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Abstract

Single-cell genomics is a rapidly advancing field; however, most techniques are designed for mammalian cells. We
present a single-cell sequencing pipeline for an intracellular parasite, Plasmodium falciparum, with a small genome
of extreme base content. Through optimization of a quasi-linear amplification method, we target the parasite
genome over contaminants and generate coverage levels allowing detection of minor genetic variants. This work,
as well as efforts that build on these findings, will enable detection of parasite heterogeneity contributing to P.
falciparum adaptation. Furthermore, this study provides a framework for optimizing single-cell amplification and
variant analysis in challenging genomes.
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Background
Malaria is a life-threatening disease caused by protozoan
Plasmodium parasites. P. falciparum causes the greatest
number of human malaria deaths [1]. The clinical symp-
toms of malaria occur when parasites invade human
erythrocytes and undergo rounds of asexual reproduction
by maturing from early-stage into late-stage forms and
bursting from erythrocytes to begin the cycle again [2]. In
this asexual cycle, parasites possess a single haploid gen-
ome during the early stages; rapid genome replication dur-
ing subsequent stages leads to an average of 16 genome
copies per late-stage individual [2].
Due to lack of effective vaccines, antimalarial drugs

are required to treat malaria. However, drug efficacy is
mitigated by the frequent emergence of resistant popula-
tions [3]. Both single-nucleotide polymorphisms (SNPs)
and copy number variations (CNVs; the amplification or

deletion of a genomic region) contribute to antimalarial
resistance in P. falciparum [4–12]. It is important to as-
sess genetic diversity within parasite populations to bet-
ter understand the mechanisms of rapid adaption to
antimalarial drugs and other selective forces. These stud-
ies are often complicated by multi-clonal infections and
limited parasite material from clinical isolates.
Recent studies have begun to overcome these limitations

for SNP analysis; methods including leukocyte depletion
[13], selective whole-genome amplification (WGA) of
parasite DNA [14], hybrid selection with RNA baits [15],
and single-cell sequencing of P. falciparum parasites [16,
17] help enrich parasite DNA, determine genetic diversity,
and understand the accumulation of SNPs in long-term
culture. However, the study of genetic diversity in early
stage parasites on a single-cell level remains challenging
[16]; the lack of alternative single-cell approaches for P.
falciparum parasites impedes the validation of SNP results
by parallel investigations [18].
The dynamics of CNVs in evolving populations are not

well understood. One reason for this is that the majority
of P. falciparum CNVs have been identified by analyzing
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bulk DNA following selection, where CNVs are present in
the majority of parasites [7, 9, 19–21]. However, many low
frequency CNVs undoubtedly remain undetected. There
is speculation that these low-frequency CNVs are either
deleterious or offer no advantages for parasite growth or
transmission [20, 22] but orthogonal methods to verify
genome dynamics within the population are needed. Re-
cent investigations in other organisms have analyzed sin-
gle cells to detect low-frequency CNVs within
heterogeneous populations [23–28].
Single-cell-based approaches provide a significant ad-

vantage for detecting rare genetic variants (SNPs and
CNVs) by no longer deriving an average signal from
large quantities of cells. However, short-read sequencing
requires nanogram to microgram quantities of genomic
material for library construction, which is many orders
of magnitude greater than the genomic content of indi-
vidual Plasmodium cells. Therefore, WGA is required to
generate sufficient DNA quantities for these analyses.
Several WGA approaches have been reported and each
has advantages and disadvantages for different applica-
tions [29–32]; however, most have been optimized for
mammalian cell analysis [30, 32–44]. Because WGA
leads to high levels of variation in read abundance across
the genome, CNV analysis in the single-cell context is
especially challenging. Previous approaches have been
tuned specifically for CNV detection in mammalian ge-
nomes, which are generally hundreds of kilobases to
megabases in size [33, 39, 44–49].
To date, the detection of CNVs in single P. falciparum

parasites using whole-genome sequencing has not been
achieved. The application of existing WGA methods is
complicated by the parasite’s small genome size and ex-
tremely imbalanced base composition (23Mb haploid
genome with 19.4% GC content [50]). Each haploid para-
site genome contains 25 fg of DNA, which is ~ 280 times
less than the ~ 6400Mb diploid human genome. There-
fore, an effective P. falciparum WGA method must be
both highly sensitive and able to handle the extreme base
composition. One WGA method, multiple displacement
amplification (MDA), has been used to amplify single P.
falciparum genomes with near complete genome coverage
[16, 51]. These studies successfully detected SNPs in single
parasite genomes but did not report CNV detection,
which is possibly disrupted by low genome coverage uni-
formity [31] and the generation of chimeric reads by
MDA [52], as well as the relatively small size of CNVs in
P. falciparum (< 100 kb) [20, 22, 53, 54].
Multiple annealing and looping-based amplification

cycles (MALBAC) is another WGA method that exhibits
adequate uniformity of coverage, which was advanta-
geous for detecting CNVs in single human cells [45].
MALBAC has the unique feature of quasi-linear pre-
amplification, which reduces the bias associated with

exponential amplification [45]. However, standard MAL-
BAC is less tolerant to AT-biased genomes, unreliable
with low DNA input, and prone to contamination [46,
55, 56]. Thus, optimization of this WGA method was
necessary for P. falciparum genome analysis.
In this study, we developed a single-cell sequencing

pipeline for P. falciparum parasites, which included effi-
cient isolation of single parasite-infected erythrocytes, an
optimized WGA step inspired by MALBAC, and a
method of assessing sample quality prior to sequencing.
We tested our pipeline on erythrocytes infected with
laboratory-reared parasites as well as patient-isolated para-
sites with heavy human genome contamination. We
assessed amplification bias first using a PCR-based ap-
proach and then by sequencing. We evaluated genome
coverage breadth and coverage uniformity, as well as amp-
lification reproducibility. Furthermore, we combined two
approaches to limit false positives for CNV detection and
applied stringent filtering steps for SNP detection in
single-cell genomes. This work, as well as efforts that build
on these findings, will enable the detection of parasite-to-
parasite heterogeneity to clarify the role of genetic varia-
tions in the adaptation of P. falciparum. Furthermore, this
study provides a framework for the optimization of single-
cell whole genome amplification and CNV/SNP analysis
in other organisms with challenging genomes.

Methods
Parasite culture
We freshly thawed erythrocytic stages of P. falciparum
(Dd2, MRA-150, Malaria Research and Reference Reagent
Resource Center, BEI Resources) from frozen stocks and
maintained them as previously described [57]. Briefly, we
grew parasites at 37 °C in vitro at 3% hematocrit (serotype
A positive human erythrocytes, Valley Biomedical, Win-
chester, VA) in RPMI 1640 medium (Invitrogen, USA)
containing 24mM NaHCO3 and 25mM HEPES, and sup-
plemented with 20% human type A positive heat inacti-
vated plasma (Valley Biomedical, Winchester, VA) in
sterile, plug-sealed flasks, flushed with 5% O2, 5% CO2,
and 90% N2 [6]. We maintained the cultures with media
changes every other day and sub-cultured them as neces-
sary to keep parasitemia below 5%. We determined all
parasitemia measurements using SYBR green-based flow
cytometry [58]. We routinely tested cultures using the
LookOut Mycoplasma PCR Detection Kit (Sigma-Aldrich,
USA) to confirm negative infection status.

Clinical sample collection
We obtained parasites from an infected patient admitted
to the University of Virginia Medical Center with clinical
malaria. The patient had a recent history of travel to
Sierra Leone, a malaria-endemic country, and P. falcip-
arum infection was clinically determined by a positive
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rapid diagnostic test and peripheral blood smear ana-
lysis. We obtained the sample of 1.4% early-stage para-
sites within 24 h of phlebotomy, incubated in the
conditions described in Parasite Culture for 48 h, and
washed the sample 3 times with RPMI 1640 HEPES to
decrease levels of white blood cells. In order to fully
evaluate our amplification method in the presence of
heavy human genome contamination, we did not per-
form further leukodepletion. We set aside some of the
sample for bulk DNA preparation (see “Bulk DNA ex-
traction”). Using another portion of the sample, we
enriched for parasite-infected erythrocytes using SLOPE
(Streptolysin-O Percoll) method [59], which increased
the parasitemia from 1.4 to 48.5% (Additional file 1: Fig-
ure S1). We then isolated the single P. falciparum-in-
fected erythrocytes using the CellRaft AIRTMSystem
(Cell Microsystems, Research Triangle Park, NC) as de-
tailed in Parasite Staining and Isolation.

Bulk DNA extraction
We lysed asynchronous P. falciparum-infected erythro-
cytes with 0.15% saponin (Sigma-Aldrich, USA) for 5min
and washed them with 1× PBS (diluted from 10× PBS Li-
quid Concentrate, Gibco, USA). We then lysed parasites
with 0.1% Sarkosyl Solution (Bioworld, bioPLUS, USA) in
the presence of 1mg/ml proteinase K (from Tritirachium
album, Sigma-Aldrich, USA) overnight at 37 °C. We
extracted nucleic acids with phenol/chloroform/isoamyl
alcohol (25:24:1) pH 8.0 (Sigma-Aldrich, USA) using 2ml
light Phase lock Gels (5Prime, USA). Lastly, we precipi-
tated the DNA with ethanol using the standard Maniatis
method [60].

Parasite staining and isolation
For late-stage parasite samples, we obtained laboratory
Dd2 parasite culture with a starting parasitemia of 1.7%
(60% early stage parasites). We separated late-stage P. fal-
ciparum-infected erythrocytes from non-paramagnetic
early stages using a LS column containing MACS®
microbeads (Miltenyi Biotec, USA, [61]). After elution of
bound late-stage parasite, the sample exhibited a parasit-
emia of 80.8% (74.0% late-stage parasites, Additional file 1:
Figure S1). For early-stage parasites, we obtained labora-
tory Dd2 parasites culture with a starting parasitemia of
3% (46% early stage parasites). We harvested the non-
paramagnetic early-stage parasites, which were present in
the flow-through of the LS column containing MACS®
microbeads. Next, we enriched the infected erythrocytes
using the SLOPE method, which preferentially lysed unin-
fected erythrocytes [59]. The final parasitemia of enriched
early-stage parasites was 22.8% (97.0% early-stage para-
sites, Additional file 1: Figure S1). To differentiate P. fal-
ciparum-infected erythrocytes from remaining uninfected
erythrocytes or cell debris, we stained the stage-specific P.

falciparum-infected erythrocytes with both SYBR green
and MitoTracker Red CMXRos (Invitrogen, USA). We
then isolated single P. falciparum-infected erythrocytes
using the CellRaft AIRTM System (Cell Microsystems, Re-
search Triangle Park, NC). We coated a 100-micron single
reservoir array (CytoSort Array and CellRaft AIR user
manual, CELL Microsystems) with Cell-Tak Cell and Tis-
sue Adhesive (Corning, USA) following the manufac-
turer’s recommendations. Then, we adhered erythrocytes
onto the CytoSort array from a cell suspension of ~ 20,000
cells in 3.5 ml RPMI 1640 (Invitrogen, USA) with Albu-
MAX II Lipid-Rich BSA (Thermo Fisher Scientific, USA)
and Hypoxanthine (Sigma-Aldrich, USA). Lastly, we set
up the AIRTM System to automatically transfer the manu-
ally selected single infected erythrocytes (SYBR+, Mito-
tracker+) into individual PCR tubes.

