
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Results: Overall, IBC has similar genomic characteristics to non-IBC, including specific alterations, overall mutational
load and signature, and tumor heterogeneity. In particular, we observed similar mutation frequencies between IBC
and non-IBC, for each gene and most cancer-related pathways. Moreover, we found no exogenous sequences of
infectious agents specific to IBC samples. Even though we could not find any strongly statistically distinguishing
genomic features between the two groups, we did find some suggestive differences in IBC: (i) The MAST2 gene was
more frequently mutated (20% IBC vs. 0% non-IBQ). (i) The TGF § pathway was more frequently disrupted by
germline SNVs (50% vs. 13%). (iii) Different copy number profiles were observed in several genomic regions
harboring cancer genes. (iv) Complex SVs were more frequent. (v) The clonal architecture was simpler, suggesting

more homogenous tumor-evolutionary lineages.

Conclusions: Whole-genome sequencing of IBC manifests a similar genomic architecture to non-IBC. We found no
unique genomic alterations shared in just IBCs; however, subtle genomic differences were observed including
germline alterations in TGFB pathway genes and somatic mutations in the MAST2 kinase that could represent

potential therapeutic targets.

Keywords: Inflammatory breast cancer, Whole-genome sequencing, Single nucleotide variant, Copy number

variant, Structural variant

Background

Inflammatory breast cancer (IBC) is a rare form of breast
cancer with very little known about its molecular etiology
that is responsible for its aggressive clinical course. IBC
accounts for 2—-4% of all breast cancers in the USA [1]
and causes 7-10% of breast cancer-related deaths in
Western countries [2, 3]. IBC includes all known molecu-
lar subtypes of breast cancer, but they are considerably
more aggressive than in non-IBC, with poorer disease-free
survival and overall survival [2, 4]. The disease often pre-
sents with rapidly progressing symptoms of swelling of the
breast, redness, and thickening of the skin of the breast
which resembles an active inflammatory process, which
led to the name of the disease. However, the symptoms
are not caused by inflammatory cells, but by cancer cells
blocking lymph vessels in the skin and breast parenchyma
[5]. IBC also has a propensity for rapid dissemination and
distant metastatic spread. Gene expression profiling stud-
ies have not revealed any consistent IBC-specific gene ex-
pression patterns; consequently, there is no molecular
diagnostic test to define this disease [4, 6]. The diagnosis
is based on the unique and rapidly progressive clinical fea-
tures of the cancer. Targeted sequencing of ~ 200 cancer-
related genes in IBC showed that the most frequently al-
tered gene was TP53, with reported frequencies between
43 and 75% [7-9]. Currently, there is no whole-exome or
whole-genome sequence data available for IBC and its
DNA level alterations have not been characterized. We
hypothesize that specific DNA sequence changes in the
coding or non-coding regions of the genome may be re-
sponsible for the unique phenotype of IBC. The goal of
this project was to perform deep characterization of the
complete genomic features of IBC specimens to identify
IBC-specific sequence alterations that could potentially
explain its etiology and provide new diagnostic markers.

Methods

Tissues

Twenty IBC tissues and paired normal DNA from blood
were obtained from the Morgan Welch Inflammatory
Breast Cancer Research Program and Clinic at MD An-
derson Cancer Center under an IRB-approved study. All
IBC tissues were individually reviewed by a breast path-
ologist (Savitri K.) and a clinical investigator (N.U) for
accuracy of diagnosis and to ensure tumor cellularity >
60%. All patients provided informed consent for gen-
omic analysis of their cancer and germline DNA.
Characteristics for 20 IBC patients are shown in
Additional file 1: Table S1. Twenty-three non-IBC
samples were selected from the Cancer Genome
Atlas (TCGA) study of breast cancer cohort that
were proportionally matched by molecular subtype,
clinical stage, age, and race. This was done to ensure
that various covariate distributions were similar be-
tween the IBC and the non-IBC samples studied in
this project. Characteristics for those selected non-
IBC samples are shown in Additional file 1: Table
S1.

DNA extraction

DNA was extracted from the snap frozen core needle bi-
opsy of the breast tumor and peripheral blood using the
QiAamp DNA Mini kit (Qiagen). The tissue was dis-
rupted in buffer ATL, homogenized, and then lysed
using Proteinase K. Buffer AL and ethanol was then
added to the lysate creating conditions that promoted
selective binding of the DNA to the QIAamp spin col-
umns. The sample was then applied to the mini spin col-
umns. The DNA bound to the membrane was eluted in
buffer TE at pH 8.0.
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Whole-genome sequencing

One-microgram germline and tumor DNA were used
for WGS that was performed under a Yale IRB-approved
protocol (HIC #1406014226). It was performed on the
[lumina HiSeq 2500 sequencing platform at Macrogen.
The samples were prepared according to the Illumina
TruSeq DNA library preparation guide. The 150-base
pair (bp) paired-end libraries were sequenced with me-
dian coverage of 60X for the tumor samples and 40X for
the matched normal samples. Detailed sequencing infor-
mation, including sequencing depth, raw and mapped
read numbers, and mapping rates, is summarized in
Additional file 2: Table S2.

