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Abstract

Background: Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon
usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in
altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA
supply in cancer is of growing interest.

Methods: We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas
(TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32
cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types
and cancer types that are present in multiple tissues.

Results: We identified distinct patterns of synonymous codon usage changes for different cancer types affecting
the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC),
invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in
synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC
in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/
tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients
based on the degree of change between healthy and tumor-specific codon usage, revealing an association
between larger changes and increased mortality. We have also created a database that contains cancer-specific
codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for
codon-usage-oriented cancer research.
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Conclusions: Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon
pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when
designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive
resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/
cancercocoputs/. These findings are important to understand the relationship between tRNA supply and codon
demand in cancer states and could help guide the development of new cancer therapeutics.

Keywords: CancerCoCoPUTs, The Cancer Genome Atlas (TCGA), Cancer transcriptome, Codon usage, Codon pair,
Relative synonymous codon usage (RSCU), Synonymous codons, Invasive ductal carcinoma, Invasive lobular
carcinoma, Survival analysis

Background
While our understanding of the genetic basis for vari-
ous cancer types has improved markedly in recent
years, much remains to be explored and elucidated.
Since 2006, with the advent of next-generation sequen-
cing, RNA-seq has been leveraged to investigate the
transcriptome of cancer cells [1]. Shortly thereafter,
The Cancer Genome Atlas (TCGA) of the National
Cancer Institute, National Institutes of Health, released
its first publication investigating the gene expression in
human glioblastomas [2]. Furthermore, genetic sequen-
cing has identified many somatic mutations that are
predictive of cancer development, progression, and the
alteration of downstream pathways [3]. A multitude of
studies have focused on specific mutations and their
impact on the cancer phenotype, particularly the tumor
suppressor gene p53 and oncogenes of the Ras family
[4–7]. Other noteworthy cancer-related genes that have
been extensively studied include breast cancer type 1
susceptibility protein (BRCA1) and breast cancer type 2
susceptibility protein (BRCA2), adenomatous polyposis
coli (APC), and epidermal growth factor receptor
(EGFR) in various types of breast, colorectal, and lung
cancer, respectively [8–10].
While cancer-associated somatic mutations are often

missense, deletions, or insertions, it has been estimated
that synonymous single nucleotide polymorphisms
(SNPs) that do not affect the amino acid sequence of a
gene account for ~ 6–8% of cancer driver mutations.
These mutations are frequently associated with tran-
script splicing dysregulation [11]. Furthermore, syn-
onymous mutations have been shown to affect the
expression and mRNA stability of the KRAS proto-
oncogene (KRAS) [12, 13] and the synonymous codon
usage bias of the KRAS gene itself is associated with en-
hanced translation efficiency during cell proliferation
[14]. Still, other studies have highlighted synonymous
cancer driver mutations that are unrelated to disruptions
in splicing [13, 15]. One group found that a synonymous
mutation in Tristetraprolin was associated with a lack of
response to Herceptin in human epidermal growth fac-
tor receptor 2 (HER2) type breast cancer patients due to

decreased translation efficiency of the gene [16]. In a
recent study, Teng et al. described elevated ratios of
post-transcriptionally impaired synonymous variants
associated with 22 cancer types and, notably, poor prog-
nosis for 5 of those cancer types [17]. This body of evi-
dence underscores the necessity to further unravel the
relationship between changes in synonymous codon
usage, their cognate tRNA abundance, cellular growth
state, and cancer progression.
Although many studies have concentrated on specific

mutations in tumor-associated genes, less focus has been
given to global changes in codon usage within cancerous
tissue. The redundancy in the genetic code gives rise to
codon usage bias, a phenomenon affecting all domains
of life wherein synonymous codons are differentially uti-
lized within an organism’s transcriptome [18, 19]. This
observation also applies to two consecutive codons,
termed a codon pair, with the frequency of codon pairs
occurring in a non-random fashion that is not predict-
able from codon usage frequencies alone [20, 21]. In
multi-cellular organisms, this phenomenon extends to
codon usage within a particular tissue, whereby the dif-
ferential gene expression profile of a tissue dictates its
codon and codon pair usage [22, 23]. This phenomenon
is relevant to the design of tissue-specific gene therapies,
and in the case of cancer, may be useful in the design of
recombinant mRNA-based cancer vaccines [24].
An important aspect of codon usage is its interplay with

the local tRNA repertoire. The correlation between codon
usage frequencies and cognate tRNA abundance has long
been established in Escherichia coli and Saccharomyces
cerevisiae [25, 26]. This correlation is also observed dynam-
ically in Escherichia coli as the codon usage frequencies of
the transcriptome and tRNA repertoire change during dif-
ferent growth phases [27]. This phenomenon is associated
with the faster translation of more frequently used codons
[28]. While this direct relationship has been more difficult
to establish in multi-cellular organisms, some important
studies have investigated the relationship between tissue-
specific codon usage and tRNA expression in Drosophila
melanogaster and Homo sapiens [29, 30]. A study by
Dittmar et al. reported human tissue-specific changes in
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tRNA species, using a tRNA-specific microarray [30]. They
also found a significant correlation between liver codon
usage and cognate tRNA expression, which they postulated
could be explained by the codon usage of highly expressed
liver-specific genes [30]. Additionally, a study by Gingold
et al. found that the cognate tRNA pool closely matches the
codon usage signatures of proliferative and differentiated
human cells, highlighting the potential relationship between
tRNA supply and codon demand in cancerous cells and
tissue [31]. However, to fully understand the implications
of changes to the tRNA pool, it is essential to characterize
the dynamic codon usage landscape between differentiated,
proliferative, and cancerous cells.
Indeed, recent studies have explored the impact of

codon usage on cancer. A noteworthy study by
Hernandez-Alias et al. found intriguing changes in trans-
lation efficiency of synonymous codons for arginine and
threonine. Namely, they described consistent, significant
preference for Arg-AGA in 15 analyzed cancer types and
preference for Thr-ACG in 12 of 16 cancer types [32].
They also highlighted a strong association between pref-
erential Arg-AGA usage and poor cancer prognosis. An-
other investigation by Bin et al. identified synonymous
mutation hotspots in tumor samples from TCGA. They
compared the signatures of these mutations with those
of the 1000 Genomes Project, highlighting a preference
for synonymous G:C - > A:T transitions in TCGA com-
pared to T:A - > C:G in 1000 Genomes, which resulted
in AT enrichment of synonymous codons in cancer sam-
ples [33]. Furthermore, an intriguing recent publication
found that proliferation-associated transcripts were
enriched in rare codons and that their increased transla-
tion efficiency was not associated with changes in tRNA
abundance between proliferative and non-proliferative
states. While rare codons may be associated with trans-
lational bottlenecks in slowly dividing cells, the authors
propose that this barrier is removed during proliferation,
allowing for faster translation [34]. This is a noteworthy
finding as an abundance of literature has focused on
changes to the tRNA pool in proliferation and cancer
and their associated impact on translation efficiency of
cognate codons, while the previously mentioned study
proposes an exclusively codon usage-based mechanism
for this phenomenon. Regardless of the role of tRNA
abundance, which remains under investigation, these
findings have important implications for the role of
synonymous mutations in cancer development and
progression.
In the present study, we have leveraged the public

