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The host transcriptional response to
Candidemia is dominated by neutrophil
activation and heme biosynthesis and
supports novel diagnostic approaches
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Abstract

Background: Candidemia is one of the most common nosocomial bloodstream infections in the United States,
causing significant morbidity and mortality in hospitalized patients, but the breadth of the host response to
Candida infections in human patients remains poorly defined.

Methods: In order to better define the host response to Candida infection at the transcriptional level, we performed
RNA sequencing on serial peripheral blood samples from 48 hospitalized patients with blood cultures positive for
Candida species and compared them to patients with other acute viral, bacterial, and non-infectious illnesses.
Regularized multinomial regression was utilized to develop pathogen class-specific gene expression classifiers.

Results: Candidemia triggers a unique, robust, and conserved transcriptomic response in human hosts with 1641
genes differentially upregulated compared to healthy controls. Many of these genes corresponded to components of
the immune response to fungal infection, heavily weighted toward neutrophil activation, heme biosynthesis, and T cell
signaling. We developed pathogen class-specific classifiers from these unique signals capable of identifying and
differentiating candidemia, viral, or bacterial infection across a variety of hosts with a high degree of accuracy (auROC
0.98 for candidemia, 0.99 for viral and bacterial infection). This classifier was validated on two separate human cohorts
(auROC 0.88 for viral infection and 0.87 for bacterial infection in one cohort; auROC 0.97 in another cohort) and an
in vitro model (auROC 0.94 for fungal infection, 0.96 for bacterial, and 0.90 for viral infection).

Conclusions: Transcriptional analysis of circulating leukocytes in patients with acute Candida infections defines novel
aspects of the breadth of the human immune response during candidemia and suggests promising diagnostic
approaches for simultaneously differentiating multiple types of clinical illnesses in at-risk, acutely ill patients.
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Background
Candidemia is one of the most common nosocomial
bloodstream infections in the United States and its
prevalence continues to increase [1–3]. It has been
widely shown to cause significant morbidity and mortal-
ity in hospitalized patients [4–9]. Bloodstream infection
with Candida occurs more commonly in critically ill pa-
tients in intensive care units (ICUs) often with multiple
underlying medical comorbidities.
Unfortunately, it is difficult to differentiate candidemia

from other infections at the time of disease onset, which
delays patients’ access to appropriate antimicrobial ther-
apy [10]. The gold standard diagnostic test for candide-
mia is the blood culture. However, blood cultures suffer
from variable sensitivity and a delay to positivity [11–
13]. This has led to the development of additional la-
boratory markers of fungal infection, including serum 1,
3-beta-D-glucan (BDG)—a cell wall component of many
yeasts and molds. However, the sensitivity and specificity
of this test varies widely based on clinical circumstances
[14, 15]. Newer technologies based on direct molecular
detection of pathogens in clinical specimens such as the
T2 CandidaTM panel and metagenomic approaches from
KariusTM and IDbyDNATM are promising but also have
limitations, including expense and the potential for
false-positive results [16–18]. Due to the inadequacies in
currently available methods, improved diagnostic ap-
proaches are clearly needed.
One such approach is the utilization of host-based

gene expression profiles, which can provide pathogen-
agnostic information about multiple types of infection
[19]. Furthermore, when migrated to a polymerase chain
reaction (PCR)-based platforms that are routinely avail-
able in clinical microbiology labs, these techniques offer
the potential for providing rapid, even point-of-care
diagnostic information [20, 21]. This capability has been
extensively demonstrated with viral and bacterial causes
of respiratory infection. However, little is known about
how this approach performs in the setting of fungal dis-
ease [19, 20, 22–26]. When available, such a rapid test
could decrease the time to more targeted therapy, which
positively impacts patient outcomes including length of
hospitalization and mortality [27–29]. It could also pro-
mote improved antimicrobial stewardship by reducing
the amount of time a patient is exposed to inappropriate
antimicrobials [30, 31].
To define the utility of host-based biomarkers for diag-

nosis of candidemia in human subjects and the ability of
such a classifier to discriminate between fungal infection
and other pathogen classes, we examined transcriptomic
responses in a cohort of patients with culture-confirmed
Candida blood infection compared with other acute in-
fectious and non-infectious illnesses. A transcriptomic
signature specific for each pathogen class was generated.