Sequence alignment and qualify control

We mapped raw FASTQ files for tumor and matched
normal samples for 20 IBC samples to the hgl9 refer-
ence genome using BWA-MEM [10] algorithm with de-
fault parameters. Subsequently, reads were sorted and
duplicate reads were marked using Samtools [11] and
Picard tools (http://broadinstitute.github.io/picard) to
obtain the final set of BAM files for variant calling. The
BAM files have been deposited in the European
Genome-Phenome Archive (EGA) under EGA accession
EGAS00001004117 (https://wwwdev.ebi.ac.uk/ega/
studies/EGAS00001004117). For the non-IBC samples,
we followed the same procedure. Details of sequencing
for each sample are summarized in Additional file 2:
Table S2.

Germline SNV and INDELs calling

For both IBC and non-IBC cohorts from TCGA, we gen-
erated the germline SNVs and INDEL call set using the
GATK tool [12]. Briefly, we followed the GATK best
practice to call germline variants. We realigned the ori-
ginal bam using IndelRealigner and base recalibrator
module in the GTAK. Subsequently, variants were called
using GATK HaplotypeCaller algorithm. Raw variants
were filtered using the variant recalibration module in
the GATK. Briefly, the variant recalibration method uses
a continuous adaptive error model, while taking into ac-
count of the relationship between variant and the prob-
ability of it being a true positive instead of a sequencing
artifact.

Somatic SNV and INDELs calling

We called somatic variants for IBC and non-IBC sam-
ples from TCGA using MuTect [13] and Strelka [14]
tools. Briefly, these tools take tumor and matched nor-
mal bam files as input to identify somatic variants sup-
ported by minimum number of reads. Somatic SNVs in
this study were based on MuTect and Strelka, whereas
somatic INDELs were called using Strelka. The initial
PASS only call set obtained from both MuTect and
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Strelka were further filtered for potential germline con-
taminated call by removing common variants as defined
in the 1000 Genomes Project [15]. Furthermore, we also
removed somatic SNVs and INDELs falling outside the
high mappability regions of the genome as defined by
the Genome in a Bottle Consortium (GIAB) [16]. Finally,
we took the intersection of MuTect and Strelka call sets
and removed those somatic SNVs and INDELs that ap-
peared in germline call set.

Detection of loss of heterozygosity (LOH) in tumor DNA
For each site of germline SNV identified from a normal
blood sample, we determined the corresponding somatic
genotype in tumor DNA by using Samtools [11] and
Bcftools [17], which reported information for reference
allele, alternative allele, allele count, and allele frequency.
An LOH event was identified when the site met these
two criteria: (i) it was called as a heterozygous variant
(alternative allele frequency = 0.5) in normal blood DNA
and (ii) it was shown as homozygous (alternative allele
frequency = 0 or 1) in tumor DNA.

Somatic SV calling

We applied Meerkat [18] to identify somatic structural
variants in the IBC and the non-IBC cohorts from
TCGA. Briefly, Meerkat extract soft-clipped and un-
mapped reads from the bam files. These reads are subse-
quently remapped to the reference genome using BLAT
[19] to identify discordant read pairs for SV discovery.
Meerkat also characterizes breakpoint around the SVs to
assign the underlying mechanism generating SVs. Meer-
kat generated SVs were further filtered based on mapp-
ability criterion and supporting read pairs > 2.

Identification of somatic CNVs

We implemented BIC-Seq2 [20] to call somatic CNVs
using default parameters. In the SeqNorm step, we set
read length to 151 bp and bin size to 1000 bp. The frag-
ment size was calculated using the first one million
properly mapped reads with mapping quality at least 20
in the BAM files.

We also used a signal processing approach for filtering
the somatic copy number segments (sCNSs) identified
by BIC-Seq2 in the last step. In this analysis, we focused
on large-scale events affecting > 100 kB in length. Below
are the specific procedures:

1. For each sample, compute the read depth (RD)
signal levels using the mapped reads. This is done
by counting the number of reads that overlap with
each base. For each patient, we computed RD signal
for tumor and the matching normal tissue.

