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Abstract

Background: Many carcinomas have recurrent chromosomal aneuploidies specific to the tissue of tumor origin.
The reason for this specificity is not completely understood.

Methods: In this study, we looked at the frequency of chromosomal arm gains and losses in different cancer types
from the The Cancer Genome Atlas (TCGA) and compared them to the mean gene expression of each chromosome
arm in corresponding normal tissues of origin from the Genotype-Tissue Expression (GTEx) database, in addition to the
distribution of tissue-specific oncogenes and tumor suppressors on different chromosome arms.

Results: This analysis revealed a complex picture of factors driving tumor karyotype evolution in which some recurrent
chromosomal copy number reflect the chromosome arm-wide gene expression levels of the their normal tissue of
tumor origin.

Conclusions: We conclude that the cancer type-specific distribution of chromosomal arm gains and losses is
potentially “hardwiring” gene expression levels characteristic of the normal tissue of tumor origin, in addition
to broadly modulating the expression of tissue-specific tumor driver genes.

Background
In solid tumors of epithelial origin, i.e., carcinomas, and in
certain other solid tumors such as glioblastoma multi-
forme and malignant melanoma, aneuploidies of specific
chromosomes define the landscape of somatically

acquired genetic changes [1–5]. In fact, aneuploidy is
present in about 90% of solid tumors [6]. Remarkably, the
distribution of ensuing genomic imbalances is cancer
type-specific [4, 7]. For instance, colorectal carcinomas re-
currently gain chromosome arms 7, 8q, 13q, and 20q and
lose copies of 8p, 17p, and 18q [8]. In contrast, cervical
carcinomas recurrently gain chromosome arms 1q and 3q.
In other words, a gain of 3q is not observed in colorectal
cancer, and cervical carcinomas do not have copy number
gains of, e.g., chromosomes 7 or 13q [4, 5, 7]. Further-
more, cancer type-specific chromosomal aneuploidies

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: riedt@mail.nih.gov
Sushant Patkar, Kerstin Heselmeyer-Haddad, and Noam Auslander equally
contributed as first authors.
Eytan Ruppin and Thomas Ried equally contributed as last authors.
3Section of Cancer Genomics, Center for Cancer Research, National Cancer
Institute, NIH, Bethesda, MD 20892, USA
Full list of author information is available at the end of the article

Patkar et al. Genome Medicine           (2021) 13:93 
https://doi.org/10.1186/s13073-021-00905-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-021-00905-y&domain=pdf
http://orcid.org/0000-0002-0767-6009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:riedt@mail.nih.gov


emerge in dysplastic, i.e., not yet malignant, lesions, that
are prone to progress to invasive disease [8–12]. Numer-
ous cancer type-specific aneuploidies originate at early
stages of tumorigenesis, yet are retained in late stage tu-
mors and in metastases, as reflected in the TCGA data-
base [9].
The cancer type-specific distribution of genomic im-

balances was recently confirmed in two comprehensive
pan-cancer analyses of several thousand tumors [10, 11].
Although some intra-tissue differences were observed
for certain tumor subtypes arising from the same tissue,
different tumor types from the same tissue tended to
cluster together (e.g., low-grade gliomas cluster with
glioblastomas as do clear cell and papillary renal cell car-
cinomas). On one hand, it is possible that loss or gain of
particular chromosomes or their fragments during car-
cinogenesis target the gain of specific oncogenes or the
loss of tumor suppressors located on these chromo-
somes [6, 12, 13]. On the other hand, it is well known
that chromosome-wide alterations of gene expression
levels follow genomic copy number changes [14, 15], i.e.,
the transcripts of genes that are located on gained chro-
mosomes are more, and those on lost chromosomes are
less abundant. This correlation has been firmly estab-
lished in primary human carcinomas, in derived cell
lines, and in experimental cancer models [14, 16–20].
Hence, the gain or loss of specific chromosomes can po-
tentially act as a mechanism to maintain tissue-specific
gene dosage.
Given this background, we decided to explore how the

frequencies of chromosomal arm gains and losses in spe-
cific cancer types correlate with (i) mean chromosome
arm gene expression levels of their normal tissue of ori-
gin and (ii) the chromosomal distribution of previously
identified or newly implicated tissue-specific driver
genes. Our exploratory analysis unearthed a complex
picture of factors shaping the evolution of tumor karyo-
types in which frequent chromosomal copy number
changes can potentially “hardwire” chromosome-wide
gene expression levels of their normal tissue of origin in
addition to targeting tissue-specific driver genes.

