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Distinct transcriptional programs stratify
ovarian cancer cell lines into the five major
histological subtypes
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Abstract

Background: Epithelial ovarian cancer (OC) is a heterogenous disease consisting of five major histologically distinct
subtypes: high-grade serous (HGSOC), low-grade serous (LGSOC), endometrioid (ENOC), clear cell (CCOC) and
mucinous (MOC). Although HGSOC is the most prevalent subtype, representing 70-80% of cases, a 2013 landmark
study by Domcke et al. found that the most frequently used OC cell lines are not molecularly representative of this
subtype. This raises the question, if not HGSOC, from which subtype do these cell lines derive? Indeed, non-HGSOC
subtypes often respond poorly to chemotherapy; therefore, representative models are imperative for developing
new targeted therapeutics.

Methods: Non-negative matrix factorisation (NMF) was applied to transcriptomic data from 44 OC cell lines in the
Cancer Cell Line Encyclopedia, assessing the quality of clustering into 2-10 groups. Epithelial OC subtypes were
assigned to cell lines optimally clustered into five transcriptionally distinct classes, confirmed by integration with
subtype-specific mutations. A transcriptional subtype classifier was then developed by trialling three machine
learning algorithms using subtype-specific metagenes defined by NMF. The ability of classifiers to predict subtype
was tested using RNA sequencing of a living biobank of patient-derived OC models.

Results: Application of NMF optimally clustered the 44 cell lines into five transcriptionally distinct groups. Close
inspection of orthogonal datasets revealed this five-cluster delineation corresponds to the five major OC subtypes.
This NMF-based classification validates the Domcke et al. analysis, in identifying lines most representative of HGSOC,
and additionally identifies models representing the four other subtypes. However, NMF of the cell lines into two
clusters did not align with the dualistic model of OC and suggests this classification is an oversimplification.
Subtype designation of patient-derived models by a random forest transcriptional classifier aligned with prior
diagnosis in 76% of unambiguous cases. In cases where there was disagreement, this often indicated potential
alternative diagnosis, supported by a review of histological, molecular and clinical features.
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Conclusions: This robust classification informs the selection of the most appropriate models for all five histotypes.
Following further refinement on larger training cohorts, the transcriptional classification may represent a useful tool
to support the classification of new model systems of OC subtypes.

Keywords: Ovarian cancer, Non-negative matrix factorization, RNA sequencing, Subtype classification, Machine

learning, Transcriptomics

Background

Ovarian cancer (OC) is the most common cause of
gynaecological-related cancer death in Europe and North
America [1]. Although 90% of tumours are epithelial in
origin, these tumours exhibit substantial heterogeneity
in terms of clinical presentation and molecular biology
[2]. Subclassification is therefore essential, not only to
personalise treatment, but also to provide a framework
to assist scientific research [3]. While various classifica-
tions have been proposed, it is now widely accepted that
epithelial OC can be subdivided into five main histo-
logical types [3—6]. The predominant subtype is high-
grade serous (HGSOC), which accounts for 70-80% of
cases, while rarer subtypes include low-grade serous
(LGSOC [<5%]), endometrioid (ENOC [10%]), clear cell
(CCOC [10%]) and mucinous (MOC [3%]) [7].
Expansion of next-generation sequencing has revealed
the distinct molecular characteristics of each subtype;
for example, HGSOC 1is characterised by near-
ubiquitous 7P53 mutation, germline and/or somatic
mutations in genes involved in homologous recombin-
ation (HR) repair and genome-wide copy-number vari-
ation (CNV) [8-10]. Unlike HGSOC, the other subtypes
are characterised by mutations in the MAPK and PI3K/
AKT pathway, and while ~60% of MOC also have TP53
mutations [11, 12], TP53 is altered in only around 15—
20% of ENOC and CCOC [13-15] and less than 10% of
LGSOC [16-18].

A greater understanding of the different molecular
events that underpin ovarian carcinogenesis is driving
the expansion of tailored therapies [19]. Current treat-
ment guidelines have been broadly established from
studies of HGSOC [4], yet differences in chemotherapy
sensitivity between subtypes highlight the need for
subtype-specific research [20, 21]. Such research in turn
requires appropriate model systems that robustly reflect
each subtype. The Cancer Cell Line Encyclopedia
(CCLE) includes over 40 OC cell lines; however, many
widely used lines were established over 20 years ago,
prior to the advent of current histological subclassifica-
tion (Fig. 1). In addition, cell lines with a designated his-
totype may have genetically drifted from the original
patient cells [22-24]. In a landmark study in 2013,
Domcke et al. compared cell line CNV and mutation
profiles with patient samples from The Cancer Genome
Atlas (TCGA) to identify lines closely resembling

HGSOC [9, 25]. In turn, HGSOC lines identified in this
study were shown to display the profound cell division
abnormalities typical of patient-derived tumour cells [26,
27]. However, the subtype of the ‘non-HGSOC’ lines was
not determined by Domcke et al. Other studies have also
sought to determine the subtype of OC cell lines by, for
example, morphological and immunohistochemistry ana-
lysis [28, 29], and while these are largely in agreement
with Domcke et al,, in their identification of HGSOC cell
models, non-HGSOC are often only designated as un-
classified, atypical non-serous or undistinguishable be-
tween ENOC and CCOC. Thus, uncertainty remains
regarding which cell lines are representative of LGSOC,
ENOC, CCOC and MOC [25, 28-31]. Furthermore,
while cell lines can be tractable models for research, they
often underrepresent tumour heterogeneity [32]. To ad-
dress this, researchers are developing living biobanks of
patient samples [27, 33-36], and as the use of biobanks
expands, it is important that their subtype classification
can be confirmed, particularly if clinical annotation is
unavailable.

To support the classification of both established cell
lines and novel OC models, we aimed to develop a
methodology to classify all subtypes based on molecular
features. In particular, now that RNA sequencing (RNA-
seq) data is widely available, we sought to determine
whether a transcriptional ‘fingerprint’ could distinguish
subtypes in an unbiased manner. While the utility of
RNAseq as a tool for developing biomarkers is in its in-
fancy, techniques are established and are becoming more
accessible and less costly. The challenge, however, is in
the distilling of robust ‘fingerprints’ from these complex
datasets. One approach to reduce complexity is non-
negative matrix factorisation (NMF), which has been
utilised to reduce the dimensionality of transcriptional
profiles from thousands of genes to a subset of import-
ant metagenes, concurrently providing meaningful class
discovery [37]. Here, we apply NMF to the gene expres-
sion profiles of 44 epithelial OC cell lines, recently se-
quenced as part of the CCLE project [38], and find that
this stratifies the cell lines into five robust clusters. Sub-
sequent cross-referencing of cell line mutational profiles
against profiles from clinical cohorts confirmed that the
NMEF clusters represent the five main subtypes of epithe-
lial OC. In contrast to the study by Domcke et al., this
positive assignment of cell lines into subtype-specific
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Fig. 1 Cell line usage based on PubMed citations. Top, total number of PubMed usages of each of the 44 epithelial ovarian cancer cell lines for
which RNAseq data is available within the CCLE. Bottom, HGSOC-likelihood scores as determined by Domcke et al. analysis of ovarian cancer cell
lines correlated with The Cancer Genome Atlas HGSOC patient samples. Cell lines are separated along the x-axis based on the year of their first
usage. Cell lines are coloured by the subtype of epithelial ovarian cancer reported in their primary literature source
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clusters now identifies appropriate models for all five
main subtypes.