2. Next we normalized normal tissue profiles using
reads per million normalization. Given /™ sample’s
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tumor and normal signal profiles, we multiplied the
normal signal profile with the ratio of total RD
signal in tumor and total RD signal in normal.

RDy (i) = RD, (i) x =22l

>_RD,(j)

RD,(i) denotes the normalized normal RD signal at i"

base position in the genome.

3. We next divided the genome into 3000 bp bins and
computed the total tumor signal and normal
sample’s normalized RD signal in each bin.

4. We next computed the log ratio (LR) profiles by
dividing the total tumor RD signal by normal
sample RD signal in each bin and computing the
log, of this ratio. This profile represents a measure
of the deletions (LR < 0) and amplifications (LR > 0)

where ¢, = [(b-1) -y, b+ Ip;,) represents the base posi-
tions for 5" bin.

5. The LR profile is generally extremely noisy. We use
median-based smoothing to smooth the signal. We
use a sliding window approach where window size
is set to 1000 bins and replace the LR value at each
bin with the median of the LR values within the
1000 bins’ vicinity. The smoothing operation
removes substantial amount of noise from the LR
signal

LR(b) = median(LR(b—lys,), ..., LR(D + Lyin))

6. Next, we identify SCNS by evaluating the regions
where smoothed LR is constant. On each sCNS, we
assign the tumor-to-normal log ratio signal by com-
puting the ratio of total tumor to total normal RD
signal. The segments with LR < 0 are assigned as de-
letions and segments with LR > 0 amplifications. We
denote the LR value for segment s on sample k with
LR
Finally, we only took the strongest calls from BIC-
Seq2, after filtering by the signal processing ap-
proach introduced above, as the final call set. Copy
number gain was defined as log2 (tumor/expected)
ratio > 0.2. Copy number loss was defined as log2
(tumor/expected) ratio < — 0.2.
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Functional annotation and impact prediction

Both somatic and germline SNVs were annotated by
FunSeq2 [21]. Since non-coding variants in regulatory
elements (promoter, enhancer, etc.) can be associated
with potential target genes, this pipeline helps to identify
both coding and non-coding variants of a given gene.
Additionally, functional impact of each variant was pre-
dicted by PredictSNP2 [22], which could be neutral,
deleterious, or unknown. Only deleterious (high func-
tional impact) variants were selected for gene and
pathway-level analysis.

Identification of candidate driver genes

Candidate driver genes in IBC cohort were detected by
ActiveDriverWGS [23] with default parameters. Final
call sets for all somatic SNVs in IBC samples were used
as input. Coordinates of genes were extracted from En-
semble database under hgl9 reference genome, using
biomaRt package [24]. Genes with FDR < 0.05 were iden-
tified as candidate drivers.

Mutation spectra and mutational signatures

Somatic SNVs across the whole genome were analyzed
in single nucleotide and tri-nucleotide context, respect-
ively. DeconstructSig [25] was used to deconstruct the
mutation spectrum (96 possible tri-nucleotide combina-
tions) of each sample into 30 reference mutational signa-
tures in the COSMIC database [26], in order to calculate
the weight of each reference signature.

Estimation of number of clones

We implemented SciClone [27] to estimate the number
of clones for each IBC and non-IBC sample. First, all
somatic SNVs with allele frequency higher than 0.6 were
removed from the input file as they were likely affected
by copy number loss events. Next, function “sciClone”
was called with “minimumDepth” set as 14 and “cluster-
Method” set as “binomial.bmm”. Finally, the output of
the function reported the predicted number of clones
detected in the given sample. After repeating the above
procedures for all IBC and non-IBC samples, the pre-
dicted numbers of clones were compared between two
cohorts by Fisher’s exact test.

Evolutionary trees build-up using PhyloWGS

We used PhylowWGS [28] to infer the evolutionary
trees for each individual sample. We followed a similar
workflow as previously described [29]. Somatic SNVs
from the consensus calls of Strelka and Mutect were
used. The observed alternative allele and reference allele
counts were from Strelka. To remove copy number ef-
fects, we removed SNVs in the regions with an absolute
“log2.copyRatio” (log2 tumor to normal copy number ra-
tio, reported by BIC-Seq2) higher than 0.2 and p-value
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lower than 0.01. Then, we ran PhyloWGS [28] using de-
fault parameters and set genders all to female. We only
plotted and analyzed the tree with the highest likelihood
reported by PhyloWGS.

Estimation of tumor purity

In order to estimate the tumor purity for each IBC tumor
sample, a computational pipeline called PurBayes [30] was
implemented with default parameters. Estimation results
were summarized in Additional file 3: Table S3.