Methods
Subject enrollment
All study patients were enrolled after written informed
consent at the Duke University Medical Center (DUMC).
The study was approved by the Institutional Review Board
(IRB) at DUMC (Pro00083484) and was performed in ac-
cordance with the Declaration of Helsinki. Forty-eight
hospitalized patients with candidemia were enrolled
through the Infectious Diseases Data and Specimen Re-
pository program at Duke University (Durham, NC) at the
time of first blood culture positivity for Candida spp. be-
tween the years 2011 and 2014. Whole blood was col-
lected from these subjects in PAXGene tubes for RNA
sequencing and serum was collected from each subject for
additional analysis. Samples were collected approximately
every 2–3 days until blood cultures cleared. Each subject
with candidemia had at least 1 and at most 14 samples
collected over the course of the study. RNA sequencing
data from previously enrolled subjects presenting to the
Emergency Department with viral, bacterial, or non-
infectious illness (from DUMC, Durham VA Health Care
System, UNC Health Care, and Henry Ford Hospital) were
also run with the candidemia samples, at a single time-
point per subject [19]. Peripheral blood samples were also
similarly collected at a single timepoint per subject from a
population of 30 non-hospitalized healthy controls
enrolled at Duke University.
All subjects were adjudicated for etiology of acute ill-

ness by a panel of infectious diseases specialists by retro-
spective manual chart review, after enrollment but prior
to gene expression measurements. Phenotype classifica-
tion was made if a subject had both the signs/symptoms
of an infectious disease and an identified pathogen com-
patible with their clinical syndrome based on available
clinical, laboratory, and microbiologic data. The adjudi-
cation process used here has been previously described
in detail [19, 32]. Non-infectious subjects were labeled as
a systemic inflammatory response syndrome (SIRS)
phenotype—defined by at least two SIRS criteria
(temperature <36°C (C) or >38°C, tachycardia >90 beats
per minute, tachypnea >20 breaths per minute or PaCO2

<32 mmHg, white cell count <4000 cells/mm3, or >12,
000 cells/mm3 or >10% neutrophil band forms) without
evidence of infection.
Subjects and controls were divided at random into dis-

covery and validation cohorts for initial analysis. The
discovery cohort consisted of 138 subjects—23 with
bloodstream infection with Candida spp. in the absence
of other types of infection, 35 with bacterial infection, 48
with a viral infection, 17 with SIRS, and 15 with healthy
controls. The validation cohort consisted of 61 sub-
jects—25 with confirmed candidemia, 10 with bacterial
infection, 11 with a viral infection, and 15 healthy
controls (Fig. 1).
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RNA extraction, library preparation, and sequencing
Total RNA was extracted from the human blood pre-
served and stored in PAXgene Blood RNA Tubes
using the Qiagen PAXgene Blood miRNA Kit accord-
ing to the manufacturer’s protocol. RNA quantity and
quality were assessed using the Nanodrop 2000 spec-
trophotometer (Thermo Scientific) and Agilent 2100
Bioanalyzer, respectively. RNA sequencing libraries
were generated using NuGEN Universal mRNA-seq
kit with AnyDeplete Globin (NuGEN Technologies,
Redwood City, CA) and sequenced on the Illumina
NovaSeq 6000 instrument with S2 flow cell and 50bp
paired-end reads (performed through the Duke
Sequencing and Genomic Technologies Core).

RNA sequencing data processing
For both the discovery and validation datasets [33], RNA
sequences were mapped to the human genome (hg) and
gene expression quantified using STAR with parameters:
quantMode: ‘GeneCounts’; outSAMtype: ‘None’; out-
SAMmode: ‘None’; readFilesCommand: ‘zcat’ and
Ensembl gene reference Homo sapiens GRCh38 DNA,
release 96, downloaded from: ftp://ftp.ensembl.org/pub/
release-96/fasta/homo_sapiens/dna/ (for gene quantifica-
tion) [34]. All other parameters were left at their default
values for STAR version 2.7.1a. Samples with a low
number of mapped reads (< 12 million reads) or low
average pairwise correlation (< 0.70) were excluded from
analyses. In the discovery cohort, genes with 0 counts or
counts/million < 2 in ≥ 50% of samples were excluded.
The validation cohort was reduced to the set of genes
passing quality control in the discovery cohort. The
remaining gene counts were normalized using TMM,
within each cohort.

Statistical analysis
Comparison of clinical demographics
Comparison of clinical demographics was performed by
chi-square test for categorical variables or Mann-
Whitney for continuous variables.