Steps to limit contamination
We suspended individual parasite-infected erythrocytes
in freshly prepared lysis buffer, overlaid them with one
drop (approx. 25 μl) of mineral oil (light mineral oil,
BioReagent grade for molecular biology, Sigma Aldrich,
USA), and stored them at − 80 °C until WGA. We amp-
lified DNA in a clean positive pressure hood located in a
dedicated room, using dedicated reagents and pipettes,
and stored them in a dedicated box at − 20 °C. We wore
a new disposable lab coat, gloves, and a face mask during
reagent preparation, cell lysis, and WGA steps. We
decontaminated all surfaces of the clean hood, pipettes,
and tube racks with DNAZap (PCR DNA Degradation
Solutions, Thermo Fisher Scientific, USA), followed by
Cavicide (Metrex Research, Orange, CA), and an 80%
ethanol rinse prior to each use. We autoclaved all tubes,
tube racks, and the waste bin on a dry vacuum cycle for
45 min. Finally, we used sealed sterile filter tips, new
nuclease-free water (Qiagen, USA) for each experiment,
and filtered all salt solutions through a 30-mm syringe
filter with 0.22 μm pore size (Argos Technologies, USA)
before use in each experiment.

Whole-genome amplification
Standard MALBAC
The MALBAC assay was originally designed for human cells
[43, 45]. This approach involved making double-stranded
DNA copies of genomic material using random primers that
consist of 5 degenerate bases and 27 bases of common se-
quence. These linear cycles are followed by exponential amp-
lification via suppression PCR. Here, we transferred individual
cells into sterile thin-wall PCR tubes containing 2.5 μl of lysis
buffer that yielded a final concentration of 25mM Tris pH
8.8 (Sigma-Aldrich, USA), 10mM NaCl (BAKER ANAL
YZED A.C.S. Reagent, J.T.Baker, USA), 10mM KCl (ACS re-
agent, Sigma-Aldrich, USA), 1mM EDTA (molecular biology
grade, Promega, USA), 0.1% Triton X-100 (Acros Organics,
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USA), and 1mg/ml Proteinase K (Tritirachium album,
Sigma-Aldrich, USA). After overlaying one drop of mineral
oil, we lysed cells at 50 °C for 3 h and inactivated the protein-
ase at 75 °C for 20min, then 80 °C for 5min before maintain-
ing at 4 °C. We added 2.5 μl of amplification buffer to each
sample to yield a final concentration of 25mM Tris pH 8.8
(Sigma-Aldrich, USA), 10mM (NH4)2SO4 (Molecular biology
grade, Sigma-Aldrich, USA), 8mM MgSO4 (Fisher BioRea-
gents, Thermo Fisher Scientific, USA), 10mM KCl (ACS re-
agent, Sigma-Aldrich, USA), 0.1% Triton X-100 (Acros
Organics, USA), 2.5mM dNTPs (PCR grade, Thermo Fisher
Scientific, USA), 1M betaine (PCR Reagent grade, Sigma-
Aldrich, USA), and 0.667μM of each random primer (5′
GTGAGTGATGGTTGAGGTAGTGTGGAGNNNNNTTT
3′, and 5′GTGAGTGATGGTTGAGGTAGTGTGGAGNN
NNNGGG 3′) ordered from Integrated DNA Technologies,
USA. To denature DNA, we heated samples to 95 °C for 3
min and snap-cooled on an ice slush before gently adding
0.5 μl of enzyme solution (8000U/ml Bst DNA Polymerase
Large Fragment, New England Biolabs, USA, in 1×
amplification buffer) into the aqueous droplet.
We thermo-cycled samples (Bio-Rad, USA) holding

at 4 °C and heated according to the following cycles:
10 °C—45 s, 15 °C—45 s, 20 °C—45 s, 30 °C—45 s,
40 °C—45 s, 50 °C—45 s, 64 °C—10 min, 95 °C—20 s.
The samples were immediately snap-cooled on an ice
slush for at least 3 min to maintain the DNA in a de-
natured state for the next round of random priming.
We added an additional 0.5 μl of enzyme solution and
mixed thoroughly with a pipette on ice as above. We
placed the samples back into the 4 °C thermo-cycler
and heated according to the cycles listed above with
an additional 58 °C step for 1 min before once again
cooling on an ice slush for 3 min. We repeated the
addition of enzyme mix (as above) and performed
additional rounds of amplification cycles (as above,
including the 58 °C step). Once completed, we placed
the samples on ice and supplemented with cold PCR
master mix to yield 50 μl with the following concen-
trations: 0.5 μM Common Primer (5′GTGAGT-
GATGGTTGAGGTAGTGTGGAG3′, Integrated DNA
Technologies, USA), 1.0 mM dNTPs (PCR grade,
Thermo Fisher Scientific, USA), 6.0 mM MgCl2 (Mo-
lecular biology, Sigma-Aldrich, USA), 1× Herculase II
Polymerase buffer, and 1× Herculase II polymerase
(Agilent Technologies, USA). We immediately
thermo-cycled samples with the following
temperature-time profile: 94 °C—40s, 94 °C—20s,
59 °C—20s, 68 °C—5 min, go to step two for several
times, and an additional extended at 68 °C—5 min,
and finally, a hold at 4 °C. For comparison, we used
18 or 19 linear cycles (for late- or early-stage para-
sites, respectively) and 17 exponential cycles for ge-
nomes amplified by the standard MALBAC protocol.

Optimized MALBAC
We made the following modifications to standard MAL-
BAC to yield our optimized MALBAC protocol. (1) We
froze cells at − 80 °C until usage because freeze-thaw en-
hanced cell lysis as previously reported [16]. (2) We re-
moved betaine from the amplification buffer because it
improved amplification of GC-rich sequences [62],
which are infrequent in P. falciparum genomes (Add-
itional file 2: Table S1). (3) We used a single random pri-
mer where the GC content of the degenerate bases were
20% instead of 50% (5′GTGAGTGATGGTTGAGG-
TAGTGTGGAGNNNNNTTT 3’) at final concentration
of 1.2 μM. (4) We reduced the volume of the random
priming reaction by added only 0.29 μl of 2×
amplification buffer to the lysed samples and 0.13 μl of
enzyme solution to the aqueous droplet each amplifica-
tion cycle. (5) We added additional random priming
cycles over prior MALBAC studies for a total of 18 (for
late-stage parasites) or 19 (for early-stage parasites) cy-
cles. (6) We reduced the total volume of exponential
amplification from 50 to 20 μl and increased the number
of exponential amplification cycles from 15 to 17. (7)
We verified the presence of DNA products in the sam-
ples using the Qubit Fluorometer (1X dsDNA High-
Sensitivity Assay Kit, Thermo Fisher Scientific, USA) be-
fore purifying nucleic acids by Zymo DNA Clean &
Concentrator-5 (ZYMO Research).

Pre-sequencing quality assessment
We assayed 6 distinct genomic loci across different chromo-
somes to determine variations in copy number following the
whole-genome amplification step. We included this step,
which employs highly sensitive droplet digital PCR (ddPCR,
QX200 Droplet Digital PCRsystem, Bio-Rad, USA), to iden-
tify samples that exhibited more even genome coverage prior
to short-read sequencing. The sequence of primers and
probes are described in Additional file 2: Table S2 [6, 63, 64].
Each ddPCR reaction contained 5 μl of DNA (0.3 ng/μl for
single-cell samples), 10 μl ddPCR Supermix for Probes (with-
out dUTP), primers and probes with the final concentration
in Additional file 2: Table S2, and sterile H2O to bring the
per-reaction volume to 22 μl. We prepared droplets with the
PCR mixture following the manufacturer’s protocol. After
thermal cycling (95 °C—10min; 40 cycles of 95 °C—30 s,
60 °C—60 s, and an infinite hold at 4 °C), we counted positive
droplets using the Bio-Rad QX200 Droplet Reader (Bio-Rad,
USA). We analyzed data using QuantaSoft (Bio-Rad, USA).
For each gene, a no template control (sterile water, NTC)
and a positive control (0.025 ng Dd2 genomic DNA) are in-
cluded in each ddPCR run. Following ddPCR, we calculated
the “uniformity score” using the locus representation of the 6
genes: seryl tRNA synthetase (gene-1, PF3D7_0717700), heat
shock protein 70 (gene-2, PF3D7_0818900), dihydrofolate re-
ductase (gene-3, PF3D7_0417200), lactate dehydrogenase
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(gene-4, PF3D7_1324900), 18S ribosomal RNA (gene-5,
PF3D7_0112300, PF3D7_1148600, PF3D7_1371000), and
multi-drug resistance transporter 1 (Pfmdr1, gene-6, PF3D7_
0523000) in the amplified DNA sample relative to non-
amplified DNA using the following equation:

Uniformity score ¼ gene1
gene2

þ gene1
gene3

þ gene1
gene4

þ gene1
gene5

þ gene1
gene6

þ gene2
gene3

þ gene2
gene1

þ gene2
gene4

þ gene2
gene5

þ gene2
gene6

þ gene3
gene4

þ gene3
gene1

þ gene3
gene2

þ gene3
gene5

þ gene3
gene6

þ gene4
gene5

þ gene4
gene1

þ gene4
gene2

þ gene4
gene3

þ gene4
gene6

þ gene5
gene1

þ gene5
gene2

þ gene5
gene3

þ gene5
gene4

þ gene5
gene6

þ gene6
gene1

þ gene6
gene2

þ gene6
gene3

þ gene6
gene4

þ gene6
gene5

When specific loci were over- or under-represented in
the amplified sample, this score increased above the per-
fect representation of the genome; a uniformity score of
30 indicates that all genes are equally represented. We
calculated the locus representation from the absolute
copies of a gene measured by ddPCR from 1 ng of amp-
lified DNA divided by the absolute copies from 1 ng of
the bulk DNA control [65]. We only included samples in
which all six genes were detected by ddPCR. The relative
copy number of the Pfmdr1, which was amplified in the
Dd2 parasite line [66], was also used to track the accur-
acy of amplification. We calculated this value by dividing
the ddPCR-derived absolute copies of Pfmdr1 by the
average absolute copies of the 6 assayed loci (including
Pfmdr1, normalized to a single copy gene). To confirm
the efficiency of ddPCR detection as a pre-sequencing
quality control step, we determined the strength of asso-
ciation based on the pattern of concordance and dis-
cordance between the ddPCR detection and the
sequencing depth of the 5 gene targets with Kendall
rank correlation (18S ribosomal RNA was excluded from
correlation analysis due to the mapping of non-unique
reads). We then calculated the correlation coefficient
(Additional file 2: Table S3). When the level of ddPCR
detection corresponded to the sequencing depth in at
least 3 of the 5 gene targets (a correlation coefficient of
> 0.6), we regarded the two measurements as correlated.