datasets from TCGA [2] to investigate preferential
codon and codon pair usage changes between the tran-
scriptomes of cancer and normal tissues. While previ-
ously mentioned studies of the TCGA dataset have
focused on the supply to demand adaptation of codons

and synonymous mutation signatures [32, 33], our work
focuses on the changes to global codon usage patterns
between normal tissues and tumors. We utilized gene
expression data from 6427 solid tumor samples and 632
normal tissue samples representing 32 cancer types
affecting 11 human tissues. We have highlighted the
findings in cancer types of diverse tissues, including
liver, lung, breast, and prostate. We have also detailed
codon and codon pair usage changes observed between
paired normal and cancer tissue samples from individual
patients, and conducted a survival analysis of patients
with varying degrees of change between their healthy
and tumor-specific codon and codon pair usage. Fur-
thermore, we have created a database containing the
codon and codon pair usage metrics of these 32 cancer
types, which allows for comparison to normal tissue
where available. The database can be accessed online at
https://dnahive.fda.gov/review/cancercocoputs/ [35] and
provides the user with a choice of heatmap visualization
for codon pair usage metrics, including frequency per
million codon pairs, percentile rank, and observed/ex-
pected ratio. The analysis presented herein adds to the
understanding of global codon usage patterns associated
with malignant neoplasia and has implications for cancer
treatment strategies. This applies specifically to the
design of personalized cancer vaccines, where the codon
usage landscape of an individual patient may dictate the
design of mRNA-based therapies. The associated data-
base represents the most comprehensive source for
cancer-specific codon and codon pair usage information
to date.

Methods
Data acquisition and sample selection
RNA-seq files were downloaded from the National Cancer
Institute’s Genomic Data Commons (GDC) repository
[36]. As of 07/30/2020 (date of download), there were 16,
175 RNA-seq, “HTSeq–Counts” files available under open
access. Supplemental metadata files were downloaded
from the GDC repository along with RNA-seq files. Each
downloaded file had been assigned a file ID (a unique
identifier for each RNA-seq file). Metadata files connected
case ID (a unique identifier for each patient) with all file
IDs associated with that patient.
Only “primary tumor” and “solid tissue normal” sam-

ples were used, which excluded 3644 samples. Only tis-
sue samples from patients who had not received prior
treatment were used, resulting in the exclusion of 1935
additional files. We focused on well-described solid
tumors for which at least 3 normal tissue samples were
available. We omitted hematologic tumors given the
heterogeneous nature of the underlying cancers, choos-
ing instead to focus on tissues that produce a limited
number of tumor types from simple epithelia. This
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resulted in the exclusion of 3537 tissue samples from
other organs and tissues. For the present study, data
from 7059 tissue samples including 6427 primary tumor
samples and 632 normal tissue samples were used.
Transcriptomic data from these samples constitutes
TCGA data. We identified 600 pairs of matched normal
tumor tissue data present within this data set and used
these for paired tissue analysis. Paired analysis was per-
formed on 29 out of 32 cancer types. Paired analysis was
not applied to papillary transitional cell carcinoma
(TCC) of the bladder, tubular adenocarcinoma of the
stomach, and esophageal squamous cell carcinoma
(SCC) as fewer than 3 patients with these diseases were
identified in our data set. A more detailed description of
samples included in each cancer type or normal tissue
type can be found in Additional File 1: Table S1.

Normal tissue type definition
We defined a primary normal tissue sample’s type based
on one parameter: organ/tissue of origin. Samples with
the same tissue of origin were grouped together. Specific
groups of normal tissue were merged together where ap-
propriate (for example “upper lobe, lung” and “lung not
otherwise specified” were merged into a single “normal
lung” tissue type).

Cancer type definition
We defined a primary tumor sample’s type based on 2
parameters: organ/tissue of origin and primary diagnosis.
Samples with the same diagnosis and tissue of origin
were grouped together and some cancer types were
merged together where appropriate (for example,
“esophageal SCC, not otherwise specified” and “esopha-
geal SCC, keratinizing, not otherwise specified” were
merged into a single “esophageal SCC” tissue type).
From these cancer types, we selected those with at least
3 tumor samples, homogenous tissue of origin, and suit-
able normal tissue type. For example, thyroid cancers
were excluded due to the heterogenous nature of thyroid
tissue, and brain cancers were excluded due to the ab-
sence of normal brain tissue.

Transcriptome weighted codon usage and codon pair
usage calculations
Codon and codon pair counts were prepared as two
matrices where each value represents the number of
times a particular codon or codon pair appears in the
coding sequence (CDS) of a specific gene’s primary tran-
script. Multiplying a vector describing transcripts per
million (TPM) for each gene by this matrix and normal-
izing the resulting vector yields transcriptome weighted
codon usage or codon pair usage values.
For aggregate analysis, a median sample is constructed

by computing the median TPM across all tissue samples

for a particular normal or tumor tissue type. Codon and
codon pair usage is subsequently calculated for the me-
dian sample from each normal or tumor tissue type and
the gene-level codon and codon pair counts derived
from Homo sapiens assembly GRCh38.p13 and Gencode
V34 annotations. This calculation was applied to 32 can-
cer types and 14 normal tissue types. As in our previous
database, Kames et al., we normalized codon usage vec-
tors to one thousand and codon pair usage to one mil-
lion [23]. Because TPM was calculated by aligning RNA-
seq reads with a reference genome, the resulting codon
and codon pair usage values do not account for
sequence variation between samples. For paired analysis,
this calculation was applied to each tissue sample separ-
ately. Codon usage was compared between a normal
sample and a primary tumor sample labeled with identi-
cal case IDs.