Finally, we sought to translate the NMF clustering into
a transcriptional classifier for novel OC models using a
living biobank of patient samples. The classifier was first
created by training a machine learning algorithm on the
subtype metagene profiles defined by NMF of the cell
lines. The potential utility of the classifier was then
tested using RNAseq generated from our biobank and
comparison of a predicted subtype with clinical
diagnosis.

Methods

Literature search

A literature search was carried out to determine which
of the CCLE samples were representative of the major
types of epithelial OC. This eliminated three cell lines
from the panel of OC cell lines: one malignant Brenner
tumour and one granulosa cell tumour and an engi-
neered cell line. The malignant Brenner tumour was re-
moved as, although classified as an epithelial tumour
type [3], it is the only cell line of this derivation and it
was considered to impair consensus clustering for this
reason. Usage of CCLE OC cell lines in research was
determined by PubMed search using all known aliases
for the cell lines. It should be noted that we only
count the number of articles where the cell line is
specified in the title or abstract, therefore missing lit-
erature that only specifies within the article text
which cell lines were used.

Cancer Cell Line Encyclopedia RNAseq data acquisition
Forty-four cell lines representative of the major ovarian
cancer subtypes analysed by RNA sequencing as part of
the CCLE were identified [38] (Additional file 1: Table
S1). We obtained Raw sequence files in FASTQ format
from the European Nucleotide Archive (http://www.ebi.
ac.uk/ena/; accession PRINA523380) and remapped raw
sequence reads using gene annotations from Gencode
v32, to enable comparison with our own RNAseq of
patient-derived OCMs (see below and [27]).

Ex vivo ovarian cancer models

Research samples were obtained with informed patient
consent from the Manchester Cancer Research Centre
(MCRC) Biobank. The MCRC Biobank is licensed by the
Human Tissue Authority (licence number: 30004) and is
ethically approved as a research tissue bank by the South
Manchester Research Ethics Committee (Ref: 07/H1003/
161+5). The role of the MCRC Biobank is to distribute
samples and does not endorse studies performed or the
interpretation of results. For more information, see
https://www.mcrc.manchester.ac.uk/research/mcrc-
biobank/about-the-mcrc-biobank/.

Ex vivo ovarian cancer models (OCMs) were expanded
from 33 clinical specimens from 27 patients, of which 11
were published previously (Additional file 1; Table S2)
[27]. Two were solid tumour specimens and 31 were iso-
lated from ascites. Histopathological review of cases re-
vealed 23 of 27 patients had a conclusive diagnosis
consistent with WHO guidelines. Of these 23 patients,


http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
https://www.mcrc.manchester.ac.uk/research/mcrc-biobank/about-the-mcrc-biobank/
https://www.mcrc.manchester.ac.uk/research/mcrc-biobank/about-the-mcrc-biobank/

Barnes et al. Genome Medicine (2021) 13:140

82.6% were HGSOC (19 of 23) and 8.7% were MOC and
LGSOC (each two of 23). Two patients displayed atyp-
ical morphology, one displaying moderately differenti-
ated serous adenocarcinoma of intermediate grade and a
second with possible mixed LGSOC and HGSOC fea-
tures. Two further patients had a diagnosis recorded of
suspicious of adenocarcinoma arising from the gynaeco-
logical tract. The average age for HGSOC was 63.9 years
(standard deviation, + 11.1), MOC 39 years (+ 14) and
LGSOC 48.5 years (+ 7.5). The average overall survival
for HGSOC was 29.8 months (+ 22.9), MOC was 58.7
months (+ 5.6) and LGSOC was 37.6 (+ 0.6). Initially, 33
OCMs were generated; however, two passages of OCM
46-3 (4 and 14) and two additional OCMs from 64-3
(separated by EpCam status) were included for RNAseq
(36 in total). Of these, 9 were from patients that had not
yet received chemotherapy (chemo-naive), 3 of these pa-
tients had an additional OCM generated from a post-
treatment sample (biopsy numbers are indicated).

OCMs were established as described in Nelson et al.
[27]. Briefly, cells were isolated from ascites by centrifu-
gation, red blood cells removed and remaining cells
plated into Primaria flasks containing OCMI [39]. Solid
tumour samples were processed using a tumour dissoci-
ation kit (Miltenyi Biotec) following the manufacturer’s
instructions and cells plated into collagen-coated 12.5-
cm?® flasks containing OCMI. Cultures were incubated
undisturbed for 2—4 days at 37°C in a humidified 5%
CO; and 5% O, atmosphere. Media were replaced every
3—4 days. Once attached, stromal cells were separated
from the tumour cells using selective trypsinisation. For
long-term storage, cells were frozen in Bambanker
(Wako pure chemical). OC and stromal cells were subse-
quently cultured in OCMI media supplemented with 5%
FBS (Life Science Group) or 5% Hyclone FBS (GE
Healthcare). Cells were passaged at 95% confluence at a
ratio of 1:2.

Kuramochi cells for analysis by RNAseq (JCRB Cell
Bank) were cultured in RPMI supplemented with 5%
FCS, 100 U/ml penicillin, 100 U/ml streptomycin and 2
mM glutamine and were maintained at 37°C in a hu-
midified 5% CO, atmosphere.

RNASeq of ex vivo ovarian cancer models

RNA was extracted using RNeasy Plus Mini kit (Qiagen),
quantified using a Qubit fluorometer (Life Technologies)
and quality/integrity assessed using a 2200 TapeStation
(Agilent Technologies). Sequencing libraries were then
generated using the TruSeq® Stranded mRNA assay (Illu-
mina, Inc.) according to the manufacturer’s protocol.
Adapter indices were used to multiplex libraries, which
were pooled prior to cluster generation using a cBot in-
strument (Illumina, Inc.). The loaded flow-cell was then
paired-end sequenced (76 + 76 cycles, plus indices) on
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an Illumina HiSeq4000 instrument. The output data was
demultiplexed (allowing one mismatch) and BCL-to-
Fastq conversion performed using Illumina’s bcl2fastq
software. Note: RNAseq was also performed on a se-
lected number of patient-matched stromal cells, as an
additional control, and though this data is not used
within these analyses, it is included within the deposited
data for completeness.

RNAseq data processing

The RNAseq data generated by the CCLE [38], and
RNAseq of our ex vivo OCMs [27, 40], was processed in
the same manner. The paired reads were processed
using BBDuk from BBMap v36.32 to trim the adapter
sequences and low-quality bases. The filtered reads were
mapped to the human reference sequence analysis set
(hg38/Dec. 2013/GRCh38) from the UCSC browser,
using STAR v2.7.2b [41]. The genome index was created
using the comprehensive Gencode v32 gene annotation.
The number of reads per gene was counted using
‘--quantMode GeneCounts’ within the STAR command.