Differential expression
For both the discovery and validation datasets, the R Bio-
conductor package limma [35] was used to estimate the
mean expression for each outcome group: candidemia,
bacterial, viral, SIRS, and healthy, while adjusting for age,
sex, and race, using the empirical Bayesian linear model-
ing with voom weights [36]. Generalized linear hypothesis
testing (i.e., contrasts) was used to test for differential ex-
pression between specific infection-type groups (i.e., can-
didemia vs. healthy). A false discovery rate of less than 5%
was used to determine statistical significance for each
comparison. The differential expression results from the
discovery and validation cohorts were pooled using
inverse-variance weighted combination-analysis of the
log2 fold changes with a cohort random effect, as imple-
mented in the R package meta.

Diagnostic classifier development and validation
Regularized multinomial logistic regression (lasso) [37],
implemented in the R package glmnet [38], was used to
identify a multi-gene signature of the infection type. We
used three different unbiased feature selections prior to
constructing the model: (1) top 1000 most variable
genes, (2) top 2000 most variable genes, and (3) all ~ 11,
100 genes that passed the quality control. The multi-
nomial model performance was estimated using nested
leave one sample out cross-validation (LOOCV) as fol-
lows: for each sample, one sample was held out and the
remaining samples were used to estimate the model.
Within the (N-1) samples, 10-fold cross-validation was
used to optimize the sparsity parameter. The optimal
sparsity parameter was then used to estimate the model
in the N-1 samples. (Additional file 1: Supplementary
Methods) The resulting model was used to estimate the
predicted class probabilities in the held-out samples.
After completing the LOOCV, the predicted class prob-
abilities from the held-out samples were used to assess
the training performance metrics: per-class auROC, con-
fusion matrices, overall sensitivity, and overall specificity.
The overall model was estimated using all data with the
sparsity parameter optimized through 10-fold cross-

Fig. 1 Experimental design. Breakdown of discovery and validation cohorts by infection phenotype
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validation of the discovery dataset. This overall model
was used to predict infection class probabilities in other
sequenced samples from other datasets. Model testing
performance metrics included per-class area under the
receiver operating characteristics curves (auROCs) and
confusion matrices.

Additional validation
Independent, external validation was performed with two
human microarray gene expression datasets (Tsalik, et al.
and Ramilo, et al) [19, 23]. For the Ramilo dataset,
Affymetrix CEL files and sample characteristics were
downloaded from GEO (GSE6269-GPL96) [39]. CEL files
were imported and processed using the R Bioconductor
packages readAffy. Expression values were normalized
using gcrma. Probes detected in fewer than four samples
and Affymetrix control probes were excluded. For the
Tsalik dataset, Affymetrix microarray gene expression was
previously processed and normalized, as previously de-
scribed [19, 40]. For both the Ramilo and Tsalik datasets,
microarray probes were mapped to Ensembl gene identi-
fiers and reduced to the subset of probes that mapped to
the classifier gene list. The resulting expression values
were log2 transformed and analyzed using the same regu-
larized multinomial modeling, cross-validation procedure,
and performance metrics used in the discovery analysis to
re-estimate the model weights.
Additional validation was performed with an in vitro

PBMC microarray dataset consisting of viral (influenza),
bacterial (Escherichia coli and Streptococcus pneumo-
niae), and fungal (Candida albicans, Cryptococcus neo-
formans and gattii) infections of healthy human PBMCs.
Whole blood was drawn from six healthy individuals (3
males, 3 females: ages 25–35) through the Duke Healthy
Donor Research Protocol, and PBMCs were isolated via
a standard Ficoll gradient procedure. Cells were then re-
suspended in RPMI 5 and plated in duplicate at a con-
centration of 6×106 cells per well into 24-well plates.
Relevant pathogens or controls were then added at dif-
ferent concentrations (influenza viruses at a final con-
centration of 103 TCID50, LPS 1ug/mL, Poly I:C 5ug/
mL, Streptococcus pneumoniae and Escherichia coli at
105 per well, Candida albicans, Cryptococcus neofor-
mans, and Cryptococcus gattii at 106 per well). Bacteria
and fungi were heat-killed prior to exposure to human
cells to prevent overgrowth in the culture medium. Cells
were then incubated at 37° with 5% CO2 for 24 h, at
which time cells were harvested and underwent centri-
fuge purification from culture media. Cells were washed
and placed in Quiagen RLT lysis buffer per the manufac-
turer’s instructions. RNA was then extracted and
hybridization, and microarray data collection was per-
formed at Expression Analysis (Durham, NC) using the