Statistics and analysis
All statistical tests were performed using Pandas [37]
and SciPy [38] libraries using Python version 3.7 [39].
SciKit-learn [40] was used to compute mean squared
error (MSE) and was used for principal component ana-
lysis (PCA). Lifelines [41] was used for Kaplan-Meier
analysis. For the Wald tests, a Bonferroni correction fac-
tor of 3 was applied because 3 synonymous codons were
tested. The null hypothesis that the slope is zero was
rejected when a resulting p-value was less than 0:01

3 (3.3E
−3). For the Wilcoxon signed-rank tests, a Bonferroni
correction factor of 64 was applied because 64 codons
were tested. The null hypothesis that paired samples fol-
low the same codon usage distribution was rejected
when a resulting p-value was less than 0:01

64 (1.6E−4).

Figure preparation
Figures were prepared using the matplotlib [42] library
along with Python version 3.7 [39]. The SciPy [38] li-
brary was used to create dendrograms illustrating Eu-
clidean distance-based hierarchal clustering. The lifelines
[41] package was used to plot Kaplan-Meier curves.

Results
Codon and codon pair usage patterns in normal and
primary tumor tissues
We obtained RNA-seq data from TCGA [36] and sorted
files into tissue groups based on sample type, diagnosis,
and tissue of origin. For each tissue group, we computed
median transcriptomic profiles and used these profiles
to calculate median codon and codon pair usage for each
tissue. We examined codon and codon pair usage for
each tissue to better understand the relationships be-
tween cancer types and their respective normal tissues.
A more detailed description of how tissue samples were
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assigned to each normal or cancer tissue type can be
found in the “Methods” section and in Additional File 1:
Table S1.
When tissues were clustered by Euclidean distance

computed based on their codon usage (Fig. 1A) or
codon pair usage (Fig. 1B), we observed similar clus-
tering patterns. For example, 4 subtypes of lung
adenocarcinoma (LUAD) are more similar to each
other than they are to normal lung tissue or to lung
squamous cell carcinoma (LUSC) according to both
dendrograms; normal bladder tissue is the most simi-
lar to normal endometrial tissue than to any other
tissue, and transitional cell carcinoma of the bladder
is most similar to endometrial adenocarcinomas than
other tissues; normal liver and normal bile duct tissue
are more similar to each other, but hepatocellular
carcinoma and cholangiocarcinoma do not cluster
together.
Clustering of tissues can be attributed to similarity in pat-

terns of codon usage (Additional File 2: Figs. S1 and S2).
GAG, CTG, and AAG are highly used while TCG is rarely
used across all tissue types. As expected, stop codons TGA,
TAA, and TAG are consistently the most rarely used co-
dons. Normal liver and bile duct have strikingly similar pat-
terns of codon usage which differ from hepatocellular
carcinomas and cholangiocarcinomas, respectively. For ex-
ample, GAG and AAA usage is higher in normal liver and

bile duct tissue than in hepatocellular carcinoma and cholan-
giocarcinoma (Additional File 2: Fig. S1). In contrast, the dif-
ference in codon usage between normal prostate tissue and
prostate adenocarcinoma is nearly imperceptible (Additional
File 2: Fig. S1).

Cancer type-specific changes in codon and codon pair
usage
If no codon usage difference existed between primary
tumor tissue and its respective normal tissue, we would
expect primary tumor codon usage to be equal to nor-
mal tissue codon usage. Based on this, we quantified the
level of overall codon usage change by MSE for each of
32 cancer types. Prostate adenocarcinoma (Fig. 2A)
showed relatively low MSE compared to other cancer
types (0.09) indicating it is a cancer type with a relatively
low difference in codon usage between tumor and nor-
mal tissue. In contrast, cholangiocarcinoma (Fig. 2B)
showed the highest MSE of all cancer types (9.32) indi-
cating it is the cancer type with the most difference in
codon usage between tumor and normal tissue. The
median MSE of all considered cancer types was 0.40
(Additional File 3: Table S2).
In order to characterize codon usage differences, for

each cancer type, we identified 10 codons with the great-
est difference in usage between primary tumor tissue
and its respective normal tissue. Half of these codons

Fig. 1 Primary tumor and normal tissue-specific codon and codon pair usage. A, B Euclidean distance dendrogram which clusters tissues based
on codon usage (A) or codon pair usage (B). Distance between tissues is reflected by the height of the parent node. Codon and codon pair
usage values reflect the median tissue values for each primary tumor and normal tissue type
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have higher usage in cancer tissue than in normal tissue
while the other half have higher usage in normal tissue
(Table 1; Additional File 4: Table S3). As expected, lar-
ger changes in individual codon’s usage were observed
in cancer types with higher MSE. For example, CGG-
Arg usage was more than 47% higher in cholangiocarci-
noma than in normal bile duct tissue, and TGT-Cys
usage was more than 61% higher in normal bile duct
than in cholangiocarcinoma. In contrast, the codons
with the most differences in usage between prostate
adenocarcinoma and normal prostate were GGT-Gly
(less than 4% higher in prostate adenocarcinoma) and
ATA-Ile (less than 4% higher in normal prostate).
To better contextualize these codon usage differences,

we next examined the differences between cancer and
normal tissues’ codon and codon pair usages relative to
non-transcriptomic weighted (“genomic”) codon and
codon pair usage. By PCA of codon usage (Fig. 2C) and
of codon pair usage (Fig. 2D), we observe the clear
separation of lung tissues from genomic samples and
separation of normal lung tissue from primary lung
tumors. We also compared codon and codon pair usage
differences between lung tissues by hierarchal clustering.
Clustering patterns are similar between codon usage
(Fig. 2E) and codon pair usage (Fig. 2F). In both, LUAD
subtypes (mixed adenocarcinoma, papillary adenocarcin-
oma, bronchoalveolar carcinoma, mucinous adenocar-
cinoma) are more similar to each other than they are to
LUSC or to normal lung tissue. However, there appears
to be relatively more difference between normal lung tis-
sue and primary non-small cell lung cancer tissues when
looking at the codon pair usage than at the codon usage.
Similar to our analysis comparing lung cancer types

with normal lung tissue, we also examined breast, endo-
metrial, esophageal, and gastric cancer types in relation to
their respective normal tissue and to non-transcriptomic-
weighted (genomic) codon and codon pair usage. We ob-
served similar clustering patterns when examining breast,
endometrial, esophageal, gastric, bladder, and kidney tis-
sues (Additional File 2: Fig. S3). Notably, codon pair usage
for esophageal adenocarcinoma and esophageal SCC is
more similar to non-transcriptomic weighted (genomic)
codon pair usage than to normal esophageal codon pair
usage.