Microorganism sequences’ detection and enrichment

In order to identify sequences that are potentially of ex-
ogenous origin and not arising of the host genome, we
modified a portion of the exceRpt pipeline that was de-
veloped for the identification of endogenous and ex-
ogenous extracellular RNAs [31]. After reads are aligned
to the host genome, we performed a second pass align-
ment against the host genome in order to remove se-
quences that might potentially come from the host
human genome. We then removed reads that align with
a high number of mismatches (5 mismatches per 100
bp). We also filter out reads that align against repetitive
sequences in the human genome and reads that multi-
map up 200 locations in the human genome. While we
cannot confidently assign these reads to the human gen-
ome, the goal is to filter them out in order to obtain a
set of reads that we are confident that do not come from
the host human genome.

These reads are then aligned against indices for a set
of full genomes for all sequenced bacteria, viruses,
plants, fungi, protist, metazoa, and the following 12 ver-
tebrate genomes: chicken, cod, cow, dog, duck, frog,
horse, rabbit, pig, sheep, tilapia, and turkey. Since many
exogenous genomes have a high degree of sequence
similarity based on evolution, we find that many reads
that align to an exogenous genome align to multiple ge-
nomes. By default, the pipeline allows for no mismatches
during this step (in order to be as conservative as pos-
sible in identifying possible exogenous sequences). We
assign reads that align to exogenous genomes to the pos-
ition in the phylogenetic taxonomy tree based on the
node that is most parsimonious with the different ge-
nomes that the read aligns.

Validation cohorts

In order to validate key genomic findings identified from
IBC cohort, we expanded our analysis to multiple other
cohorts, including breast cancer and other types of can-
cers, as well as general population. More specifically, we
investigated high-functional impact mutation frequen-
cies of genes and pathways in (1) PCAWG breast cancer
cohort [32], (2) twenty-three types of primary cancers
from ICGC (https://dcc.icgc.org/), and (3) general
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population data from The Genome Aggregation Data-
base [33].

Statistical analysis

There are two types of statistical testing methods used
in this study: (1) Wilcoxon rank-sum test and (2) Fish-
er’s exact test. Wilcoxon test was implemented when
comparing median of IBC and non-IBC samples. Fisher
exact test was used when comparing fraction of IBC and
non-IBC samples in each category. All original p-values
from above tests were adjusted by the very conservative
Bonferroni correction. Adjusted p-values<0.05 were
considered statistically significant. Additionally, we im-
plemented randomization test to validate the statistical
significances by three steps: (1) mix IBC and non-IBC
samples and randomly assign them to two groups, (2)
test the significance under new sample labeling, and (3)
Repeat the analysis for 1000 times and summarize the
statistics. All statistical analysis was performed by R soft-
ware (https://www.r-project.org/). R packages ggplot2
(http://ggplot2.org), ComplexHeatmap [34], and RCircos
[35] were used to visualize the results.

Results

Somatic mutation burden and functional annotations
WGS identified 114,563 somatic SNVs in 20 IBC sam-
ples (range 424—16,662 per tumor; median 3789), among
which 1282 variants (1.12%) were in coding regions. IBC
and non-IBC showed similar mutation rate per mega-
base (MB) (Fig. 1a). The number of somatic coding and
noncoding SNVs were similar between the IBC and
non-IBC cohorts (Fig. 1b). Noncoding somatic SNVs
were annotated with FunSeq2 [21] into 20 different,
non-overlapping functional categories. The number of
somatic SNVs within each annotation category was simi-
lar between the two cohorts (Fig. 1c, d).

Mutation spectra and mutational signatures

IBC has similar proportions of base changes as non-IBC,
for all single-nucleotide mutation contexts (C>A, C>G,
C>T, T>A, T>C and T>G) (Additional file 4: Fig. Sla)
(Wilcoxon test, adjusted p-values>0.05 by Bonferroni
method), as well as tri-nucleotide mutation contexts
(Additional file 4: Fig. S1b) (Wilcoxon test, adjusted p-
values >0.05 by Bonferroni method). The mutation
spectrum of each sample was deconstructed using
DeconstructSig [25] into 30 reference mutational signa-
tures in the COSMIC database [26]. IBC and non-IBC
samples showed no difference in mutational signature
distribution (Additional file 4: Fig. S1c) (Wilcoxon test,
adjusted p-values> 0.05 by Bonferroni method). In par-
ticular, there was no difference in signature 3, which has
been associated with homologous recombination defect
(HRD) in breast cancer [36]. Statistical comparison of
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weights of signature 3 indicates that IBC samples have
similar degree of HRD to non-IBC ones (Additional file
4: Fig. S1d) (Wilcoxon test, p = 0.85).