Short-read sequencing
We fragmented MALBAC amplified DNA (> 1 ng/μL,
50 μL) using Covaris M220 Focused Ultrasonicator in
microTUBE-50 AFA Fiber Screw-Cap tubes (Covaris,
USA) to a target size of 350 bp using a treatment time of
150 s. We determined the fragment size range of all
sheared DNA samples (291–476 bp) with a Bioanalyzer
using High Sensitivity DNA chips (Agilent Technologies,
USA). We used the NEBNext Ultra DNA Library Prep-
aration Kit (New England Biolabs, USA) to generate Illu-
mina sequencing libraries from sheared DNA samples.
Following adaptor ligation, we applied 3 cycles of PCR
enrichment to ensure that sequences contained both
adapters and ranged in size from 480 to 655 bp. We
quantified the proportion of adaptor-ligated DNA using

real-time PCR and combined equimolar quantities of
each library for sequencing on 4 lanes of a Nextseq 550
(Illumina, USA) using 150 bp paired-end cycles. We pre-
pared the sequencing library of clinical bulk DNA as
above except that it was sequenced it on a Miseq (Illu-
mina, USA) using 150 bp paired-end sequencing.

Sequencing analysis
We performed read quality control steps and sequence
alignments essentially as previously described [53] (Add-
itional file 1: Figure S2A). Briefly, we removed Illumina
adapters and PhiX reads and trimmed MALBAC com-
mon primers from reads with BBDuk tool in BBMap
[67]. To identify the source of DNA reads, we randomly
subsetted 10,000 reads from each sample by using the
reformat tool in BBMap [67] and blasted reads in nu-
cleotide database using BLAST+ remote service. We
aligned each fastq file to the hg19 human reference gen-
ome and kept the unmapped reads (presumably from P.
falciparum) for analysis. Then, we aligned each fastq file
to the 3D7 P. falciparum reference genome with Speed-
seq [68]. We discarded the reads with low-mapping
quality score (below 10) and duplicated reads using Sam-
tools [69]. To compare the coverage breadth (the per-
centage of the genome that has been sequenced at a
minimum depth of one mapped read, [70]) between
single-cell samples, we extracted mappable reads from
BAM files using Samtools [69] and randomly down-
sampled to 300,000 reads using the reformat tool in
BBMap [67]. This read level was dictated by the sample
with the lowest number of mappable reads (ENM, Add-
itional file 2: Table S4). We calculated the coverage sta-
tistics using Qualimap 2.0 [71] for the genic, intergenic,
and whole genome regions.
To understand where the primers of MALBAC ampli-

fication are annealing to the genome, we overlaid infor-
mation on the boundaries of genic or intergenic regions
with the mapping position of reads containing the MAL-
BAC primer common sequence. To do so, we kept the
MALBAC common primers in the sequencing reads, fil-
tered reads, and aligned reads as in the above analysis.
We subsetted BAM files for genic and intergenic regions
using Bedtools, searched for the MALBAC common pri-
mer sequence using Samtools, and counted reads with
MALBAC common primer using the pileup tool in
BBMap (Additional file 2: Table S5).
We conducted single-cell sequencing analysis follow-

ing the steps in Additional file 1: Figure S2B. We com-
pared the variation of normalized read abundance (log10
ratio) at different bin sizes using boxplot analysis (R ver-
sion 3.6.1) and determined the bin size of 20 kb using
the plateau of decreasing variation of normalized read
abundance (log10 ratio) when increasing bin sizes. We
then divided the P. falciparum genome into non-
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overlapping 20 kb bins using Bedtools [72]. The normal-
ized read abundance was the mapped reads of each bin
divided by the total average reads in each sample. To
show the distribution of normalized read abundance
along the genome, we constructed circular coverage
plots using Circos software and ClicO FS [73, 74]. To as-
sess uniformity of amplification, we calculated the coeffi-
cient of variation of normalized read abundance by
dividing the standard deviation by the mean and multi-
plying by 100 [31, 75] and analyzed the equality of coef-
ficients of variation using the R package “cvequality”
version 0.2.0 [76]. We employed correlation coefficients
to assess amplification reproducibility as previous studies
[77]. Due to presence of non-linear correlations between
some of the samples, we used Spearman correlation for
this analysis. We removed outlier bins if their read abun-
dance was above the highest point of the upper whisker
(Q3 + 1.5 × interquartile range) or below the lowest
point of the lower whisker (Q1-1.5 × interquartile range)
in each sample. Then, we subsetted remaining bins
present in all samples to calculate the correlation coeffi-
cient using the R package “Hmisc” version 4.3-0 [78].
We visualized Spearman correlations, histograms, and
pairwise scatterplots of normalized read abundance
using “pairs.panels” in the “psych” R package. We then
constructed heatmaps and hierarchical clustering of
Spearman correlation coefficient with the “gplots” R
package version 3.0.1.1 [79]. Additionally, to estimate
the chance of random primer annealing during MAL-
BAC pre-amplification cycles (likely affected by the GC
content of genome sequence), we generated all possible
5-base sliding windows with 1 base step-size in the P.
falciparum genome and calculated the GC content of
the 5-base windows using Bedtools (Additional file 2:
Table S1) [72].

Copy number variation analysis
We conducted CNV analysis following the steps in Add-
itional file 1: Figure S2C. To ensure reliable CNV detec-
tion, our CNV analysis is limited to the core genome, as
defined previously [80]. Specifically, we excluded the
telomeric, sub-telomeric regions, and hypervariable var
gene clusters, due to limited mappability of these re-
gions. For discordant/split read analysis, we used
LUMPY [81] in Speedseq to detect CNVs (> 500 bp)
with at least two supporting reads in each sample (Add-
itional file 2: Table S6). For read-depth analysis, we fur-
ther filtered the mapped reads using a mapping quality
score of 30. We counted the reads in 1 kb, 5 kb, 8 kb,
and 10 kb bins by Bedtools and we used Ginkgo [82] to
normalize (by dividing the count in each bin by the
mean read count across all bins), correct the bin read
counts for GC bias, independently segment (using a
minimum of 5 bins for each segment), and determine

the copy number state in each sample with a predefined
ploidy of 1 ([82], Additional file 2: Table S7). The quality
control steps of Ginkgo were replaced by the coefficient
of variation of normalized read count used in this study
to assess uniformity in each cell. Lastly, we identified
shared CNVs from the two methods when one CNV
overlapped with at least 50% of the other CNV and vice
versa (50% reciprocal overlap). We calculated precision
of CNV detection in single-cell genome by dividing the
number of true CNVs (same as those detected in the
bulk sample) by the total number of CNVs. We calcu-
lated sensitivity by dividing the number of true CNVs by
3 (total number of true CNVs in the bulk sample).

Single-nucleotide polymorphism analysis
We conducted SNP analysis following the MalariaGen P.
falciparum Community Project V6.0 pipeline [83, 84]
based on GATK best practices [85–87]. We first applied
GATK’s Base Quality Score Recalibration using default
parameters. We used GATK’s HaplotypeCaller to detect
potential SNPs in BAM files and genotyped them using
GATK’s CombineGVCFs and GenotypeGCVFs. We ran
GATK’s VariantRecalibrator using previously validated
SNP set from the Pf-Crosses variant set as a training set
[88]. We then applied GATK’s ApplyRecalibration to as-
sign each SNP a variant quality score log-odds
(VQSLOD) quality score, which uses a machine learning
approach to assess the probability that raw SNPs are
true variants based on the training set. Higher VQSLOD
scores indicate higher quality SNPs; filtering SNPs by
“VQSLOD score > 0” has been applied to variant detec-
tion studies using the GATK pipeline [51, 83, 89],
whereas VQSLOD score > 6 is recommended to further
improve SNP accuracy in P. falciparum specifically [83].
We calculated precision by dividing the number of called
SNP variants with the same genotype as the standard
data set (SNPs detected in the Dd2 bulk sample) by the
total number of SNP variants called in each single-cell
sample. We calculated sensitivity by dividing the number
of called SNP variants with the same genotype as the
standard SNPs in single-cell samples by the number in
the bulk standard SNPs at three different stringency
levels: VQSLOD score > 0, VQSLOD score > 6, and
VQSLOD score > 6 with read depth > 10. We only in-
cluded bi-allelic SNPs (loci with either the wild type or
one mutant type allele) from the core genome in this
analysis [83]. We also evaluated the detection of SNPs in
resistant genes of the Dd2 parasite line. We successfully
detected 16 out of 17 resistant SNPs in the bulk sample
at VQSLOD > 6; the one remaining SNP failed to pass
the filtering step (VQSLOD = 3.77) so we excluded it
from all single-cell analyses. We further filtered novel
SNPs in single-cell samples by removing those that ex-
hibited multiple alleles (mixed allele SNPs). We utilized
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SnpEff [90] to annotate VCF files and used VIVA
(v0.4.0) [91] to generate heatmaps to illustrate the rela-
tionship between SNP calling and read depth.