Aggregate comparison of different cancers originating
from similar organs and tissues
In a previous study, we demonstrated tissue-specific
codon and codon pair usage signatures [23]. After
comparing cancer tissues with their respective normal
tissue, we next examined the differences in codon and
codon pair usage signatures between cancer types. By
PCA and hierarchal clustering, we found that cholangio-
carcinoma and hepatocellular carcinoma were more

similar to each other than their respective normal tissues
based on codon usage (Figs. 3A, C) and codon pair usage
(Figs. 3B, D). Interestingly, a higher level of difference is
seen between cholangiocarcinoma and hepatocellular
carcinoma than between their respective normal tissue
types.
We next examined primary cancer tissues arising from

the colon and its subregions. By PCA based on codon
usage (Fig. 3E) and codon pair usage (Fig. 3F), we see the
separation of normal colorectal tissue from colorectal
adenocarcinoma purely along PC2. PC2 accounted for
4.2% of the variation in codon usage data and 8.5% of the
variation in codon pair usage data, implying that the dif-
ference between normal colorectal tissues and colorectal
adenocarcinoma is relatively small compared to the differ-
ence between their codon and codon pair usage and non-
transcriptomic-weighted (genomic) codon and codon pair
usage. By hierarchal clustering, we also see a low differ-
ence in codon usage (Fig. 3G) and codon pair usage (Fig.
3H) between colorectal tissues with genomic as a clear
out-group.
Following these findings, we considered cancers arising

from the esophagus and stomach. By PCA, we observed
that primary gastric and esophageal adenocarcinomas
are more similar to each other and normal stomach than
they are to normal esophagus based on codon usage
(Fig. 3I) and codon pair usage (Fig. 3J). By hierarchal
clustering based on codon usage (Fig. 3K) and codon
pair usage (Fig. 3L), we see gastric cancers (tubular
adenocarcinoma, intestinal adenocarcinoma, diffuse car-
cinoma, and adenocarcinoma) are more similar to each
other than to normal stomach tissue or any esophageal
tissues. We see esophageal adenocarcinoma is more
similar to gastric cancers than to esophageal SCC or
normal esophageal tissue (Figs. 3K, L). While codon and
codon pair usage-based clustering results are very similar,
there is a notable difference. By codon pair clustering,
esophageal cancer tissues are more similar to genomic (or
non-transcriptomic weighted) codon pair usage than to nor-
mal esophageal codon pair usage (Fig. 3L). However, esopha-
geal cancer tissues are more similar to normal esophagus
codon usage than to genomic codon usage (Fig. 3K).
In our fourth set of comparisons, we analyzed SCC

from the lung and SCC from the head and neck to
see how codon and codon pair usage differed between
similar cancer types arising from distinct tissues of
origin. By PCA and hierarchal clustering based on
codon usage, we observed that SCCs were more simi-
lar to their respective normal tissues than to each
other (Additional File 2: Fig. S4A, C). However, based
on codon pair usage, SCC tissues were more similar
to each other than to their respective normal tissues
(Additional File 2: Fig. S4B, D).
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Changes in codon usage accompany changes in codon
preference
Median codon usage, referring to codon usage computed
based on median transcriptomic weights from all tissue
samples of a particular primary tumor or normal tissue
type, cannot be used to detect variation in codon usage
changes between patients. Having examined median
codon and codon pair usage, we next looked at codon

usage changes in individual patients by comparing pri-
mary tumor samples with normal tissue samples col-
lected from the same patient. Of particular interest was
the impact changes in codon usage have on codon pref-
erence measured by relative synonymous codon usage
(RSCU). Based on median codon usage, we found that
GGT-Gly consistently showed the greatest change in
codon usage between 4 breast cancer groupings

Fig. 2 Aggregate normal vs. cancer codon and codon pair usage comparison for select tissues. A, B Scatter plots comparing codon usage
between prostate adenocarcinoma and normal prostate tissue (A) and between cholangiocarcinoma and normal bile duct tissue (B). Each red
point represents a codon. Codons above the black diagonal line are more frequent in cancer tissue than normal tissue. The mean square error
(MSE) value is noted in the top left of the graph. A higher MSE value indicates more difference between codon usage in the primary tumor tissue
and codon usage in normal tissue. C, D Principal component analysis for codon (C) and codon pair (D) usage in normal lung tissue, non-small
cell lung cancer tissues, and genomics. Genomic codon and codon pair usage values are not transcriptome weighted. E, F Euclidean distance
dendrograms based on tissue-specific codon usage (E) or codon pair usage (F)
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Table 1 Codon usage differences between each cancer and its respective normal tissue