Methods
Tissue and tumor type inclusion
Chromosome arm-wide gain and loss data of each tumor
type from the TCGA were obtained from a recent pan-
cancer study conducted by Taylor et al. [11], pre-
processed cancer gene expression data of each tumor
type from the TCGA was obtained from the xena
browser (https://tcga.xenahubs.net/) [21], and likewise of
the normal tissue of origin of each tumor type was ob-
tained from the GTEx (Genotype Tissue Expression)
project portal online (see GTEx Analysis Release V6p at
https://www.gtexportal.org/home/datasets) [22]. Clinical

stage data of tumor samples was made publicly available
from the TCGA Clinical Data Resource (TCGA-CDR)
publicly available on the GDC website (https://gdc.
cancer.gov/about-data/publications/pancanatlas) [23].
Throughout this study, we worked with pre-processed
gene expression data that was quantified in Reads Per
Kilobase of transcript, per Million mapped reads
(RPKM) by the authors of the respective consortiums
with no additional normalization. The RPKM values are
unlikely to be confounded by whole genome doubling
events as they are already library size normalized,
through dividing by the total number of reads in a sam-
ple. Furthermore, the GTEx samples were collected from
normal individuals, which lack any whole genome dupli-
cation events. For analysis comparing tumor types to
their normal tissue of origin, data from 25 tumor types
with publicly available gene expression data of their nor-
mal tissue of origin from GTEx were considered. Like-
wise, for comparing normal tissue-specific methylation
and expression levels, only 11 tumor types which had
corresponding publicly available methylation data of
their normal tissue of origin were considered. Additional
file 1: Table S1, systematically documents for each of the
33 tumor types in the TCGA whether there was an inde-
pendent publicly available gene expression and methyla-
tion dataset of the corresponding normal tissue of
origin. Details of publicly available normal tissue methy-
lation datasets that we curated are described below.

Curation and pre-processing normal tissue-specific
methylation datasets
Processed methylation datasets of normal tissues were
collected from the Gene Expression Omnibus (GEO)
database [24]. For consistency, we restricted our search
to datasets where methylation was quantified using the
same platform (Illumina 450K). This resulted in the
identification of 18 tissue-specific methylation datasets,
which were analyzed together (see Additional file 2:
Table S2) [25–40]. These were datasets spanning differ-
ent studies comparing methylation levels of organ tissues
between diseased and normal control individuals. We
only selected methylation profiles of normal control in-
dividuals for further analysis. Moreover, multiple data-
sets containing samples coming from the same organ
tissue were merged to generate one methylation dataset
per organ. The methylation data of each dataset was
pre-processed in the following steps:

1. Filtering out probes within 15 base pairs of single
nucleotide polymorphisms [41].

2. Re-normalizing the beta values between type 1 and
type 2 probes using beta mixture quantile
normalization [42]. This minimizes biases that may
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arise due to sensitivity differences between the two
probe designs.

Computation of chromosomal arm imbalance score in
cancerous tissues
We used the TCGA sample-wise chromosomal arm gain
and loss calls provided in supplementary data of the
Taylor et al. [11] study, where the ploidy of each tumor
sample was first determined via the ABSOLUTE algo-
rithm [43]. Then, independent chromosome arm copy
number alterations were distinguished from whole gen-
ome duplication events by comparing the absolute inte-
ger copy number of chromosomal arm regions to the
baseline tumor ploidy. Each segment was designated as
gained, deleted, or neutral compared to the ploidy of
each tumor sample. The scores of each arm are − 1 if
lost, + 1 if gained, 0 if non-aneuploid, and “NA” other-
wise. For sake of consistency, all “NA” entries were re-
set to 0 (i.e., we considered those samples non-
aneuploid for that arm). Sample-wise chromosome arm
gain and loss calls from the METABRIC breast cancer
dataset using ABSOLUTE were provided to us upon re-
quest from Shukla et al. [44]. The discrete representation
was used because it is most fitting to describe arm-level
changes, which may be either gained (1) or lost (− 1) by
definition, rather than continuous GISTIC data, which is
better suited for studying targeted focal copy number
alterations.
For each of the 39 chromosomal arms, we defined an

arm imbalance score for a set of cancer types sharing
the same tissue of origin (or a singular cancer type), by
computing the difference between the frequency of gains
and losses. Formally:

Arm Imbalance Score Ai;T j
� �

¼

X

samples s in T j

IsG Aið Þ−
X

samples s in T j

IsL Aið Þ

Number of samples in T j

where Ai is chromosomal arm i (of 1 to 39 chromo-
somal arms), Tj is the tissue of origin of all tumor types
arising from tissue j, and the indicators IsG(Ai) and
IsL(Ai) are defined by:

IsG Aið Þ ¼ 1; if samples s has a gain of arm Ai

0 otherwise

�

IsL Aið Þ ¼ 1; if samples s has a loss of arm Ai

0 otherwise

�

Hence, arms that are more frequently gained are
assigned positive scores, while arms that are more fre-
quently lost are assigned negative scores. Arms that are
neither gained nor lost and arms where the frequency of
gains and losses is comparable are assigned neutral

(~zero) score. However, the latter is negligible since
chromosome arms that are frequently gained are rarely
lost in a specific tumor type and vice versa. This score is
hence equivalent to the mean value of gains/loss inci-
dences in set of tumor types considered and chromo-
somal arm.

Using permutation tests to evaluate correlations
significance
In this study, we computed correlations across cancer/tis-
sue types and across chromosomal arms. To evaluate
whether the magnitude of correlations is significant com-
pared to random, we employed a permutation test, to esti-
mate a background null distribution of the number of
positive correlations. We therefore repeated 1000 itera-
tions of randomly shuffling the cancer/tissue pairing and
1000 iterations of randomly shuffling the arm-level
pairing. We compared the number of positive correlations
P, achieved with the true pairings to this background (Ni,
i = 1, 2, …, 1000), to compute a p value and accept or

reject the null hypothesis, denoted as

X1000

1

Ni > P

1000 .
In a similar manner, we tested whether mean arm-

wide gene expression levels of each of the 39 chromo-
some arms in a sample are informative for predicting
the sample’s tissue of origin, compared to the back-
ground of any random aggregation of gene expression
into 39 groups. Therefore, we designed a permutation
test with 1000 iterations. In each iteration, we quantified
how accurately we can predict tissue of origin based on
randomly aggregating genes into 39 groups with similar
sizes as that of chromosomal arm assignment. We evalu-
ated the number of times (out of 1000) in which the
multiclass prediction accuracies of the shuffled predictor
(Ni,with randon aggregation of genes into 39 groups)
exceeded the original predictor (P, with the aggregation
of genes to 39 groups by chromosomal arm), to derive

an empirical permutation p value, denoted as

X1000

1

Ni > P

1000 .

Quantile normalization of gene expression and
methylation values for cross tissue comparison and
visualization
To enable side-by-side comparison and visualization of
the arm imbalance scores with mean chromosomal arm
mean gene expression levels in different normal tissues
(and likewise in different cancers), the gene expression
and arm-imbalance values need to be on the same scale.
Hence, we additionally quantile-normalized the mean
gene expression levels using the chromosomal arm im-
balance distribution as reference, to enable visualization
by generating similar expression distribution across
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different tissues. We applied the same approach to quan-
tile normalized chromosome arm-wide mean methyla-
tion levels in normal tissues to visualize normal
methylation against normal gene expression in each
tissue.

Obtaining chromosome-wide distribution of relevant
oncogenes and tumor suppressors in each cancer type
We obtained a comprehensive list of known (or poten-
tial) oncogenes and tumor-suppressors driving each can-
cer type from supplementary data of a recent pan-cancer
study conducted by Bailey et al. [13]. This list was ob-
tained from supervised machine learning predictions
based on features derived from mutation, copy number,
gene expression, and methylation changes observed in
genes across different cancer types. Given a cancer type,
the oncogenes-tumor suppressor imbalance score for
each arm in a given cancer type (or collection of cancer
types) was formally defined as follows:
Oncogene-tumor suppressor imbalance score = frac-

tion of driver genes on the arm that are oncogenes − the
fraction of driver genes on the arm that are tumor-
suppressors.