Copy number variants and structural variants

Copy number loss or gain events were mapped into 1-
MB-sized bins across the entire genome (Fig. 2a, Add-
itional file 4: Fig. S2). For each bin, frequencies of copy
number loss or gain events were summarized separately
and then compared between IBC and non-IBC cohorts.
For copy number gain events (defined as log2 (observed
tumor/expected) ratio >0.2), 108 peaks showed signifi-
cantly different frequencies between two cohorts, locat-
ing at chromosome 1, 3, 6, 16, 17, 19, and 20
(Additional file 5: Table S4) (Fisher’s exact test, p-
values< 0.05), in contrast to 34 significant peaks reported
by the randomization test (median, 34; minimum, 16;
maximum, 62). On the other hand, for copy number loss
events (defined as log2 (observed tumor/expected) ra-
tio < - 0.2), 221 peaks showed significantly different fre-
quencies between two cohorts, locating at chromosome
1,2,4,5,9, 10, 11, 12, 15, 16, and 17 (Additional file 5:
Table S4), in contrast to 57 significant peaks reported by
the randomization test (median: 57; minimum: 38;

maximum: 80). There were 26 cancer-related genes in-
volved in these differentially affected genomic regions
(Additional file 6: Table S5), including LRPIB as a puta-
tive tumor suppressor gene, and ERBB4 as a member in
the EGFR subfamily of receptor tyrosine kinases.

Large structural variants were classified into five cat-
egories: deletion, insertion, inversion, tandem duplica-
tion, and inter-chromosomal translocation (Fig. 2c). The
fraction of large somatic SVs in each category was com-
pared between IBC and non-IBC cohorts. IBC showed
significantly higher fraction of complex events than non-
IBC, including tandem duplications (median 0.093 vs.
0.045) (Wilcoxon test, Bonferroni adjusted p =5.5e-07)
and inversions (median 0.154 vs. 0.088) (Wilcoxon test,
Bonferroni adjusted p =5.5e-04) (Fig. 2d). On the con-
trary, IBC showed significantly lower fraction of large
deletions (Wilcoxon test, Bonferroni adjusted p = 0.004)
and insertions (Wilcoxon test, p =3.4e-06), compared
with non-IBC samples. Additionally, comparison of the
absolute numbers of somatic SVs in each category also
presented significant differences (Additional file 4: Fig.
S3). For small insertions and deletions (INDELs), both
categories of mutations reported similar numbers be-
tween IBC and non-IBC cohorts (Additional file 4: Fig.



Li et al. Genome Medicine (2021) 13:70

Page 7 of 14

a

8

6 M

4

2 H
] | Il !‘W \\
§ " w 1l ” T
o 0
E o w0 b
[
o
3
S 4
w

6

8

1 2 3 4 5 3 77 VE 9 10 1 12 13 14 15 16 17 1819202122
Chromosome

10

5
0
2
[
E. 0
I
g8

5

10

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 1819202122
Chromosome
Bonferroni method

Fig. 2 Somatic copy number variants and structural variants. a Somatic copy number profile of the IBC cohort. X-axis represents genome
coordinates ordered by chromosomes. Y-axis shows the frequency of copy number gain (red) and copy number loss (blue) in 1 Mb-length bins
across the genome in IBCs. b Significance of differences of copy number profiles between IBC and non-IBC cohorts. X-axis shows genome
coordinates by chromosome and the Y-axis shows the log-transformed p-value from the Fisher's exact test, obtained from the comparison of
frequencies of copy number gain (pink) and copy number loss (light blue) events between two cohorts. Dashed lines represent p-value = 0.01. All
significant peaks (Bonferroni-adjusted p-value < 0.01) have less frequency in IBC, for both copy number loss and gain events. ¢ Number of
somatic SVs in individual IBC and non-IBC samples. Shades represent the types of somatic SVs. d Fractions of each type of somatic SVs in IBC and
non-IBC cohorts. Each dot represents a sample color-coded by its ER status. P-values were calculated by Wilcoxon test and adjusted by

(o] % IBC

Number of somatic SV
20 0 w0 0 fom tao

i 2

et

P 3 g g
i i 3 i i i 3

Non-IBC

S—

0 2500

Number of somatic SV
S0 w00 1500 o

N

]

H
B 5 o2

i s f o8 § &8 8

I

s
§
i
8

3 | =3 2 e
5 ¢ ' 5 s p= 3.356-06 k) p=5.5e-04
c c® 5 .
s S N S ——
F] - 5 - R =] .
g p=0.004 B mas g == e
| BEE . =
IBC  Non-IBC IBC  Non-IBC IBC  Non-IBC
= o e ——
£ =5.5-07 T 3
L = g Ef'fl = ]
2 - < > —
%E - E 3 —
2 EE o |k
§o s =0.165
g ==K NI
—— ] &[]
IBC  Non-IBC IBC  Non-IBC

S4). Circos plots summarizing the combined germline and
somatic genetic aberrations detected from WGS for each
individual IBC are shown in Additional file 4: Fig. S5.