Non-negative matrix factorisation

Data analyses in R were performed using v3.6.2 and Bio-
conductor v3.10. The DESeq2 (v1.26.0) package was
used to apply a variance stabilising transformation to the
assembled read count matrix [42]. Transcripts with a
median absolute deviation >1.5 were selected, and this
list of 6796 genes was used as input for clustering ana-
lysis using the NMF package [43]. To estimate the fac-
torisation rank (k), NMF was performed for k of 2 to 10,
using 50 random initiation points. Quality measures
were computed for each factorisation rank, including the
cophenetic coefficients and silhouette width. Inspection
of the computed quality metrics revealed two and five
clusters fitted the data. Next, 200 iterative runs of NMF
were performed from a fixed random initial condition
with a k value of two and again for a k value of five.
Using annotations given in the primary literature source
for each cell line (Additional file 1: Table S1), we in-
ferred the likely OC histotype of each cluster. Gene scor-
ing schema was applied to extract genes characteristic of
the five identified clusters [44]. Metagene lists were
combined, and this was used as input for machine learn-
ing algorithms.

Machine learning algorithms for classification

The R package caret (v6.0-86) was used for model train-
ing and evaluation. The specific modules used were
‘base:knn’, ‘randomForest’ (v4.6-14) and ‘kernlab’ (v0.9-
29), respectively. The subtype assignment gleaned from
NMF (k = 5; see the ‘Results and discussion’ section)
was used to randomly partition cell lines into four
groups, such that each subtype was represented in each.
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Random partitioning was repeated ten times to achieve a
reliable estimate of model performance. Each model was
trained to each successive set of three groups, and model
performance tested on the omitted group. Quality met-
rics compared between models were the per-subtype
sensitivity, specificity and balanced accuracy. Overall
model performance was compared using Cohen’s kappa,
which compares observed accuracy with the expected
accuracy.

Genetic background of CCLE cell lines

The genetic background of the CCLE cell lines is exten-
sively referred to throughout this manuscript. We direct
the reader to the mutation datasets generated by the
CCLE. The datasets were originally presented in Ghandi
et al. [38] and visualised using the cBioPortal for Cancer
Genomics (https://www.cbioportal.org/) that enables
interactive exploration of multidimensional cancer gen-
omics datasets [45, 46]. Data is presented as OncoPrint
in Fig. 3. For cell line MCAS, a 127-base pair deletion in
TP53 has also been included [28, 47].

Analysis of primary tumours

Formalin-fixed and paraffin-embedded (FFPE) archival
tumour blocks were analysed by immunohistochemistry
by collecting 4-pum sections on Superfrost charged slides.
After drying overnight at 37°C, samples were processed
using a Ventana Benchmark immunohistochemistry
platform (Roche) with antibodies against p53 (Dako
cat#¥M700101-2, 1:50), Cytokeratin7 (CK7, Dako
cat#M701801-2, 1:250), PAX8 (Roche cat#06523927001,
1:100) and WT-1 (Abcam cat#ab89901, 1:100). Heat-
induced epitope retrieval was performed using CC1
(Roche), incubating samples at 95°C for 36, 52, 40 and
64 min for p53, CK7, PAX8 and WTI, respectively.
Antibodies were incubated at 37°C for 32, 40, 32 and 40
min for p53, CK7, PAX8, and WT1I, respectively. p53
and CK7 were detected using Ultraview universal DAB
kit (Roche), while PAX8 and WT1 were detected using
Optiview universal DAB kit (Roche), all as per manufac-
turer’s instructions. Sections were counterstained using
Haematoxylin II (Roche) for 12 min and bluing reagent
(Roche) for 8 min, and slides imaged using a Leica
DM2500 microscope (Leica Microsystems), using a x20
objective lens under brightfield and processed using
Adobe Photoshop. For genotyping, FFPE blocks were
assessed for total cellularity and the neoplastic cell con-
tent of the sample expressed as a percentage of all nucle-
ated cells on a haematoxylin and eosin (H&E)-stained
slide. A neoplastic cell count of >10% was required be-
fore undertaking DNA extraction. DNA extraction was
performed using the cobas® DNA Sample Preparation
Kit (Roche). Tumour from 5x 5pM unstained pathology
slides was available for DNA extraction. Extracted DNA
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was quantified using Qubit 2.0 Fluorometer (Thermo-
Scientific). Targeted enrichment was performed using
the GeneRead Clinically Relevant Tumour Targeted
Panel V2 (Qiagen; AKTI, ALK, AR, BRAF, CTNNBI,
DDR2, EGFR, ERBB2, FGFR3, GNAI11l, GNAQ, IDHI,
IDH2, KIT, KRAS, MAP2K1, MET, NRAS, PDGFRA,
PIK3CA, PTEN, RET, STKI11, TP53). For somatic vari-
ants in TP53, the target read depth across all coding re-
gions (exon 2 to 9) was a minimum of 350x. Mutations
were named according to Human Genome Variation So-
ciety guidelines (http://www.hgvs.org/) using reference
sequence NM_000546.5. All variant calls were independ-
ently reviewed using the BAM files and a genome
browser (Integrated Genomic Viewer). At a variant allele
frequency > 4%, the call sensitivity was > 90% and speci-
ficity > 95% after manual review.

Results and discussion

Most frequently utilised CCLE lines are unlikely to be
representative of HGSOC

The analyses by Domcke et al. represent an important
milestone in the field, utilising in-depth analysis of CNV,
mutations and microarray-based mRNA expression pro-
files to rank 47 OC cell lines according to their resem-
blance to HGSOC, as defined by comparison with
patient samples from TCGA [9, 25]. Therefore, to evalu-
ate cell line usage in recent years, we first performed a
literature search including 47 OC cell lines from which
the CCLE has recently generated RNAseq data (includ-
ing 44 of those in Domcke’s analysis) [38]. We counted
the number of articles in the literature that refer to each
line as an estimate of cell line usage in research, includ-
ing only the 44 cell lines the search identified as likely
epithelial OC (Fig. 1; Additional file 1: Table S1). Seven
cell lines collectively constituted almost 90% of OC cell
line usage (ranked by most highly used: SK-OV-3,
A2780, OVCAR-3, IGROV-1, CAOV-3, 59M and
OVCAR-8). Although much of research is focused
around HGSOC, only three of these seven lines were
scored as highly likely to be HGSOC by Domcke et al.
(OVCAR-3, CAOV-3 and 59M). Strikingly, seven cell
lines that did score highly as likely to be HGSOC (KUR-
AMOCHI, OVSAHO, SNU-119, COV362, OVCAR-4,
COV318 and JHOS-4) only constituted 1% of PubMed
citations. Thus, although HGSOC represents the most
prevalent subtype, pre-clinical OC research has utilised
cell lines that are unlikely to have derived from this sub-
type. It also remains unclear which histological subtype
these frequently used cell lines derive.