Normal and cancer tissue of origin classification and
clustering
We classified normal (and likewise, cancer) samples
using the chromosomal-arm level expression of those
samples. For each sample, we calculated the mean gene
expression level of the genes in each chromosomal arm.
This resulted in 39 unique features per sample (one per
arm). We then performed K-Nearest-Neighbors (KNN
based on Euclidean distances, with K = 5, the value for
which the best performance was observed for cancer
type classification from K = 3, 5, 7) classification with a
Leave-One-Out cross validation (LOOCV), aiming to
classify each sample based on the 39 arm level features
and calculate the resulting accuracy (percentage of cor-
rectly classified samples in the LOOCV). An analogous
approach was taken for classification of tissue of origin
based on methylation data. Additionally, to rule out po-
tential confounding batch effects in gene expression data
and the leave one out cross-validation procedure used,
we re-estimated overall KNN performance using 5-fold
cross validation (Additional file 13: Table S8).
Visualization of the clusters of normal and cancer sam-
ples was performed using Rtsne package and default
hyper-parameter settings [45]. For performing hierarch-
ical clustering of different tissue types, each tissue type
is summarized as a vector of 39 features; one for each
arm. Four different hierarchical clustering analyses were
performed using “hclust” utility function available in R.
For each hierarchical clustering, a different set of 39 fea-
tures was used. They are systematically listed:

1. Chromosomal arm imbalance score computed
across all cancer types originating from the same
tissue

2. Mean arm-wide normal gene expression across all
genes and all normal samples belonging to the same
tissue.

3. Mean arm-wide cancer gene expression across all
genes and all samples originating from the same
tissue

4. Arm level oncogene-tumor suppressor imbalance
score across all cancer types originating from the
same tissue

Cophenetic distances between any two hierarchical
clusterings were calculated using “cophenetic” utility
function available in R.

Results
Correlation between frequencies of cancer type-specific
aneuploidies and mean chromosome arm-wide gene
expression levels of their normal tissue of origin
Taylor and colleagues [11] comprehensively recorded for
each tumor sample in the TCGA if a specific chromo-
some arm was gained or lost (while accounting for the
baseline tumor ploidy). We used this data to compute
the mean chromosome arm imbalance score of each
arm in a given cancer type (or collection of cancer types)
emerging from the same tissue of origin. In short, this
score measures the difference between the frequency of
gains and losses of a specific chromosome arm (see the
“Methods” section). As a first step, we validated previous
observations by showing that the mean gene expression
levels over all genes and all samples from the same
chromosome arms and cancer type included in the
TCGA database, respectively, positively correlate with
the corresponding arm imbalance scores (Fig. 1a, Add-
itional file 3: Table S3, Additional file 4: Table S4). This
analysis confirmed that genomic copy number alter-
ations in cancer genomes directly affect gene expression
levels. We additionally computed chromosome arm im-
balance scores in an independent cohort of 1980 breast
cancer patients (METABRIC) [44] with publicly available
copy number and gene expression data and found con-
sistent trends (Additional file 5: Figure S1A and S1B).
After having validated this correlation, we next com-
puted the mean expression levels over all genes and all
samples from the same chromosome arm and normal
tissue, respectively, from the GTEx database. These
values were then correlated with the mean chromosome
arm imbalance scores of respective cancer types emer-
ging from that tissue. Figure 1b plots a heatmap with
rows indicating chromosome arms. The chromosome
arm-wide mean expression levels in each normal tissue
and corresponding arm imbalance scores in associated
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Fig. 1 (See legend on next page.)
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cancer types are juxtaposed and quantile normalized to
the same scale for visualization and comparison (Add-
itional file 6: Table S5, Additional file 7: Table S6, Add-
itional file 8: Table S7).
In general, chromosome arms that are most frequently

altered are either predominantly gained or lost, across
all samples of a cancer type. That is, the gain and loss
frequencies of a chromosome do not cancel each other
out, resulting in either positive or negative arm imbal-
ance scores across most cancer types. However, there
are some notable exceptions (see for example chromo-
some 13q which has a positive arm imbalance score only
in gastrointestinal tumors). Nevertheless, the frequencies
of gains and losses vary by tissue of origin and result in
varying arm imbalance scores across cancer types.
Among the frequently altered chromosome arms, we see
that chromosome arms 13q, 18q, 10q, and 2p have the
strongest correlations between their normal tissue-
specific mean expression levels and arm imbalance
scores, and these correlations are positive. When looking
at each tissue individually (columns of Fig. 1b), we see
the strongest correlations between the normal
chromosome-wide mean expression levels and arm im-
balance scores for brain, colon, and kidney tissues, and
these correlations are also positive. Although the statis-
tical power to assess the significance of these individual
correlations is limited, we see that a majority of correla-
tions (both at tissue and arm level) are positive. We eval-
uated the overall probability of getting so many positive
correlations (both at the arm and tissue level), using a
permutation test. To this end, we repeated 1000 times of
randomly shuffling the chromosomal arm assignments
(rows of Fig. 1b) and another 1000 for the tissue assign-
ments (columns of Fig. 1b). We found that similar or
higher correlations were found for the shuffled data in
less than 5% of the cases, yielding a permutation p < 0.05
for both arm-wise and tissue-wise correlations. A more