Cancer name Higher in cancer or normal Codon % difference

Aggregate transitional cell carcinoma—bladder Cancer CGG 5.42

Aggregate transitional cell carcinoma—Bladder Normal TGT 5.23

Transitional cell carcinoma—bladder Cancer CGG 4.76

Transitional cell carcinoma—bladder Normal TGT 5.03

Papillary transitional cell carcinoma—bladder Cancer CGG 8.26

Papillary transitional cell carcinoma—bladder Normal CCT 9.28

Aggregate carcinoma—breast Cancer GGT 15.83

Aggregate carcinoma—breast Normal TGT 7.44

Ductal carcinoma—breast Cancer GGT 15.06

Ductal carcinoma—breast Normal TGT 7.60

Lobular carcinoma—breast Cancer GGT 19.60

Lobular carcinoma—breast Normal TTA 8.93

Duct and lobular carcinoma—breast Cancer GGT 28.12

Duct and lobular carcinoma—breast Normal TGT 5.01

Colorectal adenocarcinoma Cancer CGT 11.28

Colorectal adenocarcinoma Normal TGC 8.23

Left colorectal adenocarcinoma Cancer CGT 11.39

Left colorectal adenocarcinoma Normal TGC 7.55

Right colorectal adenocarcinoma Cancer CGT 12.23

Right colorectal adenocarcinoma Normal TGC 10.40

Adenocarcinoma—endometrium Cancer GCG 6.06

Adenocarcinoma—endometrium Normal CAA 8.52

Endometrioid adenocarcinoma Cancer GCG 6.07

Endometrioid adenocarcinoma Normal CAA 9.01

Serous cystadenocarcinoma—endometrium Cancer GCG 6.86

Serous cystadenocarcinoma—endometrium Normal CAA 7.22

Squamous cell carcinoma—head and neck Cancer TCC 6.20

Squamous cell carcinoma—head and neck Normal CAC 4.78

Squamous cell carcinoma—esophagus Cancer CGC 19.16

Squamous cell carcinoma—esophagus Normal TAT 22.41

Esophageal adenocarcinoma Cancer CGG 17.63

Esophageal adenocarcinoma Normal TAT 18.16

Clear cell renal cell carcinoma Cancer CGC 6.67

Clear cell renal cell carcinoma Normal ATA 6.57

Papillary renal cell carcinoma Cancer CGC 11.36

Papillary renal cell carcinoma Normal TTA 13.01

Chromophobe renal cell carcinoma Cancer CGC 10.11

Chromophobe renal cell carcinoma Normal TGC 10.03

Hepatocellular carcinoma Cancer CGG 24.19

Hepatocellular carcinoma Normal TGT 28.55

Cholangiocarcinoma Cancer CGG 47.48

Cholangiocarcinoma Normal TGT 61.40

Adenocarcinoma—lung Cancer CGT 11.77

Adenocarcinoma—lung Normal TGC 13.07
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(aggregate breast cancer, IDC, ILC, IDLC) and normal
breast tissues (Figs. 4A, E, I, M) with IDLC showing the
greatest increase in GGT-Gly (+ 28%, Fig. 4M). By the
Wilcoxon signed-rank test, we found a change in GGT
usage to be significant in aggregate breast cancer and
IDC (Additional File 5: Table S4, Additional File 6: Table
S5).
We next compared the change in RSCU for GGT

with a change in RSCU for other glycine encoding
codons in the 4 breast cancer groupings. All group-
ings show a weak correlation between GGT and
GGA (Fig. 4B, F, J, N), the strongest of which ap-
pears in the aggregate breast cancer group (Fig. 4B:
R2 = 0.065, ΔGGA

ΔGGT ¼ þ0:139 ). Three of the four
groupings (all but ILC) showed a moderate correl-
ation between GGT and GGC (Fig. 4C, G, K, O), the
strongest of which occurs in IDLC (Fig. 4O: R2 = 0.636,
ΔGGC
ΔGGT ¼ −0:257 ). However, all 4 groupings displayed a
strong and negative correlation between GGT and GGG
(Fig. 4D, H, L, P: all R2 > 0.95 and all ΔGGG

ΔGGT < − 0.69). We
performed a two-sided Wald test to evaluate the null hy-
pothesis that the slope of each graph is 0. With a

Bonferroni correction value of 3 and alpha level of signifi-
cance of 0.01, p values < 0.0033 were considered signifi-
cant. We observed a strong and significant relationship
between ΔRSCU of GGT and ΔRSCU of GGG for all
breast cancer types. We also see a weaker correlation be-
tween GGT and GGC in ILC patients than in IDC or
IDLC patients. While we observed a significant relation-
ship between GGT and GGC in the aggregate breast can-
cer patient group (n = 107; p = 1.0E−13) and in IDC
patients (n = 85; p = 7.1E−11), we did not observe a sig-
nificant relationship between GGT and GGC in ILC pa-
tients (n = 7; p = 0.90) nor in IDLC patients (n = 9; p =
0.01).

Variation in codon usage is cancer type specific
We were interested in evaluating whether median transcrip-
tomic weighted codon and codon pair usage is a fair reflec-
tion of patients’ codon and codon pair usage. We computed
MSE based on codon usage for each patient with each of 29
cancer types with sufficient paired tissue samples and present
a summary of the results in Table 2. As expected, prostate
adenocarcinoma patients had the lowest MSE (median value
0.42) while cholangiocarcinoma patients had the highest

Table 1 Codon usage differences between each cancer and its respective normal tissue (Continued)

Cancer name Higher in cancer or normal Codon % difference

Squamous cell carcinoma—lung Cancer CGT 16.52

Squamous cell carcinoma—lung Normal TGC 17.95

Adenocarcinoma with mixed subtypes—lung Cancer CGT 11.86

Adenocarcinoma with mixed subtypes—lung Normal TGT 12.38

Bronchioloalveolar carcinoma Cancer TTA 12.15

Bronchioloalveolar carcinoma Normal TGC 10.07

Papillary adenocarcinoma—lung Cancer CGT 10.82

Papillary adenocarcinoma—lung Normal TGT 11.76

Mucinous adenocarcinoma—lung Cancer CGG 8.76

Mucinous adenocarcinoma—lung Normal CCT 8.90

Prostate adenocarcinoma Cancer GGT 3.74

Prostate adenocarcinoma Normal ATA 3.57

Adenocarcinoma—stomach Cancer TTA 12.74

Adenocarcinoma—stomach Normal TGC 5.62

Intestinal type adenocarcinoma—stomach Cancer TTA 12.45

Intestinal type adenocarcinoma—stomach Normal TGC 5.82

Diffuse type carcinoma—stomach Cancer TTA 13.49

Diffuse type carcinoma—stomach Normal GTC 5.68

Tubular adenocarcinoma—stomach Cancer TTA 13.51

Tubular adenocarcinoma—stomach Normal TGC 6.88

This table describes the most pronounced codon usage differences for each cancer type based on median transcriptome-weighted codon usage comparison
between each cancer type and its respective normal tissue type. For each cancer type, one codon with higher usage in primary tumor tissue and one codon with
higher usage in normal tissue are listed. More codon differences can be found in Additional File 4: Table S3
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MSE (median value 9.95). However, we observed remarkably
high variation in MSE of prostate adenocarcinoma patients.
To investigate this further, we assigned case num-

bers to patients based on MSE, so the patient with
the highest MSE is referred to as “case 1” while the
patient with the least MSE is referred to as “case 50.”
Using the highest observed MSE from our median

transcriptomic weighted codon usage analysis (cholangio-
carcinoma, 9.32) as a threshold, we divided prostate
adenocarcinoma patients into two groups: cases 1–5 (high
MSE) and cases 6–50 (low MSE). MSE values observed
in cases 1–5 ranged from 56.14 (Fig. 5A) to 16.46
(Fig. 5B). MSE values observed in cases 6–50 ranged
from 2.65 (Fig. 5C) to 0.04 (Fig. 5D).