NMF preferentially segregates the OC cancer cell lines
into five clusters

We aimed to utilise the RNAseq data from the CCLE
[38], in conjunction with NMF, to identify
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transcriptional signatures specific to each tumour sub-
type. NMF, as a means of pattern recognition, decom-
poses overall gene expression into two matrices that
approximate it according to the pre-defined number of
clusters (k). The first matrix defines ‘metagenes’ for each
cluster, the small set of genes whose co-expression in-
forms cluster assignment, and the second reflects the
co-expression levels of those metagenes in each sample.
In order to establish the optimum number of clusters
for the cell lines, we first performed NMF at k of 2-10
(Additional file 2: Fig. S1). As NMF is generally repeated
multiple times using random initiation points to obtain
a reliable estimate of classification, we completed 50
NMEF runs per k. To assess the optimum value of k, we
considered three quality metrics: the cophenetic correl-
ation coefficient [37], dispersion coefficient [44] and sil-
houette width [48] (Fig. 2A). Consensus clustering for a
five-class split demonstrated high-quality metrics. For k
= 5, the cophenetic and silhouette width scores were
second only to k = 2, and the dispersion score was high-
est for k = 5 (Fig. 2A). We subsequently completed 200
NMEF runs at k = 5 and visualised the data as a consen-
sus matrix, where the entries of the consensus map re-
flect the probability of two samples clustering together
across the multiple NMF runs [49]. Indeed, this gener-
ated a consensus map that gave strong evidence for a
five-class split, demonstrating a clear block diagonal pat-
tern (Fig. 2B).

To validate optimal NMF clustering at k = 5 based on
the CCLE dataset, which was generated as part of a
high-throughput sequencing project, we repeated the
NMF using an independent RNAseq panel from 44 OC
cell lines from another pan-cancer study by Klijn et al.
[50]. The clustering was markedly similar to that of the
CCLE dataset, with clustering at k = 5 demonstrating
good quality metrics (Additional file 2: Fig. S2). In
addition, for 29 cell lines common between these data-
sets, clustering was mirrored in both consensus maps
(Fig. 2B and Additional file 2: Fig. S2). Interestingly, this
confirmed the clustering of OV56 with other known
CCOC cell lines, as it had a low silhouette score in our
original NMF, but a high silhouette score using the al-
ternative dataset. Indeed, our group has noted differ-
ences between CCLE profiling and gene expression
levels measured by Nanostring for this cell line [51]. In
general, samples clustered with lower silhouette scores
into k = 5 with the alternative versus the CCLE dataset,
potentially due to the absence of non-coding transcript
levels in the Ensembl-annotated dataset from Klijn et al.
Hence, it could be inferred that expression of long non-
coding RNAs play a role in fine-tuning of the distinct
clusters. Nevertheless, this independent validation con-
firms the fidelity of the transcriptional profiles generated
by the CCLE and concurs that NMF optimally
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segregates frequently used OC cell lines into five clusters
based upon transcriptional profiling.

The five NMF clusters represent the five main subtypes of
epithelial OC

As NMF preferentially segregated the OC cell lines into
five clusters, we considered whether these clusters repre-
sented the five main subtypes of epithelial OC. We first
examined the subtype assigned by the primary literature
source for each cell line, where this was available (Add-
itional file 1: Table S1 and references therein). Indeed,
this showed a clear overrepresentation of cell lines anno-
tated with a given subtype within each cluster at k = 5,
suggesting that the clusters from left to right in Fig. 2B
represent HGSOC, CCOC, LGSOC, MOC and ENOC.
We subsequently confirmed these putative assignments
by comparing the mutational profiles of the cell lines
with those from corresponding clinical cohorts (Fig. 3
and below).

High-grade serous ovarian cancer models

HGSOC is the most common histological subtype, char-
acterised by aggressive dissemination. Although most
patients respond to primary treatment, nearly all patients
with advanced stage disease will relapse, at which point
cure is highly unlikely [52]. The precursor of a substan-
tial proportion of HGSOC is likely to be serous tubal
intraepithelial carcinoma (STIC) in the fimbriae of the
fallopian tubes [53-55]. Indeed, STIC harbour the same
TP53 mutations as the surrounding invasive carcinoma,
suggesting a clonal relationship [56—58]. TP53 is mu-
tated in >96% of HGSOC cases, and histopathological
review of wild-type tumours suggests TP53 alterations
are likely ubiquitous [9, 59-61]. Half of the cases also
display HR deficiency, most frequently due to mutations
in BRCA1/2 (~20%) or BRCAI promoter methylation
(~11%) [8-10, 60, 62]. CNV is extensively observed, with
amplifications frequently involving oncogenes, such as
MYC (31.5%), CCNEI (21.7%) and PIK3CA (18%), and
deletions involving tumour suppressor genes, such as
PTEN (6.1%) [9, 45, 46].

Of the 16 OC cell lines in the first cluster of the NMF
consensus map, eight were assigned as ‘serous’ in their
primary literature annotation, and seven were not speci-
fied (Fig. 2B; dark purple track). To confirm putative
identification of this cluster as HGSOC-derived cell
lines, we aligned the cell lines that cluster here with
those identified as HGSOC by Domcke et al. (Fig. 2B;
blue/green graduated track). All 16 cell lines are among
the top 20 scoring cell lines in Domcke’s analysis,
strongly supporting the transcriptional classification by
NME. Furthermore, mutational profiling of the cell lines
in this cluster revealed mutations characteristic of
HGSOC, including 7TP53 (100% of cell lines) and
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Fig. 2 NMF of RNAseq segregates ovarian cancer cell lines into five clusters that recapitulate histological subtypes. A Quality metrics describing
the performance of NMF for 2 to 10 clusters. From left, the cophenetic correlation coefficients, dispersion and silhouette. Colours indicate the
type of measure plotted. B Consensus map showing cell line clustering for 200 iterative runs of NMF using 5 clusters. The blocks of the
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subtype provided in the cell line’s original literature source (NS, not specified); bottom, the consensus cluster assignment across 200 NMF runs
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of clinical cohorts. Gene mutations in the five different subtypes of

was shown separately to harbour a 127 base pair deletion in TP53 [28].

BRCA1/2 (31.25% of cell lines) (Fig. 3). Thus, this pro-
vides assurance that eight cell lines (OVSAHO, SNU-
119, COV318, JHOS-4, JHOS-2, OVKATE, FU-OV-1
and SNUS) transcriptionally and genetically resemble
the tumour subtype they were reported to derive from.
However, SNUS8, which was ranked 20th by Domcke
et al,, falls into cluster 3 (LGSOC) in 40% of NMF initia-
lisations. Also, while it does harbour a TP53 mutation,
KRAS is also mutated, an event that is rare in HGSOC
[9]. Thus, SNUS is an unusual cell line with features of
both HGSOC and LGSOC that cannot be resolved by
genetic or transcriptional profiling.

One additional cell line that both NMF and Domcke
et al. support to be HGSOC is COV362, which was ori-
ginally designated as ENOC in its primary literature
source [63]. Indeed, the WHO note the difficulty in dis-
tinguishing high-grade ENOC from HGSOC, in line with
the possibility that the original tumour may have been
misclassified [3]. However, like SNU8, COV362 also

shows a low silhouette score across 200 runs of NMF,
also clustering 25% of the time into cluster 3 (LGSOC),
suggesting that it may share some characteristics with
these cell lines. Importantly, COV362 does not cluster in
any NMF run with other cell lines reported as ENOC.
Furthermore, it has TP53 and BRCA2 mutations that are
characteristic of HGSOC (Fig. 3). Finally, seven cell lines
without specified subtype in their primary literature
source were confirmed to represent models of HGSOC
based on transcriptional clustering (KURAMOCH],
OVCAR-4, Caov-4, OAW?28, Caov-3, ONCO-DG-1 and
OVCAR-3), supporting previous analysis by Domcke
et al.