High functional impact mutations and affected genes

High-functional impact (HFI) somatic SNVs were se-
lected based on the deleteriousness predictions reported
by PredictSNP2 [22], including both coding and noncod-
ing SNVs. Affected genes were then extracted for each
sample, and their mutation frequencies were compared
between two cohorts. Our analysis showed that all genes
with at least one high-functional impact somatic SNVs
in the IBC cohort were similarly affected in the IBC and
non-IBC cohorts (Fisher’s test, Bonferroni adjusted p-
values> 0.05). For IBC, the top 20 genes most frequently
affected by deleterious somatic SNVs included LSAMP,
GPC6, and TP53 among others (Fig. 3a). The top 20
most frequently affected genes by coding and non-

coding deleterious somatic SNVs were summarized in
Additional file 4: Fig. S6a and Additional file 4: Fig. S6b,
respectively. Additionally, thirteen candidate driver
genes were detected with ActiveDriverWGS in the IBC
cohort (FDR<0.05) (Fig. 3b). However, all of them
showed similar mutation frequencies between the IBC
and the non-IBC cohorts (Fisher’s test, Bonferroni ad-
justed p-values> 0.05) (Fig. 3b).

Notably, we identified four of 20 (20%) IBCs had
unique predicted deleterious mutations in the non-
coding (promoter and intron) region of MAST2 (Micro-
tubule-Associated Serine/Threonine-Protein Kinase 2),
while no deleterious mutation was detected in any of the
23 non-IBC cases in our cohort. In the PCAWG [32]
breast cancer cohort, we could find only 1 out of 198
samples (0.5%) having a mutation in this gene. In the
largest WGS study for breast cancer (BRCA-EU from
The ICGC Breast Cancer Project), the mutation
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25% AUTS2 26% AUTS2
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15% CDH12 22% CDH12

15% DPP10 26% DPP10

10% Cborf24 0% Csorf24

10% BAI3 13% BAI3

5% NAV2 17% NAV2
Fig. 3 Affected genes by deleterious somatic SNVs. a The top 20 most frequently affected genes in the IBC cohort. b Candidate driver genes
identified by ActiveDriverWGS (FDR < 0.05). Mutations in both coding and non-coding regions of a gene are shown. Each column represents one
case (IBC or Non-IBC). Each row shows one gene. All genes in panel a and b had similar mutation frequencies in IBC and non-IBC cohorts
(Fisher's test, Bonferroni-adjusted p-values> 0.05)

frequency of MAST2 was 1/569 (0.18%) [37], which was
significantly lower than our IBC cohort (Fisher’s test,
Bonferroni adjusted p = 0.024). We also determined the
frequency of high-functional impact mutations in the
MAST?2 gene in the ICGC Data Portal (https://dcc.icgc.
org/), for 22 different primary cancer sites. We found
that the two highest mutation frequencies were in thy-
roid cancer (3/50 =6%) and nasopharyngeal cancer (1/
21 =4.76%), while the frequencies were < 2% in all other
cancer types.

Alterations of cancer-related signaling pathways
We investigated pathway-level aberrations in 14 cancer-
related biological pathways [38]. For somatic SNVs, none

of these pathways had significantly different mutation
frequencies between the IBC and non-IBC cohorts (Fish-
er’s test, Bonferroni adjusted p>0.05) (Fig. 4 (a)). For
germline SNVs, the IBC cohort showed a significantly
lower frequency of aberrations in the immune regulation
pathway than non-IBC (Fisher’s test, Bonferroni adjusted
p=0.009) (Fig. 4 (b)). Randomization test (N =10,000)
showed that the probability of observing a significant
difference in the immune regulation pathway was 21/10,
000 = 0.0021, which is significant.