Fig. 3 Aggregate comparison for select primary tumor types. A, B Principal component analysis for liver and bile duct tissues based on codon
usage (A) and codon pair usage (B). C, D Euclidean distance dendrogram for liver and bile duct tissues based on codon usage (C) and codon
pair usage (D). E, F Principal component analysis for colorectal tissues based on codon usage (E) and codon pair usage (F). “Right” colon refers to
the ascending colon, cecum, and hepatic flexure of the colon. “Left” colon refers to the descending colon, splenic flexure of the colon, sigmoid
colon, rectosigmoid junction, and rectum. G, H Euclidean distance dendrograms for colorectal tissues based on codon usage (G) and codon pair
usage (H). I, J Principal component analysis for gastric and esophageal tissues based on codon (I) and codon pair usage (J). K, L Euclidean
distance dendrograms for gastric and esophageal tissues based on codon (K) and codon pair usage (L)
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Fig. 4 (See legend on next page.)
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We next investigated the codon and codon pair
usage differences between these two case groups. By
PCA of both groups’ normal prostate samples, we see
clear separation based on codon usage (Fig. 5E) and
codon pair usage (Fig. 5F). However, we did not ob-
serve substantial differences in codon usage (Fig. 5G)
or codon pair usage (Fig. 5H) when comparing pri-
mary tumor samples between these two groups of
prostate adenocarcinoma cases.

Global codon usage change predicts increased mortality
We next explored the impact of global codon and codon
pair usage change on patient mortality. MSE was com-
puted based on codon usage, codon pair usage, and raw
transcriptomic weights (transcripts per million) using
paired tumor and normal tissue samples collected from
the same patient. A total of 596 patients with paired
samples also had necessary clinical data for Kaplan-
Meier analysis. These patients were divided into quar-
tiles based on their MSE values, and the top quartile
(25% of patients with highest MSE) and bottom quartile
(25% of patients with lowest MSE) were compared. The
probability of survival for each patient group was plotted
over 10 years.
We observed a clear separation between patients

with high codon usage change and patients with low
codon usage change (Fig. 6A). The median survival
time of patients with high codon usage change was
3.8 years while the median survival time of the low
codon usage change patient group was not reached
after 10 years. After the first year, there was no over-
lap between the 95% confidence intervals for these
two groups. We observed similar findings when pa-
tients were grouped according to codon pair usage
changes (Fig. 6B). Patients with low codon pair usage

changes had a median survival time of 9.5 years while
patients with high codon pair usage changes had
a median survival time of 3.1 years. Separating pa-
tients according to global transcriptomic change (Fig.
6C) also resulted in different mortality rates. The pa-
tient with low transcriptomic MSE had a median sur-
vival time of 7.7 years while patients with high
transcriptomic MSE had a median survival time of
3.4 years. Unlike with codon and codon pair usage
graphs, we observed less distinction between mortality
rates of high MSE and low MSE patient groups when
separating by transcripts per million as the 95% confi-
dence intervals overlap after 8 years.

Discussion
Synonymous codon usage bias is a phenomenon that has
long been recognized in all domains of life and more re-
cently across tissues of multi-cellular organisms [19, 20,
22, 23]. While synonymous mutations have historically
been thought of as neutral and are often assumed to be
benign, a critical mass of evidence suggests the opposite
[43–45]. Examples include synonymous SNPs associated
with both genetic disorders and cancer, due to a complex
mechanism involving cognate tRNA abundance, mRNA
stability and splicing, and translation kinetics [11, 46, 47].
While the process that leads from synonymous mutations
to disease remains unsolved, it is imperative to document
and describe associated changes in codon usage bias as
well as divulge this information to the research commu-
nity. In this study, we have described relevant changes in
global codon and codon pair usage between the transcrip-
tomes of healthy and cancerous tissue samples. The find-
ings are based on genomic codon and codon pair counts
weighted by gene expression derived from public data,
and we have created an associated database (https://

(See figure on previous page.)
Fig. 4 Change in codon usage and change in RSCU in breast cancers. A Scatterplot representing codon usage difference between normal breast
tissue and aggregate breast cancer based on the median tissue values. Values along the x-axis represent the codon usage per thousand in
normal breast tissue. Values along the y-axis represent the percent difference between aggregate breast cancer and normal breast usage. B–D
Scatterplots representing the correlation between change in relative synonymous codon usage (RSCU) of GGT and its synonymous codons GGA
(B), GGC (C), and GGG (D). Each point represents a change in individual patients (n = 107). p-value text appears green where the null hypothesis
may be rejected (see the “Methods” section for the explanation of the Wald test used). E Scatterplot representing the codon usage difference
between normal breast tissue and invasive ductal carcinoma (IDC) of the breast based on the median tissue values. Values along the x-axis
represent the codon usage per thousand in normal breast tissue. Values along the y-axis represent the percent difference between IDC and
normal breast usage. F–H Scatterplots representing the correlation between change in relative synonymous codon usage (RSCU) of GGT and its
synonymous codons GGA (F), GGC (G), and GGG (H). Each point represents a change in individual IDC patients (n = 85). p-value text appears
green where the null hypothesis may be rejected (see the “Methods” section for the explanation of the Wald test used). I Scatterplot representing
the codon usage difference between normal breast tissue and invasive lobular carcinoma (ILC) based on the median tissue values. J–L
Scatterplots representing the correlation between change in RSCU of GGT and its synonymous codons GGA (J), GGC (K), and GGG (L). Each point
represents a codon change in individual ILC patients (n = 7). p-value text appears green where the null hypothesis may be rejected (see the
“Methods” section for the explanation of the Wald test used). M Scatterplots representing the codon usage difference between normal breast
tissue and mixed invasive ductal and lobular carcinoma (IDLC) based on the median tissue values. N–P Scatterplots representing the correlation
between change in RSCU of GGT and its synonymous codons GGA (N), GGC (O), and GGG (P). Each point represents the change in individual
IDLC patients (n = 9). p-value text appears green where the null hypothesis may be rejected (see the “Methods” section for the explanation of the
Wald test used)
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dnahive.fda.gov/review/cancercocoputs/) to access this
information.
We began our investigation with an understanding

that usage frequency and translation efficiency of syn-
onymous codons are not necessarily equivalent. Previous
work has highlighted substantial differences in
transcriptomic-weighted codon and codon pair usage
across 51 human tissues derived from the Genotype
Tissue Expression (GTEx) Project [23, 48]. Varying
degrees of bias were found measuring distances between
the codon and codon pair usage of tissues and their ef-
fective numbers of codons and codon pairs. As biased
codon usage has been established across healthy human

tissues, we investigated its presence between normal and
cancerous human tissues. Leveraging the publicly avail-
able RNA-seq data in TCGA, we first selected solid
tumor types from the database for which there were also
normal tissue data available (e.g., hepatocellular carcin-
oma and liver). We utilized the available transcriptomic
data and transcript-level codon and codon pair usage to
calculate distances between tissues and their respective
cancers based on transcriptomic-weighted codon and
codon pair usage. Both liver and bile duct stand out in
their overall distance from their respective cancers (he-
patocellular carcinoma and cholangiocarcinoma, respect-
ively) and in specific codon usage differences between