Clear cell ovarian cancer models

CCOC is the second most prevalent subtype of epithelial
OC, with the highest frequency reported in Asian coun-
tries, whereby it accounts for up to 30% of cases in Japan
but only 10% in Europe and North America [64, 65].
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Although CCOC more frequently presents at an early
stage and in younger women [21, 64, 66], when adjusted
for stage survival, rates are worse for CCOC than
HGSOC [21, 66]. The most common mutations in
CCOC include PIK3CA (~50.0%), ARIDIA (~45%), TP53
(~20%) and KRAS (~10%) [13, 67]. Unlike the origin-
specific transcriptional profiles of serous or endome-
trioid tumours, clear cell tumours have a particularly
distinct transcriptional profile that is maintained across
clear cell carcinomas of the ovary, endometrium and
kidney [68].

The second cluster of our NMF consensus map is
enriched for known CCOC cell lines (Fig. 2B; green
track). Of the cell lines in this cluster, six were originally
annotated as CCOC, two as serous, one as mixed adeno-
carcinoma and one was not specified; no cell line anno-
tated as CCOC clustered separately. These cell lines
have a high frequency of mutations that have been iden-
tified in patients with CCOC, including in ARIDIA (7 of
10), PIK3CA (6 of 10), TP53 (3 of 10) and KRAS (1 of
10; Fig. 3). Four cell lines also had mutations in KMT2D,
which has been reported in a CCOC case [69] and more
recently found to be mutated in a significant number of
ENOC cases (8 of 26; 31%) [14]. The two cell lines in
this cluster originally annotated as serous, EFO21 and
OAW42, received relatively low HGSOC-likelihood
scores in the analysis by Domcke et al. In addition, un-
like almost all HGSOC [9, 59], OAW42 is TP53 wild-
type; however, it does harbour two frameshift mutations
within ARIDIA (Fig. 3), supporting its designation as
CCOC [67]. Also, EFO21 has a lower fraction of the
genome altered than cell lines that cluster with our pur-
ported HGSOC lines.

The remaining two cell lines that fall into the CCOC
cluster are SK-OV-3 and IGROV1. Although both are
frequently assumed to be serous in origin, SK-OV-3 was
originally described as simply ‘adenocarcinoma of the
ovary’, and IGROV1 as mixed adenocarcinoma contain-
ing endometrioid, serous, clear cell and undifferentiated
components. Indeed, both had a low HGSOC-likelihood
score from Domcke et al. Rather, the mutational land-
scape of SK-OV-3 coincides with three of the most com-
monly mutated genes in CCOC: PIK3CA, ARIDIA and
TP53 (Fig. 3) [13, 67]. Furthermore, SK-OV-3-injected
mice formed clear cell adenocarcinomas [70]. Interest-
ingly, Domcke et al. reported IGROV1 as unlikely to be
HGSOC as it is hypermutated, and instead suggested it
to be of ENOC or CCOC origin due to its clustering
with  endometrium-derived cancer cell lines by
microarray-derived transcriptional profiling [9, 25]. The
assumption that IGROVI is of serous origin possibly
stems from the presence of mutations within 7P53 and
BRCA1/2 (Fig. 3); however, IGROV1 has mutations in
ARIDIA, PIK3CA and PTEN, which appear to be
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exclusive to non-HGSOC subtypes (Fig. 3). This high-
lights the unique benefit of using transcriptional profil-
ing to aid in the diagnosis of epithelial OC subtypes, as
genetic mutations can occur within multiple different
subtypes [71].

Both our NMF and the immunohistochemistry panel
by Anglesio et al. [28] placed JHOC5, TOV21G,
OVTOKO and OVMANA as CCOC lines. Other lines
we identify as CCOC were classified as atypical non-
serous or were not classified by Anglesio et al. [28].
Interestingly, all of the HNF1B-positive lines in the study
by Anglesio et al. are designated CCOC by NMF, with
the exception of OV90, which also stains positive. Posi-
tive HNF1B staining has been shown to be almost ubi-
quitous in CCOC, with significantly higher frequency
than in HGSOC and ENOC [72-74].

A potential low-grade serous ovarian cancer cluster
LGSOC accounts for only ~3% of epithelial OC and was
until recently described as grade 1 serous or well-
differentiated serous adenocarcinoma [7]. LGSOC is dis-
tinct from HGSOC, with younger age at presentation,
differing pathological and molecular characteristics, less
aggressive behaviour and longer overall survival [3, 75,
76]. However, LGSOC are typically chemotherapy-
resistant and suboptimal surgical debulking leads to
similar outcomes to HGSOC [16, 77, 78]. LGSOC arise
from serous cystadenoma or adenofibroma, which
progresses through serous borderline tumour to inva-
sive carcinoma in a slow stepwise manner [3].
LGSOC often harbour activating mutations of genes
involved in the MAPK signalling pathway, including
KRAS (~20-35%), BRAF (~10-40%), ERBB2 (~5%)
and NRAS (~10%) [16, 17, 79-82]. Mutations in key
MAPK pathway genes are mutually exclusive, meaning
one of these genes is mutated in around half to two-
thirds of LGSOC [17, 79, 80]. TP53 mutations are
rare in LGSOC, ranging from 0-8% prevalence across
studies, though some series use the absence of TP53
mutations as an inclusion criterion [16—18].

As LGSOC represents a fairly recent descriptor, it is
more difficult to infer this classification from literature
annotations. Furthermore, 4 of the 8 cell lines in the
third cluster were not designated a subtype in their pri-
mary literature source. However, we propose that the
third cluster of the NMF consensus map may represent
LGSOC (Fig. 2B; light purple track). In keeping with the
frequency of MAPK pathway mutations in LGSOC, cell
lines in this cluster harbour the highest frequency of
KRAS mutations (4 of 8) and additionally show BRAF (2
of 8), NRAS (1 of 8) and ERBB2 (1 of 8) mutations; in
fact, 7 of 8 cell lines have a mutation in at least one of
these genes. However, none of these cell lines harboured
mutations in USP9X, which has recently been found at a
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high frequency in LGSOC cases [17]. Also, OV-56 more
likely represents CCOC, as described above, based on al-
ternative datasets [50, 51]. Nevertheless, cluster three
closely mimics the genetic landscape of LGSOC and this
designation potentially identifies 4 cell lines previously
unspecified in the literature as LGSOC (TYK-nu, HeyAS,
ES2 and OVCARS). In addition, OV7, which was previ-
ously described as mixed adenocarcinoma, is also identi-
fied to be representative of LGSOC.