Results
Plasmodium falciparum genomes from single-infected
erythrocytes are amplified by MALBAC
Our single-cell sequencing pipeline for P. falciparum par-
asites included stage-specific parasite enrichment, isola-
tion of single infected erythrocytes, cell lysis, whole
genome amplification, pre-sequencing quality control,
whole genome sequencing, and analysis steps (Fig. 1a).
We collected parasites from either an in vitro-propagated
laboratory line (Dd2) or from a blood sample of an in-
fected patient (referred to as “laboratory” and “clinical”
parasites, respectively). This allowed us to test the effi-
ciency of our procedures on parasites from different envi-
ronments with varying amounts of human host DNA
contamination. Furthermore, for laboratory Dd2 parasite
samples, we isolated both early- (1n) and late- (~16n) stage
parasite-infected erythrocytes to evaluate the impact of
parasite DNA content on the performance of WGA. For
single-cell isolation, we used the microscopy-based Cell-
Raft Air System (Fig. 1b), which has the benefit of low
capture volume (minimum: 2 μl) and visual confirmation
of parasite stages. Following isolation, using the standard
MALBAC protocol (termed non-optimized MALBAC),
we successfully amplified 3 early-stage (ENM) and 4 late-
stage (LNM) laboratory Dd2 parasite samples. We also ap-
plied a version of MALBAC that we optimized for the
small AT-rich P. falciparum genome (termed optimized
MALBAC) to 42 early- (EOM) and 20 late-stage (LOM)
laboratory Dd2 parasite samples as well as 4 clinical sam-
ples (COM) (Additional file 2: Table S8). Compared to
standard MALBAC, our optimized protocol has a lower
reaction volume, more amplification cycles, and a modi-
fied pre-amplification random primer (see “Methods” for
more details). Using this method, we successfully ampli-
fied 43% of the early- and 90% of the late-stage laboratory
Dd2 parasite samples and 100% of the clinical samples
(see post-amplification yields in Additional file 2: Tables
S8 and S9).

Pre-sequencing quality control step identifies samples
with more even genome amplification
We assessed the quality of WGA products from single
cells using droplet digital PCR (ddPCR) to measure the
copy number of known single- and multi-copy genes
dispersed across the P. falciparum genome (6 genes in
total including Pfmdr1, which is present at ~ 3 copies in
the Dd2 laboratory parasite line). Using this sensitive
quantitative method, along with calculation of a “uni-
formity score”, which reflects both locus dropout and
over-amplification, we were able to select genomes that

had been more evenly amplified; a low uniformity score
and accurate copy number value indicated a genome
that had been amplified with less bias (see “Methods” for
details on score calculation and Additional file 2: Table
S10 for raw data). This quality control step was import-
ant to reduce unnecessary sequencing costs during
single-cell studies.
When we analyzed differences between amplified sam-

ples by optimized MALBAC (17 EOM samples and 14
LOM samples processed for ddPCR evaluation) and non-
optimized MALBAC (3 ENM and 4 LNM samples), we
found that samples amplified with the optimized protocol
were generally more evenly covered than those from the
standard method (Table 1). Specifically, one ENM sample
lacked detection of any of the target genes (likely due to
heavy contamination from non-parasite DNA) and other
ENM and LNM samples consistently showed over-
amplification of a set of 2 genes (P. falciparum seryl-
tRNAsynthetase and 18S ribosomal RNA; Additional file
2: Table S10). Therefore, due to evidence of a high level of
bias in the majority of ENM/LNM samples, we selected
the ENM and LNM samples (one each) with the lowest
level of ddPCR-based bias for sequencing. We also used
ddPCR results to select 13 EOM and 10 LOM samples for
sequencing (Additional file 2: Table S8). Overall, selected
samples had lower average uniformity scores (i.e., 248 and
1012 for selected and unselected EOMs, respectively, see
Table 1). For clinical parasite samples, 3 out of 4 COM
samples showed a lack of ddPCR detection on at least one
parasite gene; thus, we were not able to calculate uniform-
ity scores for these samples and the amplification of clin-
ical genomes was likely more skewed than laboratory
samples (Table 1).
Both standard and optimized MALBAC-amplified

parasite genomes were short-read sequenced alongside a
matched bulk DNA control (Table 1). To confirm the ef-
ficiency of ddPCR detection as a pre-sequencing quality
control step, we calculated the correlation between
ddPCR quantification and the sequencing depth at these
specific loci in each sample. We found that the ddPCR-
derived gene copy concentration was correlated with se-
quencing coverage of the corresponding genes in many
samples (Additional file 2: Table S3, 17 out of 28 sam-
ples with a Kendal rank correlation coefficient ≥ 0.6),
confirming the validity of using ddPCR detection as a
quality control step prior to sequencing.

Optimized MALBAC limits contamination of single-cell
genomes
After read quality control steps, we mapped the reads to
the P. falciparum 3D7 reference genome (see “Methods”
and Additional file 1: Figure S2 for details). We first
assessed the proportion of contaminating reads in our
samples; NCBI Blast results showed that the majority of
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non-P. falciparum reads were of human origin (Fig. 2a).
The mean proportions of human reads in EOM samples
(6.6%, SD of 3.2%) and LOM samples (4.3%, SD of 2.9%)
were similar to that in the control bulk sample (7.4%,
Fig. 2a); in fact, a majority of optimized MALBAC sam-
ples were lower than the bulk level (14/23). Conversely,
the proportion of human reads in ENM and LNM sam-
ples were substantially higher (81.8% and 18.9%, respect-
ively). As shown in other studies [92, 93], the clinical
bulk DNA (81.9%) contained a much higher level of hu-
man contamination than the laboratory Dd2 bulk DNA

(7.4%). However, we found that the proportion of the
human contaminating DNA in the two single-cell COM
samples was considerably lower than the comparable
bulk value (58.8% and 65.5%). The second most com-
mon source of contaminating reads was from bacteria
such as Staphylococcus and Cutibacterium. The ENM
sample exhibited a ~ 10-fold increase in the proportion
of bacterial reads over averaged EOM samples (8.2% ver-
sus 0.8%, respectively) whereas the LNM samples
showed the same proportion of bacterial reads as the av-
eraged LOM samples (0.2%). These results indicated that

Fig. 1 Single P. falciparum-infected erythrocytes are isolated, amplified, and sequenced. a Experimental workflow. Parasites are grown in vitro in human
erythrocytes or isolated from infected patients. To limit the number of uninfected erythrocytes in the sample, infected cells are enriched using column
and gradient-based methods (see “Methods”). Individual early-stage (left image) and late-stage (right image) parasite-infected erythrocytes were
automatically isolated into PCR tubes using the CellRaft AIR System (Cell Microsystems, see panel b). All cells were lysed and amplified by MALBAC.
MALBAC uses a combination of common (orange) and degenerate (grey) primers to amplify the genome. The quality of amplified genomes was
assessed prior to library preparation and sequencing using droplet digital PCR (ddPCR); DNA is partitioned into individual droplets to measure gene
copies. Samples were Illumina sequenced and analyzed as detailed in Additional file 1: Figure S2. b Parasite stage visualization on the CellRaft AIR
System using microscopy (× 10 magnification). Enriched early- and late-stage parasite-infected erythrocytes at low density were seeded into microwells
to yield only a single cell per well (left image of each group), and identified with SYBR green and Mitotracker Red staining (indicates parasite DNA and
mitochondrion, respectively). Early-stage parasites exhibited lower fluorescence due to their smaller size, and late-stage parasites had noticeable dark
spots (arrow) due to the accumulation of hemozoin pigment. Scale bar represents 10 μm.
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the optimized MALBAC protocol exhibits lower amplifi-
cation bias towards contaminating human and bacterial
DNA in P. falciparum samples.

Amplification bias and uniformity is altered in single-cell
genomes
To further assess the optimized MALBAC protocol, we
evaluated GC bias at several steps of our pipeline (i.e.,
WGA, library preparation, and the sequencing platform).
Analysis of the bulk genome control (without WGA) in-
dicated that there was little GC bias introduced by the li-
brary preparation, sequencing, or genome alignment
steps; the GC content of mapped reads from bulk se-
quencing data is 18.9% (Table 2), which was in line with
the GC content (19.4%) of the reference genome [50].
We then compared values from single-cell samples to
those from the appropriate bulk control to evaluate the
GC bias caused by MALBAC amplification (Fig. 2b).
The average GC content of all EOM (21.4%), LOM
(22.4%), and COM (20.7%) samples was within 1–3.5%
of the bulk controls from laboratory Dd2 and clinical
samples (18.9% and 19.7%, respectively, Table 2). How-
ever, the average GC content of ENM and LNM samples
was 6.1% and 5.4% greater than that of the bulk control;
this result is consistent with the high GC preference of
the standard MALBAC protocol [30, 46]. ENM and
LNM samples also showed a greater proportion of
mapped reads with high GC content (> 30%) than EOM,
LOM, and bulk DNA samples (Fig. 2b).
Since GC bias during the amplification step can limit

which areas of the genome are sequenced, we assessed the

genome coverage of MALBAC-amplified samples. The
coverage breadth of single-cell samples increased by 34.9% in
early-stage samples (Fig. 2c, orange-ENM to grey-EOM lines)
and by 9.9% for late-stage samples following optimization
(Fig. 2c, red-LNM to purple-LOM lines, see values in Table
2). Despite just a single ENM and LNM sample for compari-
son, the variation of coverage breadth across all EOM/LOM
samples is low (Table S4, SD of 1.9%), indicating that differ-
ences between the two methods are substantial. This pattern
of differences is conserved despite random down-sampling
of reads to the same number per sample (300,000; Table 2).
Even though optimized MALBAC showed less bias to-

wards GC-rich sequences, it was still problematic for
highly AT-rich and repetitive intergenic regions (mean
of 13.6% GC content, [50]). The fraction of intergenic
regions covered by reads was only 27.8% for EOM sam-
ples and 25.0% for LOM samples on average. When we
excluded intergenic regions, the fraction of genic regions
of the genome covered by at least one read reached an
average of 78.0% and 79.0% for EOM and LOM samples
(Table 2). Conversely, the coverage of both intergenic
and genic regions was substantially lower for the non-
optimized samples. Coverage of the P. falciparum gen-
ome in the clinical bulk sample was very low due to
heavy contamination with human reads (0.3% of the
genome was covered by at least one read). This was
much lower than that from the 2 COM samples (an
average of 48%, Fig. 2c and Table 2).
To investigate the uniformity of read abundance distrib-

uted over the P. falciparum genome, we divided the refer-
ence genome into 20-kb bins and plotted the read