Previous studies have identified the TGF 5 pathway as
a potential therapeutic target in IBC [39, 40]. In this
study, we observed a numerically higher (but not statisti-
cally significant after correction for multiple testing)
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mutation frequency of predicted deleterious germline
SNVs in the TGF S pathway in IBCs (50% vs. 13%, Fish-
er’s test, Bonferroni adjusted p = 0.25) (Fig. 4 (b)). Seven
IBC cases (35%) had deleterious germline SNVs in either
SMAD4 or USP9X, both involved in TGEp signaling; one
of these cases had variants in both the coding and non-
coding regions and the rest of cases only had non-
coding variants (Additional file 7: Table S6). However,
none of the non-IBC cases had any deleterious germline
SNVs in these two genes in the coding or non-coding
regions (Fig. 4 (c)). We did not observe any LOH event
at the corresponding genomic locations in the tumor
DNA (Additional file 7: Table S6). Notably, none of
these deleterious germline SNVs was detected in the
ICGC breast cancer cohort (1z=1970), and they are also
very rare in the general population, with variant allele
frequency (VAF) <0.007 in The Genome Aggregation
Database (1 = 141,456) [33] (Additional file 7: Table S6).

Clonal architecture and evolutionary trees

IBC had similar mutant-allele tumor heterogeneity
(MATH) [41] as non-IBC cases (Fig. 5a). For each sam-
ple, the number of clones was estimated by SciClone
[27], based on the model fitting procedures on the distri-
bution of variant allele frequencies (Additional file 4:
Fig. S7 and Additional file 4: Fig. S8). The results re-
vealed that 6/20 (30%) IBC cancers were clonal (consist-
ing of only one clone), whereas all non-IBC cases had at
least two clones (Fisher’s test, p =0.006) (Fig. 5b). We
then constructed evolutionary trees for each case to fur-
ther explore the mutational process heterogeneity as
previously described [29] (Additional file 4: Fig. S9).
These trees were derived from the whole-genome muta-
tion calls, with their topology suggesting a temporal or-
dering to the mutations. We could classify the trees into

two groups based on their topology: branching or linear
(Fig. 5c). Nine out of 20 (45%) of IBC cancers were lin-
ear, which is significantly more than non-IBC cases (3/
23, 13%) (Fisher’s test, p = 0.039) (Fig. 5d and Additional
file 4: Fig. S9). Our results illustrated that IBC is evolu-
tionarily more homogeneous than non-IBC, with less
clonality and less complex evolutionary features. These
findings may result from the faster growth of IBC tu-
mors, compared with non-IBC ones.

Microorganism sequences’ detection and enrichment

As IBC clinically mimics bacterial infection of the breast
and/or skin [42], therefore, we also looked for infectious
agents in the IBC tumor tissues. We applied a modified
exceRpt pipeline [31] to examine the sequence reads that
did not map to the human reference genome, in order
to detect microorganism sequences in the DNA of IBC
and matching normal samples. The top 100 most fre-
quent microorganism sequences in all samples including
cancer and normal were highly enriched in Propionibac-
terium acnes (Additional file 4: Fig. S10). P. acnes is a
ubiquitous skin bacterium that represents a common
source of contamination in sequencing studies that can
originate from the patient or acquired during tissue
handling [43]. We found no infectious agent DNA spe-
cific to the IBC cancer samples, which diminished the
possibility that IBC was caused by bacterial infection.

Discussion

Our study is the first WGS analysis of IBC. We could
not identify a single genomic abnormality that is shared
by all samples and therefore could molecularly define
IBC. IBC tissues showed similar mutation load, muta-
tional spectra, and mutation signatures as non-IBC, and
most somatic mutations occurred at similar frequencies
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in both cohorts. We did not detect any cancer-specific
infectious agents in the DNA extracted from IBC tissues.
However, we did identify several subtle genomic differ-
ences that distinguished IBC from non-IBC in our co-
hort. The non-coding region of the MAST2 gene was
mutated at a higher frequency than what reported in any
previous WGS analysis of breast cancer. In our IBC co-
hort, 20% of the cases had a mutation, while the muta-
tion frequency of this gene in coding or non-coding
regulatory regions is between 0.18 and 0.5% in non-IBC
cases in the PCAWG and ICGC breast cancer WGS
datasets. MAST2 is a microtubule-associated serine/
threonine kinase that interacts with the Protocadherin-
LKC, a recently proposed tumor suppressor gene for
colon and liver cancers, which mediates contact inhib-
ition of cell proliferation [44]. MAST2 also regulates
lipopolysaccharide-induced IL-12 synthesis in macro-
phages by forming a complex with TRAF6 and inhibiting
NEF-kappa-B activation [45]. MAST2 gene rearrange-
ments were previously noted in some breast cancers,
and overexpression of MAST2 (or MAST1) gene fusions
in breast epithelial cells led to increased proliferation

in vitro and in vivo [46]. In our study, we found deleteri-
ous mutations in the non-coding regions of MAST2;
however, the functional impact of these variants has not
yet been investigated. Since MAST2 has not been in-
cluded in any of the previous targeted sequencing stud-
ies of IBC, future datasets of IBC will be needed to
validate this finding.