GeneChip® Human Genome U133A 2.0 Array (Affyme-
trix, Santa Clara, CA).
Similar to the Ramilo and Tsalik datasets, CEL files

were imported and processed using the R Bioconductor
package readAffy, normalized using gcrma, and lowly
expressed probes, defined as detected in less than four
samples, and control probes were excluded. Microarray
probe identifiers were mapped to Ensembl genes; data
was reduced to the subset of probes that mapped to the
classifier gene list; and log2 transformed. Eighty-nine
percent (84/94) of the RNASeq-based classifier genes
were present in the microarray dataset, and these were
utilized for analysis (Additional file 1: Table S1). The
same regularized multinomial modeling, cross-validation
procedure, and performance metrics used in the discov-
ery analysis were applied here to estimate the classifier
model on a different gene expression platform.

Biological pathway analysis
Gene lists were analyzed using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID,
http://www.david.abcc.ncifcrf.gov) [41] to identify signifi-
cantly enriched pathways. We also applied weighted
gene co-expression network analysis (WGCNA) [42, 43]
to the discovery dataset (i.e., 11,131 genes in 136 sam-
ples). Using these parameters: power parameter = 6;
UPGMA clustering; dynamic tree cutting with method =
“hyprid”, deepSplit = 2, and minclustersize = 30, we
identified 41 clusters (or “modules”). The aggregate ex-
pression of all genes assigned to a module can be sum-
marized using PCA, where the 1st principal component
(named eigengene) is used as a summary measure of
module gene expression. Because each module eigen-
gene can be thought of as the aggregate expression of all
of the genes in that module, we can use the eigengene
value to test for association with infection type. Each
module eigengene was tested for association with
Candidemia infection using linear regression. Modules
with parameter estimates with a Benjamini-Hochburg
adjusted p value <5% were considered statistically signifi-
cant. Additionally, each module was assessed for enrich-
ment of KEGG and GO pathways using functions goana
and kegga available in the R bioconductor package
limma. Ensembl gene identifiers were mapped to entrez
gene identifiers, and enrichment was assessed for the set
of genes within the module compared to all genes that
passed quality control and mapped to an entrez gene.
Enrichment p values were adjusted for multiple testing
within each module using the Benjamini-Hochberg
adjustment.

Beta-D-glucan testing
Serum samples from all subjects with candidemia, 5
healthy subjects, and 20 subjects with viral infection
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underwent BDG testing (Viracor Eurofins) (range <31 to
>500). Values of >500 were processed as 501, and values
<31 were processed as 30. AuROCs were calculated for
the BDG test values and the candidemia component of
the gene expression signature, separately for the discov-
ery and validation cohorts, restricted to the subset of
subjects with both BDG testing and gene expression.
BDG and gene expression auROCs were compared using
the DeLong test. BDG and gene expression data were
also compared by Spearman correlation. Mann-Whitney
test was used for the comparison of means.

Results
Study population
We enrolled 48 hospitalized adult subjects at the time of
first blood culture positivity for Candida spp. from 2011
to 2014 at Duke University Medical Center (a minimum
of 2 days after initial blood culture collection), along with
serial sampling on a subset of patients (Table 1, Fig. 1,
Additional file 1: Tables S2 and S3). In addition, we en-
rolled patients with similar clinical backgrounds but with
a proven acute respiratory viral infection, acute bacterial
(pneumonia or bacteremia) infection, or clinically adjudi-
cated non-infectious illness, as well as uninfected healthy
subjects (n=151, Table 1, Fig. 1, Additional file 1: Tables
S4 and S5). The study included subjects from a variety of
clinical backgrounds, including solid organ transplants,
stem cell transplants, hematologic malignancies, patients
in the ICU with central venous catheters, and others. A
total of 7 different Candida spp. were identified, most
commonly C. albicans and C. glabrata.