Table 1 Pre-sequencing quality control by droplet digital PCR

Result Sample
type

MALBAC type Sample name
(#)

Pre-sequencing ddPCR assessment

Uniformity score AVG (SD)* Pfmdr1 CN AVG (SD)

Sequenced Single cell Optimized EOM (13) 248 (202) 2.6 (0.8)

LOM (10) 118 (69) 2.2 (1.3)

COM (2) 369 (–) 1.9 (0.8)

Non-optimized ENM (1) 18519 (–) 0.2 (–)

LNM (1) 13121 (–) 0.1 (–)

Bulk N/A Dd2_bulk (1) 30 2.7

Clinical_bulk (1) – –

Not sequenced Single cell Optimized EOM (4) 1012 (195) 3.7 (3.9)

LOM (4) 775 (683) 2.8 (2.1)

COM (2) –^ (–) 4.7 (6.6)

Non- optimized ENM (2) 13689 (–) 0 (–)

LNM (3) 1578 (–) 0.1 (0.1)

EOM early-stage single parasites amplified by optimized MALBAC, LOM late-stage single parasites amplified by optimized MALBAC, COM clinical single parasites
amplified by optimized MALBAC, ENM early-stage single parasites amplified by non-optimized MALBAC, LNM late-stage single parasites amplified by non-
optimized MALBAC, AVG average, SD standard deviation
*Uniformity scores were calculated when all of the six genes were detected by ddPCR in the sample
^Due to the lack of ddPCR detection of some genes in COM samples, the uniformity score could not be calculated. (–) Indicates only one sample was included in
the calculation
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abundance in these bins over the 14 chromosomes (Fig. 3a,
Additional file 1: Figures S3 and S4A). We selected a 20-kb
bin size based on its relatively low coverage variation com-
pared to smaller bin sizes and similar coverage variation as
the larger bin sizes (Additional file 1: Figure S5). To quantita-
tively measure this variation, we normalized the read abun-
dance per bin in each sample by dividing the raw read
counts with the mean read counts per 20-kb bin (Fig. 3b,

Additional file 1: Figure S3C). Here, the bulk control dis-
played the smallest range of read abundance for outlier bins
(blue circles) and lowest interquartile range (IQR) value of
non-outlier bins (black box, Fig. 3b, Additional file 1: Figure
S3C), indicating less bin-to-bin variation in read abundance.
Both EOM and LOM samples exhibited a smaller range of
normalized read abundance in outlier bins than ENM and
LNM samples (Fig. 3b, Additional file 1: Figure S3C). In

Fig. 2 Sequencing statistics show benefits of optimized MALBAC. a Contribution of reads based on organism type. A subset of 10,000 reads from
each sample were randomly selected for BLAST to identify sources of DNA. Color representation: bacteria (red); human (blue); other organisms
(orange); Plasmodium (grey). b GC content of P. falciparum mapped reads. GC content of reads was calculated by Qualimap. Color representation: EOM
(grey): early-stage single parasites amplified by optimized MALBAC; LOM (purple): late-stage single parasites amplified by optimized MALBAC; ENM
(orange): early-stage single parasites amplified by non-optimized MALBAC; LNM (dark red): late-stage single parasites amplified by non-optimized
MALBAC; Dd2 bulk genomic DNA (black); COM samples (blue): clinical single parasites amplified by optimized MALBAC. Clinical bulk genomic DNA is
not shown here due to < 1% of the genome being covered by at least one read. c Fraction of P. falciparum genome covered by at least 1 read. The
fraction of the genome was calculated by Qualimap. Color representations are the same as described in panel b
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addition, the read abundance variation of COM samples was
similar to EOM or LOM samples (Fig. 3b, Additional file 1:
Figure S4B). Due to the extremely low coverage of the clin-
ical bulk sample, the read abundance variation was much
higher than all other samples (Fig. 3b, Additional file 1: Fig-
ure S4B).
We then calculated the mean coefficient of variation

(CV) for read abundance in the different sample types
(Table 3, Fig. 3c, and Additional file 2: Table S11). Fol-
lowing normalization for coverage, the mean CV from
the EOM/LOM samples was closer to the CV of the
bulk sample than ENM/LNM samples (89/79% versus
22% versus 147/111%, respectively). Once again, the lim-
ited standard deviation in these measurements indicates
that CV differences represent alterations of read uni-
formity in each sample type (Table 3, Additional file 2:
Table S12). In support of improved uniformity with opti-
mized MALBAC, the CV value of COM samples was
similar to EOM and LOM samples (Table 3, Fig. 3c).

Optimized MALBAC exhibits reproducible coverage of
single-cell genomes
To better assess the amplification patterns across the ge-
nomes, we compared the distribution of binned normal-
ized reads from single-cell samples to the bulk control
using a correlation test (as performed in other single-cell
studies [30, 94]). This analysis revealed that amplifica-
tion patterns of optimized EOM and LOM samples were
slightly correlated with the bulk control (mean Spear-
man correlation coefficient of 0.27 and 0.25, respectively,
Additional file 2: Table S13), while the non-optimized

samples were not correlated (ENM 0.05 and LNM 0.07)
(Fig. 4a).
To quantify the reproducibility of read distribution be-

tween single-cell samples amplified by MALBAC, we
compared Spearman correlation coefficients. The read abun-
dance across all single-cell samples was highly correlated;
two individual EOM or LOM samples had a mean correl-
ation coefficient of 0.83 and 0.88 respectively (Fig. 4b). When
we expanded our analysis to calculate the correlation of
binned normalized reads between all 26 sequenced samples
(Additional file 2: Table S13) and hierarchically clustered the
Spearman correlation coefficient matrix between these sam-
ples, all 23 optimized single-cell samples (EOM and LOM)
clustered with a mean Spearman correlation coefficient of
0.84 (Fig. 4b). In addition, the two COM samples were corre-
lated with each other (Spearman correlation coefficient of
0.84) (Additional file 1: Figure S4C). This correlation indi-
cated high reproducibility of normalized read distribution
across the genomes that were amplified by optimized MAL-
BAC. Within the large cluster, two LOM samples (LOM12
and LOM13) displayed the highest correlation (0.94, Fig. 4b).

Reproducible coverage with lower variation is the main
benefit of MALBAC over MDA-based amplification of
single-cell genomes
We compared our data to that from a MDA-based study
because this is the only other method that has been used
to amplify single Plasmodium genomes ([16], Additional
file 1: Figure S6). This study sorted individual infected
erythrocytes with high (H), medium (M), and low (L)
DNA content corresponding to late-, mid-, and early-
stage parasites, applied MDA-based WGA to single

Table 2 Average GC-content and coverage breadth of sequenced samples

Reads Sample name
(#)

Average
of mean
coverage
(X)

Average
GC
content

Average coverage breadth

Whole genome Genic regions Intergenic regions

All mappable reads EOM (13) 37.54 21.4% 57.9% 78.0% 27.8%

LOM (10) 43.10 22.4% 57.3% 79.0% 25.0%

COM (2) 9.54 20.7% 48.0% 67.7% 18.5%

ENM (1) 1.47 25.0% 23.0% 34.4% 6.1%

LNM (1) 20.43 24.3% 47.4% 67.9% 16.9%

Dd2_bulk (1) 75.83 18.9% 96.1% 97.0% 94.9%

Clinical_bulk (1) 0.03 19.7% 0.3% 0.3% 0.2%

Down-sampled* EOM (13) 1.66 21.4% 30.9% 47.2% 6.7%

LOM (10) 1.69 22.4% 32.1% 49.8% 5.8%

COM (2) 1.66 20.8% 31.1% 47.0% 7.5%

ENM (1) 1.33 25.2% 21.7% 32.9% 5.0%

LNM (1) 1.62 24.3% 26.2% 40.3% 5.1%

Dd2_bulk (1) 1.85 18.8% 76.8% 80.6% 71.2%

*Down-sampling is to 300,000 mappable reads based on the sample with the lowest number of mappable reads (ENM)
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erythrocytes, and sequenced the DNA products. The au-
thors measured a similar amplification success rate in
early (L)-stage samples as our study (MDA: 50% by
DNA yield, MALBAC: 43% by DNA yield) yet slightly
improved success rates for late (H)-stage samples (MDA:
100%, MALBAC: 90%, Additional file 2: Tables S8 and
S9). In light of experimental differences between the two
studies (Additional file 2: Table S14), we analyzed data
from the twelve MDA samples using our exact analysis
pipeline and parameters (six MDA-H and three of each
MDA-M and MDA-L samples) and confined our

comparison of the data to a few metrics: (1) coefficient
of variation of read abundance, (2) coverage breadth,
and (3) correlation between samples (see below).
MDA is known to produce artifacts that impair CNV

detection [29, 52, 56, 95, 96]. While MALBAC-amplified
genomes exhibited a consistent amplification pattern
(Additional file 1: Figure S3A and S3B), the MDA-
amplified genomes showed more variation across cells
(Additional file 1: Figure S6A). We also detected higher
variation in normalized read abundance in the MDA-H
samples (compared to MDA-L and MDA-M samples,

Fig. 3 Samples amplified by optimized MALBAC display improved uniformity of read abundance. a Normalized read abundance across the genome. The
reference genome was divided into 20-kb bins and read counts in each bin were normalized by the mean read count in each sample. The circles of the plot
represent (from outside to inside): chromosomes 1 to 14 (tan); one EOM sample (#23, grey); one ENM sample (#3, orange); one LOM sample (#16, purple); one
LNM sample (#2, dark red); Dd2 bulk genomic DNA (black). The zoomed panel shows the read distribution across chromosome 5, which contains a known
CNV (Pfmdr1 amplification, arrow on Dd2 bulk sample). b Distribution of normalized read abundance values for all bins. The boxes were drawn from Q1 (25th
percentiles) to Q3 (75th percentiles) with a horizontal line drawn in the middle to denote the median of normalized read abundance for each sample. Outliers,
above the highest point of the upper whisker (Q3+ 1.5 × IQR) or below the lowest point of the lower whisker (Q1−1.5 × IQR), are depicted with circles. One
sample from each type is represented (see all samples in Additional file 1: Figure S3C). c Coefficient of variation of normalized read abundance. The average and
SD (error bars) coefficient of variation for all samples from each type is represented (EOM: 13 samples; ENM: 1 sample; LOM: 10 samples; LNM: 1 sample; Dd2
bulk: 1 sample; COM: 2 samples; Clinical bulk: 1 sample). See “Methods” for calculation
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Additional file 1: Figure S6B), which was not consistent
with the report that the MDA method amplifies high
DNA content better than parasites with lower DNA con-
tent [16]. Even though the bulk DNA controls used in
both studies showed similar CVs (24% versus 22%), the
MDA-amplified samples displayed a higher CV than
MALBAC-amplified single-cell samples regardless of the
parasite stage (a mean of 186% versus 85%, respectively,
Table 3, Additional file 2: Tables S11 and S15). As ex-
pected based on MALBAC’s limited coverage of intergenic
regions (Table 2), MDA-amplified samples displayed a
higher coverage breadth cross the genome, especially in
the intergenic regions (Additional file 2: Table S16). Add-
itionally, the correlation between MDA-amplified cells
(mean correlation coefficient: 0.20; Additional file 2: Table
S17, Additional file 1: Figure S6D) was much lower than
that between our optimized MALBAC-amplified cells
(mean correlation coefficient: 0.84; Additional file 2: Table
S13, Fig. 4b); this finding confirms prior observations that
MDA exhibits a more random amplification pattern than
MALBAC [97].