detailed overview of the correlation signals for each tis-
sue (across all arms) and each arm (across all tissues) is
provided in Additional file 9: Figure S2 and Additional
file 10: Figure S3, respectively. Furthermore, we separ-
ately plotted the correlations between normal arm level
expression, cancer arm level expression and the arm im-
balance scores for 5 cancer normal tissue pairs (Add-
itional file 11: Figure S4, Additional file 5: Figure S1
panels C and D). We additionally repeated this analysis
for early stage tumors from the TCGA database (defined
as tumors with AJCC stage classification of 0 or 1). Al-
though the number of tumors available for analysis was
further reduced, a similar trend of weak, but predomin-
antly positive correlations was observed (Additional file
12: Figure S5).
If certain chromosome arm aneuploidies might “hard-

wire” the chromosome arm-wide gene expression levels
specific to their normal tissues, one should be able to
classify the tissue of origin of normal and cancer tissue
samples just based on the mean chromosome arm-wide
gene expression levels of each of the 39 arms. To test
this hypothesis, we obtained the mean gene expression
levels for each arm in each normal tissue sample in
GTEx (and likewise for each cancer sample in TCGA)
resulting in 39 unique features. Then K-Nearest Neigh-
bors (K-NN) multi-class classification was applied with
leave-one-out cross validation (see the “Methods” sec-
tion for more details). We find that mean chromosome
arm-wide gene expression can effectively classify the tis-
sue of origin of both normal and cancer samples from
GTEx and TCGA, respectively, and that the perform-
ance is generally better for normal tissues (Fig. 2a, Add-
itional file 13: Table S8, Additional file 14: Table S9).
The resulting accuracy was better for tissues with higher
case numbers, as expected for KNN analyses. Further-
more, these results could never be obtained when the
chromosome assignment of genes was randomly shuffled

(See figure on previous page.)
Fig. 1 Correlations of chromosome arm-wide gene expression levels and chromosome arm-wide aneuploidies. a Correlation plot of chromosome arm-wide
gene expression levels in cancers and patterns of chromosome arm-wide gains and losses in cancers reported in the TCGA database. Bar plot represent the
Spearman rank correlations for each cancer type independently. The height of the bar reflects the correlation coefficient, and the size of the circle the
significance. Size of 2 indicates p value < 0.01, size of 1 indicates p value < 0.1, and size of 0 indicates p value < 1. b Correlation of chromosome arm-wide gene
expression levels based on the GTEx database (left column) with chromosome arm-wide aneuploidies in associated cancer types based on data reported in the
TCGA database (right column), respectively, for 19 tissue entities. The arm imbalance score is reflected in colors: red indicates more frequent gains compared to
losses; blue indicates more frequent losses compared to gains. The hue of the colors indicates the frequency of copy number changes and the quantile
normalized levels of mean chromosome arm-wide gene expression, respectively. Barplots shown beside each heatmap are the Spearman rank correlations
(horizontal bars indicate comparisons for each arm independently; vertical bars indicate comparisons for each tissue independently). A size of 2 indicates p value
< 0.01, a size of 1 indicates p value < 0.1, and size of 0 indicates p values < 1. TCGA study abbreviations: ACC, adrenocortical carcinoma; BLCA, bladder urothelial
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical carcinoma; CHOL, cholangiocarcinoma; COAD, colon
adenocarcinoma; DLBC, diffuse large B cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell
carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary carcinoma; LAML, acute myeloid leukemia; LGG, low-
grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous
cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid
carcinoma; THYM, thymoma; UCEC, uterine endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma
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(by repeating 1000 shuffling of the chromosomal assign-
ments of genes, permutation test p value < 0.001). To
rule out the possibility that the results are inflated

because of the leave-one-out cross validation technique,
we performed a fivefold cross validation analysis con-
firming our results (Additional file 15: Table S10). To