Complex structural variants also appeared to be more
common in IBC, including tandem duplication and in-
version, suggesting greater genome complexity than in
non-IBC. Several genomic regions showed significantly
different copy number profiles harboring genes involved
in cancer biology (Additional file 6: Table S5). However,
sequencing platforms with different coverages and
depths could introduce bias when calling large structural
variants. As our IBC and non-IBC cohorts were se-
quenced separately, some observed differences may arise
from the different sources of sequencing data.

A surprising finding of our study was the low clonality
of IBC at the time of diagnosis. A substantial minority of
IBC had only one detectable clone whereas all non-IBC
cases had more than one clones. When we examined the
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evolutionary trees of the tumor cell populations, we ob-
served two distinct groups that we describe as branching
and linear evolution. IBCs showed significantly more of
the linear evolutionary pattern than non-IBC (45% vs.
13%, p =0.039). These results suggest that IBC cells are
evolutionarily more homogeneous and exhibit lower
clonality than non-IBC cancer cells, leading to the hy-
pothesis that a high proliferation rate and rapid expan-
sion of a single aggressive clone could be responsible for
the rapid initial clinical course of the disease, which
often unfolds in a few weeks. In comparison, non-IBC
often grow for years before becoming detectable, which
may allow for the development of greater clonal hetero-
geneity at the time of diagnosis. Future work will be
needed to validate these observations, via high-depth tar-
geted sequencing and subsequent characterization of
subclonal entities.

We also examined the host genome for germline vari-
ants that might be associated with IBC. Currently no
genetic predisposing factors are known for IBC, but
some familiar occurrences have been reported and IBC
is more prevalent in certain geographic regions that sug-
gest genetic contribution to its etiology [47, 48]. We
identified heterozygous germline alterations in the TGE[
pathway that appear to be more frequent in IBC than in
non-IBC (50% vs. 13%). Due to the rarity of IBC (0.5-2%
of all breast cancers), our sample size is very small and
this observation will need to be confirmed in larger inde-
pendent IBC datasets. However, TGEP has been impli-
cated in the biology of IBC. USP9X, affected in 4 out of
20 IBC cases by a germline variant, is a deubiquitinating
enzyme that controls SMAD4 mono-ubiquitination and
therefore affects TGEP signaling [49]. One previous
study showed that the expression of TGF /8 signaling
pathway components are lower in IBC compared to
non-IBC, and this may contribute to tumor emboli for-
mation and facilitate lymphatic invasion of IBC cells
[40]. Another study on head and neck cancer reported
that loss of SMAD4 was associated with increased TGF
B 1 activity [50]. Overall, these results suggest the possi-
bility of aberrant host TGF f signaling contributing to
IBC biology and predisposition.

We recognize that our results are descriptive and hy-
pothesis generating in terms of biological importance of
the findings. However, it is clear from our analysis that
there is no shared DNA level pathognomonic alteration
in IBC. The sample size of our study is small; neverthe-
less, it is the largest study so far to examine the whole
genome of IBC. Previous genomic analyses included only
a few hundreds of genes that were sequenced using tar-
geted sequencing platforms (Additional file 8: Table S7)
[7-9]. We observed lower mutation frequencies in
PIK3CA in our IBC cohort than previous ones, which
may be due to sampling bias arising from the small
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sample size, as PIK3CA was more frequently mutated in
hormone receptor-positive (HR+) cancers, and our study
had a lower fraction of HR+ cases [51].

Besides various genetic features discussed in this study,
it has been shown that IBC is significantly different with
non-IBC in several non-genetic factors, including lower
prevalence of parous women, higher oral contraceptive
use, and higher frequency of regular alcohol consump-
tion [52].

Overall, our results suggest that IBC falls within the
continuum of breast cancer in terms of its molecular
make up. Its particularly aggressive phenotype may re-
sult from unique co-occurrence of heterozygous host
germline polymorphisms with subtle effects on TGF
signaling and somatic mutations that together enable
rapid growth and expansion of a malignant cell clone.

Conclusions

Here we present the first complete genomic landscape of
IBC by whole-genome sequencing of tumor and their
matched normal samples. Even though there was no
unique, shared genomic alteration in IBCs, we identified
several subtle but intriguing genomic differences be-
tween IBC and non-IBC which could potentially explain
its etiology and result in new diagnostic markers, but
will require validation in independent datasets in future
studies.
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