Copy number variation analysis is achievable in MALBAC-
amplified single-cell genomes
To detect CNVs with confidence, we employed both dis-
cordant/split read detection and read-depth based
methods with strict parameters. We used LUMPY to de-
tect paired reads that span CNV breakpoints or have un-
expected distances/orientations (requiring a minimum of
2 supporting reads). We also used a single-cell CNV ana-
lysis tool, Ginkgo, to segment the genome based on read
depth across bins of multiple sizes and determine copy
number of segments (requiring a minimum of 5 consecu-
tive bins). We regarded the CNVs detected by the two
methods as the same if one CNV overlapped with at least
half of the other CNV and vice versa (50% reciprocal over-
lap). Using this approach, we first identified a “true set” of
CNVs from the bulk Dd2 DNA sample (Table 4, 3 CNVs
on 3 different chromosomes). One of the true CNVs was
identified previously in this parasite line (the large Pfmdr1
amplification on chromosome 5, [66]); another true CNV

occurs in an area of the genome that is reported to com-
monly rearrange in laboratory parasites ([98], the Pf11-1
amplification of chromosome 10).
With a set of true CNVs in hand, we assessed our ability

to identify them in the single-cell samples amplified by
MALBAC and explored parameters that impacted their
detection. As expected, each CNV detection method ex-
hibited differences in the ability to identify true CNVs,
which is likely due to a number of factors including CNV
size, genomic neighborhood, and sequencing depth [99].
For example, using discordant/split read analysis, we were
able to readily identify the Pf11-1 amplification in the ma-
jority of samples (21 of 25 samples, Additional file 2: Table
S18). This method was less successful in identifying the
Pfmdr1 amplification (only 3 optimized MALBAC sam-
ples in total, Additional file 2: Table S18). For read-depth
analysis, the success of true CNV detection was heavily
dependent on the bin size (Additional file 2: Table S18). If
we selected the lowest bin size (1 kb) in which it was pos-
sible to detect the smallest of the true CNVs (13 kb), we
were able to readily identify the Pfmdr1 amplification in
all samples (Additional file 2: Table S18). As we increased
the bin size, the number samples with Pfmdr1 detection
decreased, only optimized MALBAC samples were repre-
sented, and the copy number estimate in single cells
approached the bulk control (Additional file 2: Tables S7
and S18). The other two true CNVs were only detected at
the 1 kb bin size in a minority of samples (6 total, Add-
itional file 2: Table S18).
When we assessed true CNVs that overlapped between

the two methods, we were able to improve the precision
and sensitivity of CNV detection in five single-cell samples
(Table S19) and detect at least one CNV in each (3 EOM
and 2 LOM samples out of 25 total cells, Table 5). Not-
ably, in one sample, EOM 23, the Pfmdr1 amplification
was detected in bin sizes of up to 10 kb at a copy number
similar to the bulk control (Table 5). Besides the CNVs
conserved with the bulk sample, we also detected unique
CNVs that were only identified in the single-cell samples.
In general, the CNVs detected by both discordant/split
read and read depth analyses were spread across all chro-
mosomes except chromosome 9, predominantly confined
to optimized MALBAC samples, and were only detected
at 1 kb read depth bin sizes (Additional file 2: Table S20).

High-quality SNPs are detected in MALBAC-amplified
single-cell genomes
Firstly, to understand the accuracy of SNP detection in
MALBAC-amplified genomes, we estimated the preci-
sion and sensitivity of SNP detection in single cells by
treating those from the Dd2 bulk sample as standard
SNP set. We performed this analysis with increasing
stringency levels (VQSLOD score > 0; VQSLOD score >
6; VQSLOD score > 6 with read depth > 10, Table 6) in

Table 3 Coefficient variation of normalized read abundance in
each sample type

Sample name Mean coefficient of variation (CV, %) SD

Dd2 bulk (1) 22 –

ENM (1) 147 –

EOM (13) 89 4

LNM (1) 111 –

LOM (10) 79 2

COM (2) 87 12

Clinical bulk (1) 472 –

SD standard deviation
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Fig. 4 Correlations show reproducibility of amplification pattern by optimized MALBAC. a Paired panels for 5 × 5 matrices represent Spearman
correlation, histogram, and pairwise scatterplot among the normalized read abundance of the Dd2 bulk, ENM, LNM, and one of each EOM and
LOM samples. Outlier bins were removed prior to this analysis (see “Methods” for outlier identification). The Spearman correlation coefficients of
each pair are listed above the diagonal, and stars indicate the p value at levels of 0.1 (no star), 0.05 (*), 0.01 (**), and 0.001 (***). The histograms
on the diagonal show the distribution of normalized read abundance in each sample. The bivariate scatter plots, below the diagonal, depict the
fitted line through locally smoothed regression and correlation ellipses (an ellipse around the mean with the axis length reflecting one standard
deviation of the x and y variables). b Spearman correlation coefficients between sequenced samples. The hierarchical clustering heatmap was
generated using Spearman correlation coefficients of normalized read abundance. The color scale indicates the degree of correlation (white,
correlation = 0; green, correlation > 0)
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order to calibrate with previous SNP studies and evalu-
ate the impact of read depth on SNP identification. In
the Dd2 bulk sample, 18,369 SNPs were detected with
VQSLOD score > 0, while 13,168 SNPs were detected
with VQSLOD score > 6 and read depth > 10; the later
number is more consistent with the number of SNPs
identified in previous studies of Dd2 P. falciparum [100].
Similarly, as we increased the stringency level, fewer
SNPs were detected for each single-cell sample and sen-
sitivity decreased, indicating increased false negatives for
SNP detection. The precision of SNP detection, however,
increased from 65% (VQSLOD score > 0) to 92%
(VQSLOD score > 6) and 99% (VQSLOD score > 6/read
depth > 10) in EOM samples; the same trend was ob-
served for LOM samples (Table 6). The best balance of
precision and sensitivity for SNP detection in single cells
was achieved at the level of VQSLOD score > 6. Even
though the sensitivity for SNP detection is only 46%
(EOMs) and 47% (LOMs) in individual single cells at
this stringency level, we observed up to 72% sensitivity
when we pooled optimized single-cell samples (13 EOMs
and 10 LOMs, Figure S7A).
We also evaluated the detection of 16 known drug re-

sistance SNPs from the Dd2 bulk sample (Additional file
2: Table S21). When we pooled all single-cell samples
(EOMs and LOMs), we detected 13 of the 16 resistance
SNPs (Additional file 2: Table S22); the 3 remaining
SNPs were not identified due to a lack of coverage at
these sites in single-cell genomes (Additional File 3:
SNPs detected in all samples). As expected, the sensitiv-
ity of SNP detection was much lower in non-Dd2
patient-isolated COM samples (15.37%, VQSLOD score
> 6) when compared to that in the Dd2-derived EOM
samples (46.22%).
Since the Dd2 parasites that we used in this study were

not recently cloned, there is a possibility of detecting
novel SNPs that have arisen in the population over time
in laboratory culture [17]. After removing any mixed al-
lele calls and applying the highest stringency level
(VQSLOD score > 6, read depth > 10), we identified 124
novel SNPs in the single-cell samples that were not
present in the Dd2 bulk sample (Additional file 4: Single
cell novel SNPs). These loci affected 226 genes on all 14
chromosomes of the parasite genome (Additional file 2:
Table S23), representing genes involved in the biosyn-
thesis of antibiotics, Ac/N-end rule pathway, purine me-
tabolism, thiamine metabolism, and aminoacyl-tRNA
biosynthesis (Additional file 2: Table S24).

Discussion
This study is the first to optimize the standard MAL-
BAC protocol for single-cell sequencing of a genome
with extreme GC content (P. falciparum: 19.4% GC).
We showed that this optimized method can reliably

amplify early-stage parasite genomes, which contain < 30
fg of DNA per sample. Single-cell experiments are in-
nately very sensitive to contaminating DNA from other
organisms and we detected a lower proportion of human
and bacteria DNA in MALBAC-amplified samples,
which impacted overall coverage of the P. falciparum
genome. Furthermore, we showed that this method ex-
hibited reduced GC bias to impact the breadth and uni-
formity of genome amplification. Finally, with these
single-cell genomes, we were able to explore the detec-
tion of CNVs and SNPs to study parasite-to-parasite
heterogeneity.

MALBAC volume and cycles
MALBAC amplification has been used in studies of hu-
man cells, where each diploid genome harbors ~ 7 pg of
DNA [43, 45]. In this study, we used the MALBAC
method to successfully amplify femtogram levels of
DNA from single P. falciparum parasites. Reducing the
total reaction volume (from 50 to 20 μl) and increasing
the number of amplification cycles (pre-amplification:
from 5 to 18–19; exponential: from 15 to 17) likely con-
tributed significantly to this increased sensitivity. Both
modifications were important. Initially the lower sample
volume reduced the overall DNA yield, and this was re-
versed using increased amplification cycles. These modi-
fications provide additional benefits including reduced
contaminating reads and experimental costs. Import-
antly, these simple steps can be applied to the MALBAC
amplification of small genomes or genomes with skewed
GC content from other organisms such as bacteria
[101]. For example, studies of Mycoplasma capricolum
(GC-poor) [102], Rickettsia prowasekii (GC-poor) [103],
and Borrelia burgdorferi (GC-poor) [104], Entamoeba
histolytica (GC-poor) [105], and Micrococcus luteus
(GC-rich) [106] could be improved using this method.