This putative LGSOC cluster contains three cell lines
with a top 20 HGSOC-likely score and one ranked ‘pos-
sibly-HGSOC’ by Domcke et al.: TYK-nu, 59M and ES2,
and JHOM-1, respectively. In agreement with LGSOC
designation, TYK-nu has two mutations in NRAS. Add-
itionally, 59M (previously annotated as ENOC) has three
mutations in MAPK pathway proteins, and ES2 (previ-
ously subtype unspecified) has a BRAF mutation, and
they are both therefore characteristic of LGSOC [16, 79].
While JHOM-1 does not harbour a MAPK pathway mu-
tation, it does have fewer CNV and point mutations than
the cell lines designated HGSOC [38]. Although these
four cell lines also harbour 7P53 mutations, an overrep-
resentation of TP53-mutated cell lines relative to the
proportion in respective tumour type has been reported
previously [83], which may be due to selective pressure
for a TP53 mutant clone during ex vivo expansion. In-
deed, it is difficult to establish cell lines from low-grade,
slow-growing indolent tumours [84].

Interestingly, proteomic profiling by Coscia et al. also
found 59M and TYK-nu to be distinct from other
HGSOC cell lines [25, 30]. While the proteomic signa-
ture of one group of cell lines closely resembled both
HGSOC and cultured fallopian tube epithelial cells, the
group containing 59M and TYK-nu resembled that of
immortalised ovarian surface epithelial cells. The authors
therefore suggest that heterogeneity exists in the prote-
ome of HGSOC based on disparate sites of origin [30],
and indeed, there are recent reports that a subset of
HGSOC are of ovarian surface epithelium origin [85-
87]. However, segregation may reflect the differences be-
tween HGSOC- and LGSOC-derived cell lines. Indeed,
based on the frequency of MAPK pathway mutations in
these cell lines, which are extremely rare in HGSOC, we
assign this NMF cluster as likely LGSOC in origin in our
analysis.

A cell culture and morphology-based study by Beau-
fort et al. identified three different morphologies of epi-
thelial OC lines: epithelial, round and spindle, which
showed distinct biological and molecular characteristics
[29]. Interestingly, the three cell lines we purport to be
LGSOC, which are in common between our two studies
(OV7, 59M and ES2), all demonstrated spindle-like
morphology. They all also demonstrated low or absent
EpCAM staining and tended to have the lowest doubling
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times of the cell line panel, suggesting that these features
may be characteristic of LGSOC [29].

Mucinous ovarian cancer models

MOC are morphologically characterised by epithelium
with intestinal differentiation, and thus, it can be chal-
lenging to determine whether a disease is primary ovar-
ian or a secondary mucinous adenocarcinoma that
originated elsewhere. Historically, many mucinous tu-
mours involving the ovary were in fact metastases from
extra-ovarian sites and, after revisions to the diagnostic
criteria, the rate of MOC fell from ~10% to only 3% of
epithelial OC [88, 89]. Note therefore that this study is
not designed to determine a non-ovarian origin of pur-
ported MOC cell lines. MOC is diagnosed at stage 1 in
80% of cases, when the prognosis following surgery is
good. However, advanced stage disease has a poor prog-
nosis, due to low response rates to platinum-based ther-
apies [90]. Genetic analyses of primary MOC support a
progressive model of carcinogenesis, whereby benign
cystadenoma develops a KRAS or CDKN2A mutation,
progressing to borderline tumours likely to have both
events and additional CNV, to overt carcinoma, which
display a higher frequency of KRAS and TP53 mutations
(both ~60% in MOC), and greater CNV [11, 91, 92].
CNVs are key cancer drivers associated with increasing
grade and metastatic progression [11]. Other mutations
identified in MOC include RNF43, BRAF, PIK3CA and
ARIDIA (8-12%), as well as amplification of ERBB2
(26%) [11].

Of five OC cell lines annotated in their primary refer-
ence as MOC, four cluster together (Fig. 2B; orange
track). These are MCAS, RMUG-S, COV644 and
JHOM-2B. OV-90 also clusters with the MOC cell lines,
which originally was not designated a subtype. In sup-
port of designation as MOC, OV-90 harbour ERBB2
amplification, and BRAF and TP53 mutations (Fig. 3)
[11, 93]. JHOM-2B was in the top 20 HGSOC-likely cell
lines defined by Domcke et al.; however, it is reported in
the literature as MOC, and our NMF also clusters it with
other MOC cell lines. In fact, Domcke et al. ranked
JHOM-2B as 19th, close to the threshold for designation
as only ‘possibly HGSOC'. Indeed, this cell line does
harbour a TP53 mutation (Fig. 3); however, TP53 muta-
tions are also present in around 60% of MOC [11, 12].
The fifth cell line reported as MOC in its original publi-
cation, but excluded from this cluster, is JHOM-1, which
falls into the cluster we tentatively class as LGSOC and
has been discussed previously.

Anglesio et al. found TFF3 mRNA, a marker that is
significantly more highly expressed in mucinous carcin-
oma, was detectable in two cell lines within their panel,
MCAS and OV-90 [28], consistent with our placement
of these two cell lines as MOC. However, in the
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Anglesio study, OV-90 was not classified by their algo-
rithm due to an almost equal call of endometrioid and
HGSOC. Targeted sequencing by Anglesio et al. did not
assess BRAF or CDK2NA, mutations characteristic of
MOC, that were identified by the CCLE supporting
placement of MCAS and OV-90 by NMF here as MOC.

Endometrioid ovarian cancer models
ENOC can have a more favourable prognosis than
HGSOC, as it tends to present at an earlier stage and at
a younger age [94, 95]. The most common gene muta-
tions associated with ENOC include CTNNBI (25-53%),
PTEN (17-46%), KRAS (33-42%), PIK3CA (27-40%),
ARIDI1A (19-30%), KMT2D (31%), KMT2B (19%) and
TP53 (7-19%) [14, 15, 96]. A subset of ENOC closely re-
sembling HGSOC, with TP53 mutations, HR deficiency
and widespread CNV, was also recently identified [14,
97]. Indeed, high-grade or extensive mucinous differenti-
ation in ENOC may be difficult to differentiate from
HGSOC and MOC, respectively, based upon morpho-
logical features alone [3, 98]. Indeed, ENOC was the
most  frequently reclassified histologic type in
biomarker-assisted reviews of OC series [99, 100].

Accordingly, cell lines purported to represent ENOC
fall into multiple clusters but are concentrated within
the final NMF cluster (TOV112D and OVK18; Fig. 2B;
red track). Two other cell lines with a primary annota-
tion of ENOC, 59M and COV362, segregate into the
clusters designated LGSOC and HGSOC. All five cell
lines within the ENOC cluster collectively display a mu-
tational profile in line with ENOC tumours: specifically,
mutations in TP53 (4 of 5), ARIDIA (4 of 5), KMT2D (4
of 5), PIK3CA (3 of 5), PTEN (3 of 5), KMT2B (3 of 5)
and KRAS (1 of 5; Fig. 3) [14, 15, 96]. A2780, which is
newly annotated as a model of ENOC, displays muta-
tions in ARIDIA, PIK3CA, PTEN and KMT2D (Fig. 3).

EFO27 and OC314, which are assigned to the ENOC
cluster, were originally classified as serous. However,
both harbour ARIDIA and PIK3CA mutations, among
other mutations common with ENOC (Fig. 3). While
OC314 had not been molecularly characterised at the
time, EFO27 also received a low HGSOC-likelihood
score from Domcke et al. [9, 25]. Therefore, the genetic
similarities between these cell lines, and the reported
lack of HGSOC features, suggest they are more accurate
models of ENOC. However, it should be noted that
EFO27 has a poor silhouette score in our consensus
map (Fig. 2B), clustering with other ENOC cell lines in
58% of NMF runs, and with MOC cell lines in the other
NMEF runs, suggesting it shares transcriptional features
with both subtypes.