Fig. 2 Normal tissue and cancer type classification based on chromosome arm-wide gene expression levels. a K-Nearest-Neighbors (KNN) multi-class
analysis: predictions made in a leave one out fashion (i.e., the accuracy). Height of bars indicates the fraction of correctly predicted cases. The numbers
on top of each bar indicate the number of samples available for each class. b, c t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality
reduction analysis of chromosome arm-wide mean gene expression levels in normal tissues (b) and in cancers (c)
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Fig. 3 (See legend on next page.)
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Fig. 4 Hierarchical cluster analysis of cancers and normal tissues. a Cancer chromosome arm-wide gains and losses, b cancer mean chromosome
arm-wide gene expression, c mean chromosome arm-wide gene expression of normal tissues, and d chromosome arm-wide imbalance of tumor
suppressor genes and oncogenes. Note that the clusters are similar in a–c, yet different in d

(See figure on previous page.)
Fig. 3 Distribution of cancer driver genes and chromosome arm-wide aneuploidies. For each set of cancer types with shared tissue of origin, we plot: a the
fraction of driver genes on each arm that are considered to be tumor suppressors (left column) and the frequency of losses reported for the arm. The bluer the
color, the higher the tumor suppressor burden (and likewise for the frequency of losses. b The fraction of driver genes on each arm that are considered to be
oncogenes (left column) and the frequency of gains reported for the arm (right column). The redder the color, the higher the oncogenic burden (and likewise for
frequency of gains). Barplots shown beside each heatmap are the Spearman rank correlations (horizontal bars indicate comparisons for each arm independently;
vertical bars indicate comparisons for each tissue independently). The size of bubbles indicates the p value. A size of 2 indicates p value < 0.01, a size of 1 indicates
p value < 0.1, and size of 0 indicates p values < 1. As seen at the tissue level, correlation between tumor suppressor burden and frequency of losses is almost
always positive (empirical p value after randomly shuffling data < 0.05), whereas that is not the case for gains
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Fig. 5 (See legend on next page.)
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visualize these classifications, we used t-distributed Sto-
chastic Neighbor Embedding (t-SNE) dimensionality re-
duction of the 39-dimensional feature space. We found
that samples from the same normal tissues cluster
closely in most cases (Fig. 2b), but to a lesser extent for
cancer entities (Fig. 2c). The separate sub-clusters within
each tissue correspond to the different anatomical re-
gions of the tissues that were sampled from GTEx.
Overall, these results suggest that certain chromosomal
aneuploidies acquired by tumors might hardwire tissue-
specific gene expression levels of their tissue of origin.

Correlation between frequencies of cancer type-specific
aneuploidies and the tissue-specific oncogenes and
tumor suppressors that reside on the respective
chromosomes
Recent studies have looked at the connection between
specific chromosomal gains and losses and driver genes
located on these chromosomes for specific cancer types
[12, 46]. Here, we revisited this connection. For each tis-
sue analyzed in this study, the correlation between the fre-
quency of losses in associated cancer types and the
fraction of drivers that are tumor suppressors is consist-
ently strong and positive (Fig. 3a, permutation test with
1000 random shufflings of arms and tissue pairing of the
values in Fig. 3a, p value < 0.05; see the “Methods” section,
Additional file 16: Table S11, Additional file 17: Table
S12, Additional file 18: Table S13, Additional file 19: Table
S14). The strongest of these correlations were observed
for chromosome arms 17p, 17q, and 9p. The direction of
correlation between gains of chromosome arms and the
location of tissue-specific oncogenes is, however, less clear
(Fig. 3b, permutation test p value after random shuffling>
0.05, Additional file 6: Table S5). To explore this further,
we performed four hierarchical clustering analyses of tis-
sues based on (i) chromosomal arm imbalance scores in
associated cancer types (Fig. 4a), (ii) mean chromosome
arm-wide gene expression levels in associated cancer types
(Fig. 4b), (iii) mean chromosome arm-wide gene expres-
sion levels in normal tissues (Fig. 4c), and (iv)