Discovery and validation cohorts
Subjects and controls were divided at random into dis-
covery and validation cohorts for initial analysis. The
discovery cohort and validation cohorts included 138
subjects and 61 subjects, respectively (Fig. 1). In the dis-
covery cohort, 23 subjects were adjudicated as having
bloodstream infection with Candida spp. in the absence
of other types of infection. Thirty-five subjects were in-
cluded with confirmed bacterial infection and 48 with
confirmed viral infection (both monomicrobial) as con-
trols. Additionally, as patients may also present clinically
with acute non-infectious diseases, we included 17 sub-
jects with acute non-infectious illness, labeled as sys-
temic inflammatory response syndrome (SIRS). In the
validation cohort, there were 25 subjects with candide-
mia, along with 10 subjects with confirmed bacterial in-
fection and 11 subjects with confirmed viral infection
(both monomicrobial). Fifteen healthy subjects were also
included in each cohort as controls—the mean age of
the healthy controls was 20.9 years in the discovery data-
set and 33.5 years in the validation dataset. Sixty-five
percent of the candidemic subjects in the discovery co-
hort and 80% in the validation cohort were on antifungal
treatment at the time of initial sampling (see cohort data
in Additional file 1: Supplementary Methods, and Add-
itional file 2: Figure S1).

The transcriptional response to candidemia is robust and
reveals antifungal defense mechanisms
Candidemia triggered a strong transcriptomic response in
human hosts with 1641 genes differentially upregulated

Table 1 Demographics of the study population

Bacterial, Viral, & SIRS Candidemia P
value*Discovery (n=100) Validation (n=21) Discovery (n=23) Validation (n=25)

Mean age (years) ± SD 54.0 ± 20.8 43.4 ± 21.3 54.1 ± 17.2 51.8 ± 16.9 0.93

Solid organ transplant 4 (4) 0 (0) 5 (22)** 8 (32) 0.0002

Liver 0 (0) 1 (14) 1 (13)

Heart 0 (0) 1 (14) 2 (25)

Lung 1 (25) 4 (57) 4 (50)

Kidney 3 (75) 1 (14) 1 (13)

Cancer diagnosis 9 (9) 1 (5) 4 (17) 8 (34) 0.04

ICU 18 (18) 6 (27) 11 (48) 6 (26) 0.34

HIV 1 (1) 0 (0) 1 (4) 0 (0) 0.67

30-day mortality 6 (6) 1 (5) 4 (17) 3 (12) 0.23

Mean QSOFA ± SD 1.03 ± 0.93 1.00 ± 1.00 0.75 ± 0.77 0.52 ± 0.67 0.03

Values are presented as n (%) unless otherwise specified
SD standard deviation, ICU intensive care unit, HIV human immunodeficiency virus, QSOFA Quick Sequential Organ Failure Assessment
Full demographics were not available on all subjects
*Significance defined as p<0.05 for all candidemia vs. all other groups
**7 organ transplants on 5 subjects
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compared to healthy controls (Fig. 2). These upregulated
genes corresponded to known components of the host im-
mune response to fungal infection, including innate im-
mune responses, defense response to fungus, leukocyte
migration, and response to yeast. Other stress-associated
pathways included response to cytokine, inflammatory re-
sponse, cellular response to oxidative stress, and host
regulation of heme synthesis and iron metabolism. There
were 2316 downregulated genes clustered into immune
processes such as adaptive immune response, regulation
of immune response, B cell proliferation, humoral im-
mune response, immunoglobulin production, and T cell
co-stimulation. To further elucidate how transcriptomic
responses define active biological pathways in the host, we
performed weighted gene co-expression network analysis
(WGCNA) [42, 43] to identify clusters of correlated genes
associated with candidemia compared to healthy controls
(Fig. 2, Additional file 1: Table S6). Clusters significantly up-
regulated in candidemia included pathways of immune acti-
vation and inflammation, including innate immune response
and neutrophil activation, migration, and degranulation.