Our NMF clustering suggests that a hypermutated
genotype is common among ENOC and CCOC. Three
of five hypermutated cell lines (high mutation frequency
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with few CNVs) fall into the ENOC cluster (EFO27,
OVK18 and OC314) and the remaining two (TOV21G
and IGROV1) fall into the CCOC cluster. Indeed, mis-
match repair deficiency, which leads to a hypermutated
genotype, has been exclusively identified in low-grade,
low-stage ENOC and CCOC (18% and 2%, respectively),
in keeping with Lynch syndrome-associated ovarian can-
cer [101, 102]. Therefore, this further supports designa-
tion of these five hypermutated OC lines as of ENOC or
CCOC origin.

Dualistic model of ovarian carcinogenesis may be
oversimplistic

An alternate, dualistic model of ovarian carcinogenesis
(types I and II) has been proposed to consolidate the
clinical presentation of OC subtypes with their molecu-
lar characteristics [5, 6]. The type I class, which includes
LGSOC, ENOC, CCOC and MOC, is described as in-
cluding characteristically low-grade, indolent tumours,
with frequent alterations in cell signalling pathways [5,
6]. Type II tumours include mostly HGSOC and are de-
scribed as aggressively growing tumours, with near-
ubiquitous 7P53 mutation and chromosome instability.
This model was acknowledged by the WHO classifica-
tion in 2014, with LGSOC and HGSOC described as the
prototypical type I and II tumours, respectively [3]. As
NMEF also supported a case for a two-cluster fit (Fig. 2A
and Additional file 2: Fig. S1A), this poses the question
as to whether these two clusters are representative of the
dualistic classification.

To ascertain whether the NMF clustering into two
groups reflects the dualistic model, we annotated the cell
lines within the two clusters with the subtypes defined
by NMF at k = 5. Indeed, all LGSOC-labelled cell lines
fell into cluster 1, and all HGSOC-labelled cell lines fell
into cluster 2, with the exception of SNU8, which had a
poor silhouette score at k = 5; (Additional file 2: Fig.
S1A; Fisher’s exact test, p < 0.001). Given that LGSOC
and HGSOC are the prototypic type I and II tumours,
the molecular and clinical features that gave rise to the
dualistic classification are mirrored within the transcrip-
tional profiles of the corresponding cell lines. However,
in addition to LGSOC—ENOC, CCOC and MOC are
generally considered type I tumours [5, 6]. Interestingly,
we found that non-serous-labelled cell lines were split
between the two clusters. Therefore, we conclude that
the two clusters identified by NMF here do not repre-
sent type I and II tumours as described by the dualistic
model.

As type II tumours have been described as predomin-
antly TP53-mutated, we assessed whether TP53 status
could explain the differences between the two clusters.
There was a trend towards a higher proportion of TP53-
mutated cell lines present in cluster 2 (Fisher’s exact
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test, p = 0.15), suggesting that TP53 status may be influ-
encing clustering. Furthermore, data suggests no enrich-
ment of chemo-naive or chemotherapy-treated lines in
either cluster (Fisher’s exact test; p = 0.4018). However,
as treatment history is infrequently given in the original
publication that established these cell lines, we cannot
rule out a relationship based on available data. Likewise,
based on the cell lines annotated with the site of biopsy,
those sampled from the ovary or ascites were not
enriched in either cluster (Fisher’s exact test; p = 0.934).

In line with our results, it has been questioned
whether a dualistic model of OC is reflective of the het-
erogeneity of so-called type I tumours [103]. Even within
histological subtypes, this group is not homogenous. In-
deed, CCOC has been suggested to belong to an inter-
mediate, rather than a type [, category [104].
Furthermore, as mentioned above, a subset of aggressive
ENOC cases closely resembling HGSOC has been identi-
fied, with 7P53 mutations, HR deficiency and wide-
spread CNVs [14, 97]. Although these may represent
HGSOC cases with a ‘pseudoendometrioid pattern’ [5,
105], our clustering using k = 5 suggests they are a dis-
tinct and ENOC-derived subset, while demonstrating
similarity to HGSOC.

There are limitations to drawing conclusions on the
classification of OC from clustering performed on OC
cell lines. Namely, ‘type II-like’ type I cancers may pos-
sess an inherent growth advantage and greater ability to
adapt to culture conditions than their more indolent
counterparts. Meaning, aggressive tumours could consti-
tute a minority of clinical cases but are highly repre-
sented among cell lines. It is also possible that the two
clusters reflect tissue of origin; however, as the cell-of-
origin for some subtypes remains unclear, RNAseq data
from tissue from these potential sites would be required
to test this. For example, while both CCOC and ENOC
are well-known to be endometriosis-associated, cell-of-
origin is controversial with proposed sources including
endometrium, endometrial cysts, ovarian surface epithe-
lia and fallopian tube-derived cells [106]. Despite these
possibilities, our finding that non-serous cell lines fall
into both NMF clusters at k = 2 mirrors concerns that
the spectrum of these histotypes is oversimplified by a
dualistic model [103]. However, our analysis does high-
light some merits of the dualistic model, confirming the
stratification of serous tumours into exclusive high-
grade and low-grade-containing groups.

Training of a machine learning classifier to predict
ovarian cancer subtype

Mutation profiling of the CCLE cell lines within the five
NMEF clusters supports our histotype designation of each
cluster and informs the selection of the most appropriate
CCLE cell lines representing all five main subtypes of
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epithelial OC. However, clonal selection in long-term
culture means that cell lines are unlikely to display the
true heterogeneity of primary tumours. For example, al-
though single-cell-derived colorectal cancer cell lines
display ongoing random instability, a specific karyotype
is maintained over time [32]. Consequently, OC re-
searchers are developing living biobanks of patient-
derived samples, which have the potential to more ac-
curately predict patient response to therapeutics [27,
33]. Hence, we considered whether transcriptional pro-
filing could be used to support histological subtype as-
signment of patient-derived ex vivo ovarian cancer
models (OCMs). We aimed to develop such a ‘transcrip-
tional classifier’ by trialling machine learning algorithms
on the RNAseq profiles of the newly annotated CCLE
cell lines.

To initially test the potential of a transcriptional classi-
fier, we determined whether the NMF classification of
the CCLE cell lines could be used to train a machine
learning model to predict the subtype of a ‘hold-out’ set
of the lines. Genes with expression levels characteristic
for each cluster were first extracted, and the list com-
bined and used to train the models. The largest number
of genes was associated with the HGSOC cluster (82
genes), followed by ENOC (40 genes), LGSOC (35
genes), MOC (28 genes) and CCOC (23 genes; Fig. 4A).
The classification potential of three trained models (k-
nearest neighbour [KNN], random forest [RF] and sup-
port vector machine [SVM]) was next evaluated by com-
parison of per-subtype specificity and sensitivity metrics
(Fig. 4B). All models strongly predicted HGSOC, achiev-
ing balanced accuracy scores of 1 (KNN), 0.94 (RF) and
0.98 (SVM), presumably reflecting the large number of
HGSOC cell lines and associated genes. Therefore, in-
clusion of additional non-HGSOC cell lines would
greatly aid the training of a classifier; for example,
ENOC is only represented by 5 of the 44 cell lines in-
cluded in this study. Nevertheless, the overall kappa
values achieved for each model were 0.92 (KNN), 0.79
(RF) and 0.88 (SVM).