Primers and coverage bias
The modification of the primer was essential for the suc-
cessful amplification of the AT-rich P. falciparum gen-
ome. This change was meant to prevent the preferential
amplification of GC-rich sequences as observed for hu-
man and rat single-cell genomes [30, 46]. We achieved a
coverage breadth across P. falciparum genic regions (a
mean of 21.7% GC content) of as high as ~ 80% (Table
2) by specifically altering the base content of the degen-
erate 5-mer of MALBAC pre-amplification primer from
50 to 20% GC content. The initial priming step is crucial
for whole-genome amplification and controlling this step
can limit amplification bias [107]. Indeed, 5-mers with ~
20% GC content across the P. falciparum genome are 2-
and 6-fold more common than those with 40% and 60%
GC content, respectively (Additional file 2: Table S1).
This difference indicated that annealing of the optimized
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MALBAC primer based on the degenerate bases was
more specific for the parasite’s genome than the stand-
ard MALBAC primer. Interestingly, during this study,
we observed a preferential amplification of genic over
intergenic regions (Table 2), which may be explained by
lower percentage of 5-mers with 20% GC content in
intergenic regions than in genic regions (Additional file
2: Table S1). Furthermore, when we searched for reads
that contained the MALBAC common sequence (see
“Methods” and Additional file 2: Table S5) to identify
WGA binding sites across the P. falciparum genome, we
found that binding sites were predominantly located in
the genic regions (Additional file 2: Table S5); this result
indicated that there was an issue with primer annealing
in intergenic regions, which may be caused by a high
predicted rate of DNA secondary structure formation
across these regions of the P. falciparum genome [53].
The polymerase used in the MALBAC linear amplifica-
tion steps (Bst large fragment) exhibits strand displace-
ment activity, which presumably allows resolution of
secondary structure [108, 109]. However, a longer exten-
sion time may be required for amplification of repetitive
DNA sequence, either during linear or exponential steps.

Parasite and contaminating genomes
The standard MALBAC method was previously reported
to display the most favorable ratio of parasite DNA amp-
lification over human DNA when compared to other
common WGA methods [110]. Out steps to optimize
MALBAC (reduced volume and increased cycle num-
bers) not only enhanced the amplification of the small
parasite genome, but also likely improved the sensitivity
to amplify contaminating non-parasite DNA. Neverthe-
less, in many samples, optimized MALBAC yielded
lower proportions of contaminating DNA than the bulk
sample (Fig. 2a). We speculate that this effect was once
again due to our modification of the GC content of the
degenerate bases of the primer; this alteration limited
the preferential amplification of contaminating DNA
with higher GC content (observed during standard
MALBAC), thus improving the representation of para-
site DNA in the overall WGA product.
The major contaminating DNA source that we de-

tected in our samples was from humans (Fig. 2a). This
was not surprising given that, in our experimental
system, the culture and host environments are rich in
human DNA [92, 93, 111]. It is also possible that human
DNA was introduced during the single-cell isolation or
WGA steps [56]. The former situation is a larger issue
for clinical parasite isolates due to the abundance of
white blood cells that contribute to extracellular DNA
when they decay outside of the host [112]. Indeed, we
observed more human DNA in clinical bulk and single-
cell samples (an increase of ~ 11-fold over laboratory-

derived Dd2 bulk and single-cell samples, respectively).
The massive level of contamination in the clinical bulk
sample and limited coverage of the parasite genome
(0.3%) was exacerbated by (1) the omission of a stringent
leukodepletion step that is routinely employed to limit
host cell contamination [13, 113, 114] and (2) the lower
overall sequencing output of that particular run (Add-
itional file 2: Table S4).
The second most common source of contaminating

DNA was bacteria (Fig. 2a). WGA approaches are
known to occasionally amplify residual bacterial DNA
associated with commercial polymerases [115–118] or
other reagents [119–121]. Since this contaminant was
absent in the bulk DNA control and increased in early-
stage parasite samples (representing an average of 0.8%
of EOM reads compared to 0.2% for LOM samples),
bacterial DNA may also have been introduced during
single parasite isolation and WGA steps. While we took
precautions to limit this occurrence (see “Methods”),
minimizing the reaction volume could further reduce
this source of contamination.

Early- and late-stage parasites
Depending on when a novel CNV or SNP arises (i.e.,
early or late in replication), each parasite stage holds ad-
vantages for its detection. If the mutation arises in the
first round of replication and is copied into most of the
genomes of a late-stage parasite, having multiple ge-
nomes will be advantageous for detection. If the muta-
tion arises later in replication, it will be present in few of
the genomes; therefore, averaging across the genomes,
as with bulk analysis, will limit its detection. Since only
one haploid genome is present in an early-stage parasite,
the sensitivity for detecting rare/unique CNVs/SNPs
within parasite populations is favored.
For this reason, staging of parasites in this study was

important. We performed stage-specific enrichment be-
fore single-cell isolation and confirmed that the majority
of parasites were the desired stage using flow cytometry
(see “Methods,” Additional file 1: Figure S1, 97% for
early-stage enrichment and 74% for late-stage enrich-
ment). Furthermore, during selection of cells by micros-
copy (before automated collection by the Cell Raft
instrument), we confirmed the expected fluorescence in-
tensities for each stage; early-stage parasites had a sig-
nificantly smaller genome and mitochondrion size
compared to late state (as in Fig. 1b). However, differ-
ences in preparation of samples may have impacted our
parasite stage comparisons. While all late-stage samples
were isolated, lysed, and amplified in the same batch
under the same conditions, early-stage samples were
processed in three separate batches (Additional file 2:
Table S11). Despite conserved methods and good con-
cordance in CV between all samples (Additional file 2:
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Table S11), minor differences could have contributed to
variations in the amplification steps.
Differences in genome analysis results from optimized

MALBAC samples provided further confidence that the
parasites were of the expected stage. Firstly, late-stage
parasites showed a higher WGA success rate than early-
stage parasites (90% versus 43%, Additional file 2: Table
S9). This result was explained simply by the presence of
extra genomes in the late-stage samples (~ 16n versus
1n) and was consistent with a previous study that used
MDA-based amplification methods [16]. Late-stage para-
sites also displayed better uniformity of read abundance
(Table 3), indicating less amplification bias because
fewer regions were missed when more genomes were
present. Additionally, there were fewer overall contamin-
ating reads found in late-stage parasites than early-stage
parasites (5.1% versus 8.6%). Once again, this was likely
due to a higher ratio of parasite DNA to contaminating
DNA in the late-stage samples.
Despite these differences, we observed similar coverage

breadth and Spearman correlation coefficients of read
abundance for both early- and late-stage MALBAC-
amplified parasites (Table 2 and Additional file 2: Table
S13). This was contrary to the MDA study in single P.
falciparum parasites that found a higher breadth of gen-
ome coverage from the late-stage parasites [16]. Our
findings confirm that the pattern of amplification across
the genome is determined by the binding of the opti-
mized MALBAC primers and not the parasite develop-
mental form.

CNV analysis and related considerations
Sequencing at very high depth improves the detection of low
frequency CNVs in bulk samples, but the sensitivity is limited
to large-scale CNVs present in > 5% cells [33, 45, 122]. Other
analysis methods that rely on the detection of reads that span
CNV junctions (i.e., split reads or discordant reads) have im-
proved the sensitivity and specificity of CNV detection [123],
but continue to struggle with minor allele detection. For
single-cell analysis, the high level of MALBAC amplification
reproducibility (i.e., the same regions are over- and under-
amplified across multiple genomes), that we and others have
observed, is especially advantageous for CNV detection. This
is because amplification bias can be normalized across cells,
as has been successfully performed for human cells [45, 124].
Unfortunately, cross-sample normalization was not possible
in our study due to the use of a single laboratory parasite line
that includes known CNVs (Dd2). Instead, as described
below, we combined a read-depth based tool (Ginkgo [82])
with a split/discordant read-based method (LUMPY [81]) to
improve the accuracy of CNV detection (as in [99]).
We observed a large number of raw CNVs detected in

single-cell genomes by each individual method (Additional
file 2: Table S6-LUMPY and Table S7-Ginkgo) and the

precision and sensitivity of each method was low (Add-
itional file 2: Table S19). These initial results may be ex-
plained by a number of possibilities, including those that
are both biological in nature as well as artifacts of our ana-
lysis methods. From a biological perspective, these calls
can represent large CNVs that are known to exist in the
bulk sample (i.e., Pfmdr1 and Pf11.1, Table 5) as well as
the abundance of small CNVs [22] that may be present in
a minor part of the population (unique CNVs, Additional
file 2: Table S20). Because prior P. falciparum CNV ana-
lyses were confined to bulk DNA sequencing, our view of
minor variants in parasite populations is limited. The re-
cent discovery of P. falciparum extrachromosomal DNA
that is derived from regions of the genome that harbor
CNVs [125] suggests that there are cellular pathways that
could contribute to cell-to-cell variations in CNV bound-
aries and dynamics (i.e., perhaps through the excision and
reintegration of extrachromosomal DNA). While the dif-
ferences in start position of true CNVs from single-cell ge-
nomes (Tables 4 and 5) could represent true minor
variants, they could also be due to analysis artifacts that
contribute to excess CNV calls and inaccuracies in esti-
mating boundaries. For example, raw LUMPY results ex-
hibit redundancy due to slightly varied boundaries and
sizes of the same CNV. Additionally, parameters of read-
depth-based approaches like Ginkgo (i.e., bin sizes and the
requirements for consecutive bins) can alter CNV calling;
1-kb bins may heavily reflect coverage variation in the
genome and have a high level of false positives while larger
bin sizes may miss smaller CNVs. In an effort to limit false
positives and these uninformative variations, we combined
approaches by retaining calls that overlapped between the
two approaches (see “Methods”). In support of this com-
bined approach, we detected a decrease in the number of
overall CNV calls and improvements in the precision in
some single-cell samples (Additional file 2: Table S19).
Despite these improvements, we observed variations

in the boundaries and copy numbers of the true
CNVs in single-cell samples (Tables 4 and 5). For ex-
ample, in Dd2 parasites, the Pfmdr1 CNV is ~ 82 kb
but in single-cell samples, it is called as ~ 30 kb with
a later starting position. This difference is most likely
due to uneven coverage across these large CNVs in
single-cell samples; some regions accurately reflect
the CNV where others do not. Importantly, as we in-
creased the bin size, the uniformity of read count im-
proves (Additional file 1: Figure S5), which impacts
CNV identification (i.e., the Pfmdr1 amplification is
found in fewer single-cell genomes and the copy
number estimate approaches that of the bulk control,
Additional file 2: Tables S7 and S18). Thus, efforts to
improve the uniformity of read coverage, genome
coverage breadth, and the potential for cross-sample
normalization will improve our ability to accurately
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detect CNVs. Overall, it is notable that we can detect
CNVs in some single-cell genomes (< 100 kb, Table 5)
that are below the current resolution of CNV detec-
tion from single-cell genomes amplified with common
WGA methods (>> 100 kb to Mb) [33, 39, 44–49].
Our CNV analysis capabilities will improve with ex-
panded numbers and genomic diversity; the inclusion
of parasite lines with different CNV profiles will
greatly facilitate the removal of reproducible amplifi-
cation bias and increase the detection of conserved
and unique CNVs of all sizes.