The transcriptional response to candidemia is unique
compared to other infectious triggers
In addition to healthy controls, we also performed
univariate comparisons between the transcriptomic re-
sponses to candidemia and acute bacterial and viral
infection as well as non-infectious SIRS. While there
were some conserved components of the host re-
sponse observed across infection phenotypes, there
were also 342 (12%) genes uniquely differentially
expressed during candidemia compared to all others
(Fig. 3, Additional file 1: Table S7, Additional file 2:
Figure S2). This highlights that the transcriptional re-
sponse to candidemia has unique features compared
to other classes of infection. Interestingly, when the
transcriptomic response to candidemia was compared
to that of other pathogen classes, the top genes up-
regulated in candidemia again clustered into pathways
weighted toward neutrophil activation and heme bio-
synthesis, further highlighting the strength of these
responses during fungal infection (Additional file 1:
Table S8).
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Fig. 2 Transcriptional response to candidemia. A Heatmap highlighting the differentially expressed genes between patients with candidemia and healthy
controls based on combination analysis results including both discovery and validation data, adjusted p value <0.05. B Dot-plot demonstrating WGCNA fold
enrichment scores. Modules with fold enrichment scores with FDR p value <0.05 were considered significant. C Volcano plot demonstrating the differentially
expressed genes when comparing candidemia patients and healthy controls
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Fig. 3 (See legend on next page.)
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A multinomial gene expression classifier distinguishes
candidemia from viral or bacterial infection
We next used regularized multinomial logistic regression
analyses to determine a set of genes (“signature”) that
was most consistently co-regulated across samples from
each group of infected subjects. For Candida infection,
prior work in a mouse model demonstrated that gene
expression signatures discriminate early and late invasive
candidiasis and that signal intensity decreases over time
[26]. Thus, for the development of a diagnostic classifier,
we utilized only the first RNA sample obtained for each
Candida subject after initial blood culture positivity
(median 5 days, range 2–23 days). All other acute infec-
tion phenotypes only had one RNA sample per subject

per episode, taken at the time of initial presentation with
their respective infections.
Model performance was assessed with auROCs and

confusion matrices for all infection classes. All perform-
ance measures were cross-validated. We identified a 94-
gene classifier that could accurately distinguish candide-
mia, bacterial, viral, SIRS, and healthy phenotypes
(Fig. 3). AuROCs were 0.98 (95%CI 0.96-1) for candide-
mia, 0.99 (95%CI 0.98-1) for both the bacterial and viral
infection, 0.99 (95%CI 0.97-1) for SIRS, and 0.99 (95%CI
0.96-1) for healthy subjects (Fig. 4, Additional file 1:
Table S9). On comparison of signature performance be-
tween species, there was a small increase in performance
with C. tropicalis infections (p=0.0446 tropicalis vs

(See figure on previous page.)
Fig. 3 Transcriptional response to candidemia compared to other phenotypes. A* Differentially expressed genes (adj P <0.05) in response to
different infection phenotypes. All genes, infection phenotypes compared to all others. B* Differentially expressed genes (adj P <0.05) in response
to different infection phenotypes. All genes, Candida compared to each other phenotype. C Heatmap demonstrating differences in gene
expression between infection phenotypes. D Genes involved in each phenotype of the multinomial classifier including model coefficients. Colors
correspond to coefficient value (green: lower values, red: higher values). E Example of predicted probabilities of the specified condition over time.
In this case, the subject’s predicted probability of candidemia decreased over time with antifungal treatment whereas the probability of a healthy
state increased. *(https://bioinfogp.cnb.csic.es/tools/venny/index.html)

Fig. 4 Multinomial gene expression classifier. A ROCs of the multinomial classifier performance for each infection phenotype in the discovery
cohort. B Boxplots demonstrating predictive probability of the classifier for each infection phenotype in the discovery cohort. Infection class as
established by the classifier was determined by the phenotype with the highest predictive probability per subject. C ROCs of the multinomial
classifier performance for each infection phenotype in the validation cohort. D Boxplots demonstrating predictive probability of the classifier for
each infection phenotype in the validation cohort. Infection class as established by the classifier was determined by the phenotype with the
highest predictive probability per subject
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albicans, p=0.0203 tropicalis vs glabrata, p=0.007 tropi-
calis vs parapsilosis), although the differences were
quantitatively small and analysis was limited by the small
n of each subgroup (Additional file 2: Figure S3). Im-
portantly, signature performance did not vary across a
number of important clinical variables (total white
blood cell count, transplant status, active malignancy,
etc. Additional file 1: Table S10, Additional file 2:
Figure S4).
The signature derived from the discovery cohort was

then used to predict infection class in the validation
dataset. Per-class auROCs and confusion matrices were
computed. Performance in the validation cohort was
equally good: auROCs were 0.97 (95%CI 0.90-1) for
candidemia, and 1 for bacterial infection (95%CI 1-1),
viral infection (95%CI 1-1), and healthy subjects
(95%CI 0.99-1).