Table 2 Summary of MSE variation among patients with each cancer type

Cancer type Mean Min 25 percentile Median 75 percentile Max Range Number of patients

Prostate adenocarcinoma 3.88 0.04 0.24 0.42 1.21 56.14 56.10 50

Squamous cell carcinoma—head and neck 3.24 0.26 1.25 1.84 3.46 35.24 34.97 40

Hepatocellular carcinoma 4.21 0.40 1.41 2.96 6.26 19.59 19.19 49

Clear cell renal cell carcinoma 1.02 0.09 0.27 0.53 0.84 15.59 15.50 71

Esophageal adenocarcinoma 5.35 0.17 1.50 4.67 7.05 15.51 15.33 7

Aggregate carcinoma—breast 1.62 0.17 0.46 0.92 1.91 12.30 12.13 107

Ductal carcinoma—breast 1.60 0.17 0.46 0.86 1.89 12.30 12.13 85

Colorectal adenocarcinoma 1.74 0.18 0.42 0.76 1.44 11.76 11.59 46

Right colorectal adenocarcinoma 2.95 0.34 0.51 1.22 3.66 11.76 11.42 15

Duct and lobular carcinoma—breast 2.07 0.37 1.01 1.51 1.99 7.63 7.26 9

Adenocarcinoma—endometrium 1.07 0.18 0.40 0.55 1.20 7.43 7.25 23

Endometrioid adenocarcinoma 1.20 0.18 0.40 0.59 1.28 7.43 7.25 19

Cholangiocarcinoma 9.42 6.62 6.95 9.95 10.64 13.58 6.96 9

Adenocarcinoma—stomach 1.98 0.39 0.74 1.66 2.68 7.31 6.92 27

Papillary renal cell carcinoma 0.63 0.07 0.20 0.44 0.71 4.79 4.73 31

Chromophobe renal cell carcinoma 1.06 0.10 0.32 0.64 1.43 4.47 4.37 23

Aggregate transitional cell carcinoma—bladder 1.22 0.14 0.47 1.02 1.67 3.95 3.81 18

Transitional cell carcinoma—bladder 1.19 0.14 0.45 0.99 1.58 3.95 3.81 17

Adenocarcinoma—lung 1.22 0.18 0.60 1.01 1.77 3.54 3.36 51

Squamous cell carcinoma—lung 1.34 0.03 0.64 1.14 1.93 3.30 3.27 48

Bronchioloalveolar carcinoma 1.67 0.51 0.73 0.96 2.25 3.54 3.03 3

Left colorectal adenocarcinoma 0.83 0.18 0.43 0.72 1.04 2.64 2.46 18

Lobular carcinoma—breast 1.23 0.17 0.82 1.01 1.61 2.60 2.43 7

Intestinal type adenocarcinoma—stomach 1.13 0.39 0.46 0.69 1.31 2.81 2.41 5

Adenocarcinoma with mixed subtypes—lung 1.22 0.39 0.46 1.22 1.98 2.07 1.68 4

Diffuse type carcinoma—stomach 2.54 1.51 2.39 2.61 3.07 3.13 1.63 5

Papillary adenocarcinoma—lung 1.33 0.88 0.99 1.09 1.55 2.00 1.12 3

Mucinous adenocarcinoma—lung 0.78 0.23 0.71 0.94 1.01 1.04 0.81 4

Serous cystadenocarcinoma—endometrium 0.49 0.26 0.42 0.51 0.58 0.69 0.43 4

This table summarizes the MSE computed for each patient with each of 29 cancer types based on codon usage. Values presented here better describe the spread
of MSE values for a cancer type. Columns include “Min,” “Max,” “Range,” “Median,” and “Mean.” The number of patients examined for each cancer type is
described under the “Number of patients” column; 25% and 75% refers to the first and third quartile, respectively, and may not be useful for cancer types with
low patient numbers
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normal and tumor tissues. GAA and GAG are the only
two synonymous codons for glutamic acid, while AAA
and AAG are the only two for lysine. Both normal liver
and bile duct tissues show little preference for either of
these synonymous codons. However, hepatocellular
carcinoma and cholangiocarcinoma show preference
for GAG and AAG over GAA and AAA as evident by a
shift in relative synonymous codon usage values away
from 1.0 (Additional file 2: Fig S2). While more fre-
quently used synonymous codons are associated with
better translation efficiency, the increased usage of
GAG and AAG in hepatocellular carcinoma and chol-
angiocarcinoma could also lead to additional transla-
tional pressure being placed on these codons. Such
perturbations in synonymous codon usage can affect
the protein structure through changes in co-
translational folding kinetics [43, 49, 50]. Other changes
to codon usage patterns between tissues and their re-
spective cancers could have yet unknown impacts and
warrant further investigation. Furthermore, while
TCGA represents the most comprehensive single
source for tumor-specific data, future studies could le-
verage additional repositories available in the Inter-
national Cancer Genome Consortium Data Portal to
validate and expand CancerCoCoPUTs [51].
To continue investigating changes in cancer-specific

codon usage patterns, we examined other sets of normal
and cancer tissue data from TCGA. Interestingly, not all

tissues and respective tumor types were found to have
such divergent codon usage patterns as seen with hepa-
tobiliary cancers. For example, normal prostate and
prostate adenocarcinoma have low MSE in normal vs
tumor codon usage frequencies. This could be due to
close similarity in gene expression profiles of normal
prostate and prostate adenocarcinoma, which is often a
slow-growing, less aggressive type of tumor. Investiga-
tion of the codon usage differences between proliferative
and differentiated cells could shed light on this finding
and would be an interesting topic for future research.
On the other hand, the high MSE between the bile duct
and cholangiocarcinoma is evidence of the dramatic
changes that take place in codon usage between this tis-
sue and its respective cancer.
We next examined different tumor types originating

from the breast, lung, endometrium, and esophagus.
Despite known differences between cancer types ori-
ginating from the same tissue of origin (i.e., LUAD
vs. LUSC), we found that codon usage and codon pair
usage in these tumor types were generally more simi-
lar to each other’s codon and codon pair usage than
they were to their respective normal tissue’s codon
and codon pair usage, or to genomic codon and
codon pair usage. These findings begged the question
whether there is a relationship between synonymous
codon preferences of cancers originating from the
same tissue. We continued in this line of investigation