Standard and novel SNP analysis
By combining stringent SNP filtering strategies (i.e.,
VQSLOD and read depth cutoffs), we increased the
precision for SNP calling in single-cell samples and
detected 72% of SNPs identified in the bulk sample
and 13 of 16 known resistance SNPs (Table 6, Table
S22, Figure S7A). We also detected a number of
novel SNPs across our single-cell samples (Additional
file 4: Single cell novel SNPs VCF file). On average,
this is ~ 13 SNPs per genome, since many of the 124
novel SNPs are shared among genomes (46 shared
SNPs). We are not able to directly compare this rate
to that estimated from other studies [4, 17, 89, 126,
127] because our bulk sample was not cloned prior to
single-cell isolation and overall culturing days are

unknown. Although we take precautions to limit di-
vergence (i.e., parasite lines are only grown for limited
amounts of time and periodically cloned), we do not
know the complete life history of the Dd2 line be-
cause it was acquired from a general repository. How-
ever, when we assessed SNPs from multiple Dd2 lines
using the current pipeline (see “Methods,” VQSLOD>
6), we identified 146 SNPs in the short reads used to
generate the Dd2 reference genome [80] that were
not present in our bulk sample, indicating some di-
vergence occurs in samples that are independently
propagated.

Limitations, scope, and future efforts
One limitation in our comparison between standard and
optimized MALBAC-amplified samples was that we only
sequenced a single standard MALBAC sample from each
parasite stage. However, during our studies we evaluated
a total of 7 independent non-optimized samples using
ddPCR (3 ENM and 4 LNM) and detected multiple in-
stances of allelic dropout and heavy skewing of the copy
number of a known CNV (Table 1 and Additional file 2:
Table S10). These results indicated extreme bias cover-
age and high levels of contaminating DNA, which made
sequencing of these samples futile. Nevertheless, evaluat-
ing specific genes is not equivalent to sequencing a
whole genome. Thus, while we have adapted MALBAC

Table 4 True CNVs detected in the Dd2 bulk genome

Name Chr. Start
Pos.

Size
(bp)

Type Support read* Start
Pos.

Size
(bp)

Copy number detected by Ginkgo** in
different bin sizes

Mappability^

Discordant read Split read 1 kb 5 kb 8 kb 10 kb

Pfmdr1 5 888316 81,935 DUP 53 0 888000 82,000 2 2 Nd Nd 1

Pf11-1 10 1524527 18,472 DUP 29 1 1520000 28,000 4 5 N/A N/A 0.86

Pf332 11 1956623 8719 DUP 0 8 1953000 13,000 4 N/A N/A N/A 0.92

*Detected by LUMPY based on discordant/split read detection, minimum number of supporting reads is 2
**For Ginkgo analysis, the minimum bin number of segmentation is 5
^For comparison, the mean mappability of the core genome is 0.99 and the mean mappability telomere/subtelomere regions including var gene clusters is 0.65
DUP duplication, N/A not applicable because the target CNVs will not be detected as the bin size (≥ 5× bin size) is larger than the size of the target CNVs, Nd not
detected in the specified bin size

Table 5 True CNVs detected in single-cell samples

Sample
name

CNV
name

Start
position

Size
(bp)

Supporting reads Start
position

Size
(bp)

Copy number detected by Ginkgo in different bin sizes

Discordant read Split read 1 kb 5 kb 8 kb 10 kb

LOM 5 Pfmdr1 891390 34,069 0 2 907000 28,000 9 Nd N/A N/A

LOM 16 Pf11-1 1542335 3836 0 3 1543000 5000 3 N/A N/A N/A

EOM 23 Pfmdr1 889899 79,890 3 3 888000 82,000 4 6 5 5

EOM 26 Pf11-1 1542335 3836 0 5 1543000 5000 4 N/A N/A N/A

EOM 29 Pf11-1 1539158 5639 4 0 1541000 7000 3 N/A N/A N/A

N/A indicates the target CNVs will not be detected as the bin size (≥ 5 bin size) is larger than the size of the target CNVs. Nd not detected in the specified bin size
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for amplifying single P. falciparum parasite genomes,
further studies are required to rigorously evaluate the
differences between standard and optimized MALBAC.
A second limitation of our study was our inability

to directly compare MALBAC results to those pro-
duced using MDA. Our studies specifically sought to
adapt MALBAC for amplification of the Plasmodium
genome; therefore, we did not perform MDA on our
samples in parallel. However, in order to gain some
insight into the performance of the two WGA
methods on the P. falciparum genome, we performed
limited comparisons with data from a previous MDA-
based study (Fig. 4b, Additional file 1: Figure S3 ver-
sus S6; Table 2 versus Additional file 2: Table S16;
Table S11 versus S15; Table S13 versus S17). Direct
comparisons were constrained by the use of distinct
parasite lines (HB3 vs Dd2) and single-cell prepar-
ation pipelines but the results emphasized the
strengths and weaknesses of each method. While
MDA is known to exhibit lower single-nucleotide
amplification error and acquired overall higher gen-
ome coverage in P. falciparum genome [16] (Add-
itional file 2: Table S16), it is not suitable for CNV
detection [52]. MALBAC, on the other hand, can pro-
vide high-quality SNP identification following strict
filtering steps ([97] and Table 6), and the reprodu-
cible amplification pattern (Fig. 4b) can be beneficial
for both CNV and SNP detection (see below).

Another limitation is related to the lack of MALBAC
coverage across certain genomic regions (~ 40% of the
overall genome, ~ 70% of the intergenic regions, Table 2),
which impacts the detection of genetic variations in these
locations. Low read depth resulted in the failure to detect
SNPs (Figure S7B) and variation of coverage leads to inac-
curacies in the size and boundaries of CNVs (see “CNV
analysis and related considerations”). However, the repro-
ducible pattern of genome coverage by MALBAC provides
some advantages. First, as mentioned above, we can ex-
ploit this feature to normalize across diverse samples to
minimize noise and improve CNV detection; any im-
provements in the coverage of intergenic regions and uni-
formity will also impact CNV identification through
increased detection of discordant/split reads and more ac-
curate read-depth calling. Second, the consistent coverage
pattern allows us to predict a defined set of SNPs that can
be consistently detected across pooled single-cell samples
with a given coverage level.
Finally, we specifically recognize the limitations of our

CNV analysis pipeline. First, we confined our assessments
to duplications and deletions (Additional file 2: Table S19)
but have not evaluated other types of structural variations
that may also be important for adaptation. Second, we ac-
knowledge that our CNV analysis on single-cell genomes
is not yet robust (see “CNV analysis and related consider-
ations” above). We also recognize that there is a tradeoff
between sensitivity and precision during CNV analysis;

Table 6 SNP detection in sequenced samples

Variant filtering conditions Sample name Number of SNPs Precision Sensitivity

VQSLOD > 0 EOM (13) 12,734 65.25% 45.09%

LOM (10) 12,730 67.16% 46.40%

ENM (1) 2269 84.93% 10.49%

LNM (1) 9235 67.29% 33.83%

Dd2 bulk (1) 18,369 – –

COM (2) 8851 31.55% 15.22%

VQSLOD > 6 EOM (13) 6917 91.75% 46.22%

LOM (10) 6990 92.40% 47.05%

ENM (1) 1375 96.58% 9.68%

LNM (1) 4902 95.17% 33.99%

Dd2 bulk (1) 13,725 – –

COM (2) 3162 66.69% 15.37%

VQSLOD > 6, read depth > 10 EOM (13) 3937 99.48% 29.74%

LOM (10) 4360 99.41% 32.92%

ENM (1) 252 97.62% 1.87%

LNM (1) 2575 98.87% 19.33%

Dd2 bulk (1) 13,168 – –

COM (2) 1021 79.28% 6.13%

*Precision and sensitivity are calculated by using SNPs detected in Dd2 bulk sample as the standard SNP set
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accepting the possibility of false positives allows maximal
sensitivity to detect novel CNVs. Ultimately, the benefit of
single-cell genomics is the discovery of minor variants that
provide insight into the dynamics of adaptation. While we
would not consider individual CNVs identified in our
current analysis to be particularly informative, studies
assessing relative CNV levels (under condition 1 vs 2)
would likely yield informative results using the current
methods. To achieve consistent and robust CNV calling,
we require a combination of improvements in both ampli-
fication methods and analysis tools (as proposed above).
This study can be used as a springboard for such
advancements.

Conclusions
It is notable that we can successfully amplify a small,
base-skewed genome and detect genetic variations on a
single-cell level. Our modifications of reaction volume,
cycle number, and GC content of degenerate primers
will expand the use of MALBAC-based approaches to
organisms not previously accessible because of small
genome size or skewed base content. Furthermore, these
changes can reduce amplification of undesired contam-
inating genomes in a sample. The reproducible nature of
this WGA method, combined with new genome analysis
tools, will reduce the effect of amplification bias when
conducting large-scale single-cell analysis and enhance
our ability to explore genetic heterogeneity in the form
of both SNPs and CNVs. Thus, we expect this approach
to broadly improve study of mechanisms of genetic
adaptation in a variety of organisms.
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