A blood-based gene expression signature of candidemia
is maximally expressed at peak illness and decreases in
intensity over time
Once a Candida-specific diagnostic signature was identi-
fied, we sought to examine signal intensity over time as
discrimination between early and late disease and defin-
ing response to treatment can have an impact on a pa-
tient’s clinical care, treatment options, and prognosis. A
total of 28 subjects with candidemia had samples col-
lected at more than one date after culture positivity, ran-
ging from 2 to 14 samples per subject. Samples were
collected 2 to 80 days from the initial culture. When
comparing quantitative levels of expression of genes in
the signature for these subjects, we found that the over-
all trend in signal intensity decreased from the first to
the last time-point in subjects with isolated candidemia.
However, there was marked variability in quantitative
signal strength and time to resolution between subjects.
There was an expected inverse correlation seen between
quantitative gene expression and days from positive
blood culture (ρ = −0.441, p=.0009). In several subjects
where appropriate samples were available, the signature-
derived predicted probability of candidemia decreased
over time with therapy, and eventually, those subjects
were predicted by the model to be healthy once candide-
mia had resolved (Fig. 3E).

Validation of Candida signature in other cohorts
Given the uniqueness of this dataset and lack of pub-
lic gene expression data on candidemic subjects, for
validation, we next applied the classifier to two inde-
pendent gene expression data sets from human sub-
jects with acute bacterial and viral illnesses (Ramilo,
et al. and Tsalik, et al.) [19, 23] (Fig. 5). When ap-
plied to the Ramilo et al. dataset, the novel classifier
performed well with an auROC 0.97 (0.95%CI 0.94-1)

(Additional file 1: Table S11). When applied to the
Tsalik et al. dataset, auROCs were 0.87 (95%CI 0.80–
0.93) for bacterial infection, 0.88 for viral (95%CI
0.82–0.92), and 0.89 (95%CI 0.84–0.94) for noninfec-
tious illness (Additional file 1: Table S12).
Next, we compared the candidemia results to gene ex-

pression data from an in vitro stimulation assay whereby
peripheral blood mononuclear cells (PBMCs) were iso-
lated from healthy individuals and then exposed to path-
ogens from multiple classes. In this model, cells were
then harvested at 24 h post-exposure to analyze tran-
scriptomic responses during experimental viral (influ-
enza), bacterial (Streptococcus pneumonia or Escherichia
coli), and fungal (Candida albicans or Cryptococcus neo-
formans or gattii) infections. We then applied the hu-
man candidemia classifier to these data where it
accurately identified the relevant pathogen exposure—
auROCs were 0.94 (95%CI 0.88–0.99) for fungal infec-
tion, 0.96 (95%CI 0.89-1) for bacterial, 0.90 (95%CI 0.69-
1) for viral infection, and 0.94 (95%CI 0.86-0.99) for
healthy control cells (Fig. 5, Additional file 1: Table S13).
To further clarify the distinction in signature perform-
ance between Candida and Cryptococcus, we examined
the predictive probabilities and confusion matrix at the
agonist level. We observed that there was not a statistically
significant difference between Candida and Cryptococcus
(ANOVA F test p value = 0.2866).

Comparison to BDG
We next sought to compare the diagnostic accuracy of
serum BDG levels with the novel transcriptomic bio-
marker signature. The mean level of BDG at the time of
first blood culture positivity for candidemia was 246 pg/
mL ± 192 (range <31 to >500), which was not signifi-
cantly higher than the mean for last BDG at 235 pg/mL
± 189 (range <31 to >500, p=0.85). Serial BDG measure-
ments showed that only 43% (13/30) of subjects had de-
creasing values of BDG in response to treatment, and
the rate of decrease was highly variable. The overall
BDG auROC was 0.90 (95%CI 0.80–.97). When broken
down into discovery and validation cohorts, the can-
didemia component of the gene expression classifier
had higher performance characteristics than BDG
though this result was not statistically significant. The
discovery auROC for gene expression was 1 (95%CI
1-1) compared to 0.98 (95%CI 0.94-1) for BDG (p=
0.39), the validation auROC was 0.94 (95%CI 0.81-1)
for gene expression compared to 0.83 (95%CI 0.63-
0.97) for BDG (p=0.35). BDG level was found to be
moderately inversely correlated with days from posi-
tive blood culture (ρ = −0.29, p=0.05) and mildly cor-
related with quantitative gene expression (ρ = 0.258,
p=0.084).
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Discussion
Multiple pathogen-based diagnostic modalities for candi-
demia are currently available but often hindered by de-
layed time-to-result and/or suboptimal sensitivity and
specificity [11, 12, 14, 15]. Host-derived biomarker ap-
proaches offer the potential to fill critical diagnostic
niches, including rapid (even point-of-care) detection of
multiple pathogen classes at once, and improved specifi-
city through identification of pathologic host responses.
In this work, we have for the first time defined the host
response to candidemia as seen through the lens of the
transcriptome in circulating leukocytes. This has enabled
the development of a host signature able to differentiate