chromosome arm-wide imbalance in the fraction of onco-
genes and tumor suppressor genes originating from each
tissue (Fig. 4d). For ease of visualization, the tissues were
partitioned and colored by 4 distinct clusters obtained
from each hierarchical clustering separately. To further
systematically quantify the similarities between two clus-
terings, we computed the Spearman correlation between
cophenetic distances defined by each clustering. We found
that the cophenetic distances among tissues based on
chromosomal arm imbalance scores (Fig. 4a) and mean
chromosome arm-wide normal gene expression levels
(Fig. 4c) are highly similar (Spearman correlation r = 0.61,
p value = 2.2E−16). Likewise, a strong Spearman correl-
ation (r = 0.52, p value = 2.997E−13) was obtained when
comparing cophenetic distances based on arm imbalance
scores (Fig. 4a) and mean chromosome arm-wide cancer
gene expression levels (Fig. 4b). However, the Spearman
correlation between cophenetic distances of tissues based
on arm imbalance scores (Fig. 4a) and distribution of
tissue-specific oncogenes and tumor suppressor genes
(Fig. 4d) is − 0.09, with a p value = 0.2067. While the list
of tissue-specific cancer driver genes is still incomplete,
these results suggest that copy number changes in resident
driver genes may not be sufficient to explain the observed
tissue-specificity of chromosomal aneuploidies in cancers.

Samples from the same normal tissue also cluster
together by their mean chromosome arm-wide
methylation levels
A possible mechanism regulating chromosome-wide gene
expression levels in normal tissues is DNA methylation.
Therefore, in a fashion similar to Fig. 1b, we explored
whether mean chromosome arm-wide methylation levels
correlate with the mean chromosome arm-wide gene ex-
pression levels. The Gene Expression Omnibus (GEO)
database provides genome-wide methylation levels for 11
different tissue types, all obtained using the same Illumina
450K platform (Additional file 2: Table S2). Based on
these data, we analyzed chromosome arm-wide mean
methylation patterns for 11 tissues from 765 samples

(See figure on previous page.)
Fig. 5 Correlation of chromosome arm-wide methylation levels and chromosome arm-wide gene expression. a For each tissue with available
normal methylation data, we plot the mean arm-wide methylation levels of each arm (left column) and the mean arm-wide expression levels of
each arm (right column). The mean expression and methylation values are quantile normalized to the same scale (see the “Methods” section) for
comparison and visualization. For left column: the redder the color, the higher the arm-wide methylation level; the bluer the color, the lower the
arm-wide methylation level. For right column: the redder the color, the higher the arm-wide expression level; the bluer the color, the lower the
arm-wide expression levels. Bar plots besides the heatmap are Spearman rank correlations (horizontal bars indicate comparison for each arm
independently; vertical bars indicate comparison for each tissue independently). The size of bubbles indicates the p value. A size of 2 indicates p
value < 0.01, a size of 1 indicates p value < 0.1, and size of 0 indicates p values < 1. As seen at the tissue level, correlation between arm-wide
methylation levels and expression levels is consistently negative (empirical p value after random shuffling the data < 0.05). b Leave One Out
Cross-Validation Accuracy of predicting each tissue entity based on chromosome wide mean methylation levels of each sample. The height of
the bar indicates the accuracy quantified as fraction of samples correctly classified. The numbers on top of each bar indicate the number of
samples from a given tissue. c tSNE plot depicting the clustering of different tissue samples by chromosome arm-wide mean methylation levels

Patkar et al. Genome Medicine           (2021) 13:93 Page 11 of 16



(Methods, Additional file 20: Table S15). For each tissue,
we observed that differences in mean methylation levels
across chromosome arms within a tissue are consistently
negatively correlated with corresponding mean arm-wide
gene expression levels (permutation test with 1000 ran-
dom shufflings of arms and tissue pairing of the values, p
value < 0.05, see the “Methods” section) (Fig. 5a, Add-
itional file 7: Table S6). However, for a single arm across
tissues, the directionality of correlations is less consistent.
This could potentially be due to the small number of tis-
sues analyzed. Furthermore, an individual sample-level
classification analysis using the KNN algorithm revealed
that one can predict (in leave one out cross-validation) the
normal tissue of origin of individual samples just based on

chromosome arm-wide mean methylation levels. The
clustering of samples by tissue is visualized using t-SNE
dimensionality reduction. (Fig. 5b, c, Additional file 21:
Table S16). Tissues with very few samples had poor classi-
fication accuracy as expected from KNN. These results
suggest that normal chromosome arm-wide methylation
levels may play some part in regulating the transcriptional
output of each chromosome arm.