Fig. 5 Codon and codon pair usage differences in prostate adenocarcinoma patients. A–D Representative scatterplots for 4 prostate
adenocarcinoma patients. Case numbers are assigned in order of decreasing MSE (case 1 refers to the patient with the highest MSE while case 50
refers to the patient with the lowest MSE). E, G PCA based on codon usage in each patient’s normal prostate tissue (E) or primary tumor tissue
(G). Cases with high MSE are colored red, and cases with low MSE are colored blue. F, H PCA based on codon pair usage in each patient’s
normal prostate tissue (F) or primary tumor tissue (H). Cases with high MSE (> 16) are colored red, and cases with low MSE (< 3) are colored blue
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by comparing changes in codon usage between the
normal breast tissue and three breast cancer types
(IDC, ILC, and IDLC). We found that GGT, the least
frequent glycine codon in normal breast tissue (13.4
per 1000), was consistently the most elevated codon
in IDC, ILC, and IDLC. We also found that increased

RSCU of GGT consistently and strongly correlated
with a decreased RSCU of GGG in all three cancer
types compared to normal breast tissue. Similarly, in-
creased RSCU of GGT correlated with a decreased
RSCU of GGC, the most used glycine codon in nor-
mal breast tissue (24.7 per 1000 codons).

Fig. 6 Kaplan-Meier analysis of codon, codon pair, and transcriptome changes in 596 patients. A Kaplan-Meier curves for patients with relatively
high global codon usage changes (red) and patients with relatively low global codon usage changes (green). The horizontal dashed line
represents 50% survival probability and intersects with each curve at their median survival time. Shaded regions represent 95% confidence
intervals. B Kaplan-Meier curves for patients with relatively high global codon pair usage changes (red) and patients with relatively low global
codon pair usage changes (green). The horizontal dashed line represents 50% survival probability and intersects with each curve at their median
survival time. Shaded regions represent 95% confidence intervals. C Kaplan-Meier curves for patients with relatively high transcriptome changes
(red) and patients with relatively low transcriptome changes (green). The horizontal dashed line represents 50% survival probability and intersects
with each curve at their median survival time. Shaded regions represent 95% confidence intervals
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The over-representation of an otherwise rare codon
(GGT) in these breast cancer types aligns with findings
from Guimaraes et al., who recently observed elevated
usage of rare codons in proliferating cells that led to en-
hanced translation efficiency [34]. The authors discussed
the possibility that a bottleneck normally placed on the
translation of rare codons in differentiated cells was allevi-
ated during proliferation, allowing higher expression of
proliferation-associated genes using rare codons [34]. It is
noteworthy that their findings were observed in the ab-
sence of a significant change to the tRNA pool, suggesting
that rare codon usage alone could drive increased transla-
tion efficiency in proliferative cells. However, it should
also be noted that another recent study highlighted poor
translational adaptation of other codons, such as AGA
and ACT, in cancer based on the supply-to-demand ratio
of tRNA abundance to codon usage [32, 52]. Although
our findings are not contradictory, the clear correlation
between increased GGT and decreased GGG RSCU in
breast cancers should be investigated further.
Interest has rapidly grown in personalized mRNA vac-

cines for infectious diseases and cancer [53]. Codon
optimization is a common technique to improve the
translation efficiency of recombinant genes. Recently, it
has been applied to mRNA vaccine design [53, 54]. To
that end, comprehensive knowledge of codon and codon
pair usage within a cancer type compared to its normal
tissue would be beneficial. Based on our findings, cancers
such as hepatocellular carcinoma, cholangiocarcinoma,
and colorectal adenocarcinoma may be targeted by
mRNA vaccines optimized to their respective codon and
codon pair usage. On the other hand, tissues such as
stomach, whose codon usage is not as clearly distinct
from those of its respective cancers, may not benefit as
greatly from this technique. However, our findings in
some cancers may serve as a signature for tumor-specific
codon and codon pair usage, which could be useful in
downstream transcriptomic analyses and studies of trans-
lation efficiency. The degree of difference between codon
usage of tumor type and its respective normal tissue re-
mains an interesting topic that warrants further investiga-
tion. In addition, our findings of extreme variability in the
level of overall codon usage change between normal and
tumor tissues for 50 patients with prostate adenocarcin-
oma highlights the potential importance of characterizing
an individual’s tissue and tumor-specific codon usage
landscape when developing personalized cancer treat-
ments, which can induce T cell responses against neoan-
tigens unique to the patients’ mutation-derived neo-
epitopes [55, 56]. If mRNA-based cancer vaccines were to
be tailored for expression within the individual patient,
the codon optimization schema must account for the
level of codon usage difference in the individual’s normal
and tumor tissue.

Finally, it is noteworthy that the degree of change in
codon or codon pair usage between paired healthy and
tumor tissue is associated with patient survival. One pos-
sible explanation is that aggressive tumors are likely to
be more dedifferentiated or undifferentiated, leading to
more divergent patterns of gene expression and conse-
quently codon usage, a possibility that begs further in-
vestigation. These findings represent an intriguing result
that implicates global codon and codon pair usage
changes in the severity of disease, which should continue
to be explored in future studies.

Conclusions
In this study, we have highlighted the pertinent findings
that affect our understanding of codon and codon pair
usage in cancerous versus normal tissue. While some
primary tumors display vastly different codon usage
preferences than their tissues of origin (cholangiocarci-
noma and hepatocellular carcinoma), other tissues do
not appear as distinct from their respective tumors
(stomach, prostate). However, a closer analysis of indi-
vidual prostate cancer patients revealed that while codon
usage bias in a cancer type may not appear obvious in
pooled samples, there can be significant variability
among patients. These findings not only add to the body
of evidence for varying degrees of codon and codon pair
usage bias within cancer tissues, they also have import-
ant implications for the development and optimization
of personalized cancer vaccines, whose design may bene-
fit from an understanding of the codon usage landscape
of the target tumor. Furthermore, we have compiled the
data that comprise the basis for these analyses into a
user-friendly web interface, allowing other researchers to
access pre-compiled codon and codon pair usage for 32
cancer types. Our findings provide important insights re-
garding the codon usage signatures of various tumors,
and the associated database (https://dnahive.fda.gov/
review/cancercocoputs/) [35] represents a comprehen-
sive resource for cancer-specific codon and codon pair
usage.
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