acute fungal infection from viral, bacterial, and SIRS
phenotypes that may also cause similar acute illness in
at-risk hosts.
The host response to Candida infection has both

shared and unique features compared to other pathogen
classes, and this is manifested at the transcriptional level
in the peripheral blood. We found over 1600 upregu-
lated genes in the presence of candidemia compared to
healthy controls. Many of these genes reflected known
components of the immune response to fungal infection
or critical illness including cytokine signaling, inflamma-
tory responses, and cellular responses to oxidative stress.
Some, like neutrophil activation and migration, are

Fig. 5 Validation cohorts. ROCs (A) and boxplots (B) of the multinomial classifier performance for each infection phenotype in the Tsalik et al.
cohort. C ROCs (C) and boxplots (D) of the multinomial classifier performance for each infection phenotype in the Ramilo et al. cohort. ROCs (E)
and boxplots (F) of the multinomial classifier performance for each infection phenotype in the in vitro cohort. Infection class as established by
the classifier was determined by the phenotype with the highest predictive probability per subject
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known to play a role in antifungal defense, but the
strength of these responses, even when compared to
similarly ill subjects with acute bacterial infections, was
surprising and highlights the critical importance of these
pathways in clearing Candida spp. Other enriched path-
ways identify potentially novel host response mecha-
nisms to Candida infection such as alterations in the
regulation of heme synthesis. While iron is known to be
critical for fungal pathogens such as Candida in vitro
[44], our results suggest the human host may manipulate
this system as part of the response to fungal infection.
Through multinomial logistic regression analyses, we

identified a unifying signature that could model the host
response to multiple different illness etiologies at once
with a high degree of accuracy (auROC 0.98 for candide-
mia). The candidemia component of this classifier per-
formed better than the standard of care diagnostic BDG
test. Importantly, a strength of the candidemia signature
is that it exhibited robust performance despite over 70%
of the cohort being on active empiric antifungal treat-
ment at the time of initial testing, a common clinical ap-
proach that impairs many traditional pathogen detection
strategies such as blood culture. Furthermore, the Can-
dida classifier performs well across a wide array of typ-
ical clinical backgrounds including neutropenia and
multiple types of immunosuppression, as well as across
7 different Candida species. Another advantage to the
multinomial approach presented here is that a single test
can inform the diagnosis of multiple conditions (i.e.,
candidal, bacterial, viral, SIRS, healthy) simultaneously.
One limitation of this study is that while the in silico
and in vitro validation data support generalizability, this
was a single-center study and will require validation in
other candidemic populations once additional cohorts/
datasets are available. While the cohort is diverse, the
relatively small candidemia sample size limits sub-group
analysis, and further work with larger groups of neutro-
penic and other types of immunocompromised patients
will be necessary. Additionally, the study design limits
our ability to identify test performance at earlier times
during Candida infection where treatment may be most
efficacious, as subjects were not enrolled until their
blood cultures had turned positive. However, during
in vitro infections, a marked transcriptomic response
matching that seen in patients with proven candidemia
was seen within 24 h of exposure to fungal organisms,
suggesting that the transcriptomic signature of candide-
mia is likely to be present at much earlier times than we
have been able to demonstrate in human subjects. Add-
itionally, while the host response to Candida involves
components that typify the response to many fungal or-
ganisms, understanding how such a signature may per-
form in other fungal diseases such as invasive mold
infections will require further study. Finally, this study

did not directly evaluate the performance of the signature
in cases of invasive candidiasis (esophageal, abdominal,
etc.) without candidemia, so the signal strength and effi-
cacy in these infections will need to be formally explored.

Conclusions
The host response to candidemia in hospitalized adults
is highly conserved and is distinct from the transcrip-
tomic responses to acute viral and bacterial infection.
Clinic-ready platforms capable of operationalizing PCR-
based signatures of the sizes demonstrated herein
already exist, offering a proximal pathway to clinical ap-
plication of these findings. Harnessing these pathogen
class-specific responses allows for a better understanding
of the immunopathogenesis of fungal infections in hu-
man hosts and shows promise for the development of
host gene expression-based assays to simultaneously dif-
ferentiate multiple types of clinical illnesses in acutely ill
patients.
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