Discussion
Chromosomal aneuploidies are a defining feature of tu-
mors of epithelial origin. These aneuploidies result in
tumor type-specific genomic imbalances [1, 4–6, 10].
As of yet, there is no sufficient explanation for this

Fig. 6 Schematic presentation of the results. Genes on the red chromosomes are expressed at slightly higher levels compared to other
chromosomes in normal tissue A, whereas in normal tissue B, the yellow chromosomes shows increased tissue-specific expression and genes on
the green chromosome are expressed at lower levels. This results in a subtle increase or decrease in chromosome arm-wide gene expression
levels, respectively. The acquisition of chromosomal aneuploidies in the respective cancer types (gain of the red chromosome in cancer type A
and the yellow chromosome in cancer type B, accompanied by the loss of the green chromosome in cancer type B) amplifies this effect and
provides the genetic basis of “hard-wiring” tissue-specific chromosome arm-wide gene expression levels as the basis for clonal expansion. The
dots on the green chromosome reflects the presence of a tumor suppressor gene
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specificity [6]. In this work, we systematically compared
the frequencies of chromosome arm gains and losses in
different cancer types to the mean chromosome arm-
wide gene expression levels in normal tissues of origin
and distribution of known or implicated tissue-specific
oncogenes/tumor suppressors across chromosome
arms. Our analysis revealed a complex picture of fac-
tors driving frequent chromosome arm copy number
changes in specific cancer types. Specifically, we notice
recurrent losses in chromosome arms in cancer types
where tissue-specific tumor suppressors reside, suggest-
ing that these losses broadly target these driver genes.
However, the targets of recurrent tissue-specific
chromosomal gains are less clear. While it is possible
that these chromosomal gains are targeting yet
unidentified oncogenes, our analysis of normal
chromosome-wide gene expression and methylation
data suggests an alternative paradigm in which these al-
terations instead aim to hardwire gene expression levels
of normal tissue origin. This notion is further sup-
ported by recent observations across multiple cancer
types where oncogenes were found to be preferentially
activated via extra-chromosomal DNA [47].
The functional implications of many genes that are

affected by these alterations remain incompletely under-
stood. We previously showed experimentally that the
gain of chromosome 13 in colorectal cancer activates
both Notch and Wnt signaling [48] and that the acquisi-
tion of extra copies of chromosome 7 in normal colon
cells results in upregulation of cancer-associated path-
ways [49], which could imply that tissue type-specific
chromosome arm-wide gene expression levels promote
cellular fitness. Of note, Sack et al. [50] have demon-
strated that the inclusion of tissue-specific growth pro-
moting genes strengthens the correlation between
chromosome arm loss/gain ratios and the proliferation-
driving capability of each chromosome arm in breast
and pancreatic cancers. Graham and colleagues reported
a general role of copy number alterations and metabolic
selection pressure [51]. Despite the ubiquitous presence
of chromosomal aneuploidies in most solid tumors,
there are also several publications pointing to a reduc-
tion of cellular fitness as a consequence of general aneu-
ploidy in model systems such as yeast, immortalized
murine embryonic fibroblasts, and typically near-diploid
cancer cells engineered to harbor specific trisomies [52–
54], so the functional implications of these events re-
mains an open challenging question.
There are some limitations specific to the data analysis

conducted in this study. Firstly, our analyses comparing
cancer types to normal tissues were restricted to tissues
where data was measured in a homogeneous fashion on
the same platform and publicly available (i.e., GTEx for
gene expression and GEO for methylation).

Furthermore, we restricted ourselves to external data
sources for normal tissue expression and methylation ra-
ther than use adjacent normal tissue samples from the
TCGA. This was mainly due to incomplete availability of
methylation and expression of normal adjacent to tumor
samples for many cancer types and the presence of stro-
mal and immune cell contamination in these tissues [55,
56]. Secondly, identification of existing and potentially
new cancer type-specific oncogenes and tumor suppres-
sors was previously done by combining evidence from
multi-omic sources into one prediction score using su-
pervised machine learning [13]. However, this list is still
incomplete and the mechanism of action of many of
these genes in different cancer types is not completely
understood. Thirdly, since we were exploring correlation
patterns across different tissues and cancer types, it is
likely that more significant associations would be ob-
served in arms with specific, high-intensity trends of ei-
ther gain or loss compared to arms that are less
frequently altered.

Conclusions
In summary, our data analysis suggests that chromo-
some aneuploidies could be potentially involved in the
maintenance of gene expression levels characteristic of
the normal tissue of origin of cancers, in addition to tar-
geting cancer type-specific driver genes (Fig. 6).
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