Deployment of classifiers to predict subtype of ovarian
cancer models

Having established that the trained classifiers can accur-
ately predict the subtype of held-out CCLE cell lines, we
next deployed them on patient-derived OCMs from our
living biobank [27]. The OCMs are clinically annotated
with histotype, allowing comparison of classifier predic-
tion with the histological diagnosis (Additional file 1:
Table S2). The OCMs demonstrate karyotypic hetero-
geneity characteristic of OC, while being unfettered by
contaminating, wild-type stromal cells and the tumour
microenvironment, and therefore represent an important
step in the evaluation of a transcriptional classifier [27].
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Fig. 4 Ability of a k-nearest neighbour classifier to predict subtype of ovarian cancer cell lines. A Metagene signatures for which high expression is
informative of each cluster were extracted using gene scoring scheme as per Kim and Park [44]. Colours represent the strength of the association between
that gene and the cluster, where red indicates the strongest association. The top track indicates cluster number, as per Fig. 2. B Evaluation of three
machine learning algorithms for OC cell line subtype classification: k-nearest neighbour (KNN), random forest (RF) and support vector machine (SVM). Cell
lines were designated the subtype indicated by NMF clustering and partitioned into 4 subsets. Three subsets were used to train each of the machine
learning algorithms, with the fourth set held out as a test set. The four subsets were rotated such that each sample had the opportunity to be trained and
tested upon. The average per-class sensitivity and specificity score across the four tested sets are shown. Balanced accuracy scores for HGSOC were 1
(KNN), 0935275 (RF) and 0.984375 (SVM), and the overall kappa values for each model are 0.918 (KNN), 0.78905 (RF) and 0.878 (SVM). C Principal
component analysis of patient-derived OCMs. Colours indicate the subtype determined by a pathologist. D Comparison of the identified subtype based
upon pathology, and the k-nearest neighbour (KNN), random forest (RF) and support vector machine models trained in B deployed on the OCMs. E Closer
inspection of the performance of the RF model. Pathology and RF-predicted subtype are indicated above the heatmap. HGSOC cell line Kuramochi is
included in parts C-D as a positive control. The models are referred to using the OCM prefix followed by the patient number and, if one of a series, the
biopsy number. + EpCAM positive; — EpCAM negative; P4 and P14 indicate passage number of this OCM; NOS, not otherwise specified
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The OCMs also provide an indication of classifier utility
as they underwent RNAseq independently of the CCLE
cell lines on which the classifiers were trained. At the
time of analysis, 36 OCMs, from 27 patients, had RNA-
seq data available [27, 40]. Based on histology assess-
ment, this cohort was predominantly from HGSOC,
with four OCMs derived from LGSOC (OCM.118-1, and
118-7, OCM.124-1 and 124-11), two MOC (OCM.72
and OCM.61), two from patients with a cytological diag-
nosis of ‘suspicion of adenocarcinoma arising from the
gynaecological tract’ (OCM.87 and OCM.195), and one
from a moderately differentiated (intermediate grade;
grade 2) serous adenocarcinoma (OCM.152) (Additional
file 2: Fig. S3). These ‘non-HGSOC’ OCMs cluster
closely by principal component analysis (PCA), support-
ing the potential of transcriptional profiling in differenti-
ating subtypes (Fig. 4C). Finally, although OCMs 64-1
and 64-3 were diagnosed as LGSOC, there is evidence to
suggest mixed histology associated with these OCMs
and they cluster with HGSOC by PCA (see below; Fig.
4C) [27].

For deployment of machine learning models on the
OCMs, the KNN, RF and SVM classifiers were trained
using the complete set of CCLE cell lines. Despite per-
forming best in terms of overall kappa in predicting cell
line subtype, the KNN model predicted all of the OCMs
to be HGSOC (Fig. 4D). This may indicate overtraining
due to the high number of genes relative to number of
samples trained on (208 metagenes versus 44 cell lines).
Likewise, the SVM model predicted the majority of
OCMs to be HGSOC. However, RF classifier prediction
more closely aligned with histology (Fig. 4D, E). This
classifier correctly assigned 76% of the 29 OCMs with
unambiguous histology (Fig. 4E). Of the non-HGSOC
OCMs, 72 and 124-1 were correctly designated MOC
and LGSOC, respectively. However, for non-HGSOC
subtypes, there was generally a more even-split of trees
voting for each subtype. This lower performance in pre-
dicting specific non-HGSOC subtype is in agreement
with the lower per-class sensitivity and specificity ob-
served for these subtypes during training (Fig. 4B).

Integration of case histories with molecular features

Local (historical) and central (re-analysed in this study)
histology assessment disagreed for patients 118 and 124,
with the final diagnosis confirmed as LGSOC in both.
The RF classifier prediction assigns both OCM.124-1
and OCM.124-11 as non-HGSOC therefore supports the
revised pathology. While the classifier predicts
OCM.124-1 to be LGSOC, the prediction of OCM.124-
11 as MOC may reflect lower performance in predicting
non-HGSOC subtypes, or possibly molecular alterations
that have occurred following treatment (Fig. 4E). How-
ever, in the case of OCM.118-1 and 118-7, both were
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predicted as HGSOC by the RF classifier. Case note re-
view of patient 118 did not reveal any details suggestive
of an alternate diagnosis, as the patient exhibited clinical
hallmarks of LGSOC, including minimal response to pri-
mary platinum-based chemotherapy (Additional file 2:
Fig. S3A), wild-type p53 staining and strongly diffuse PR
staining (data not shown). Wild-type TP53 status of both
OCMs 118-1 and 118-7 was also confirmed by immuno-
fluorescence on response to nutlin-3 treatment (data not
shown). However, although the classifier also predicts
OCM.118-7 to be HGSOC, a larger proportion of deci-
sion trees predicted LGSOC for the later sample than
the earlier sample (Fig. 4E; columns of the heatmap),
suggesting there may be a mixed population of tumour
cells, or a response to treatment.

As previously stated, the OCMs derived from patient
64 may also have originated from a mixed population of
cells, since we previously showed that OCM.64-3 can be
divided into two main populations based upon EpCAM
status [27]. These two populations, OCM.64-3"P~ and
OCM.64-3"%, are designated LGSOC and HGSOC by
the RF classifier, respectively, though they were ex-
panded from the same patient sample. The classifier also
predicted OCM.64-1, derived from an earlier sample, to
be HGSOC. In line with a HGSOC, OCMs 64-1,
OCM.64-3""" and OCM.64-3"P* all have an identical
TP53 mutation [27]. However, panel-based next-
generation sequencing (NGS) on the primary tumour
block and exome sequencing of the OCM [27] demon-
strated a mutation in KRAS, consistent with the high fre-
quency of this mutation in LGSOC [16, 17, 79-82].
Indeed, while the local (primary) pathology diagnosis re-
ported HGSOC for this tumour [27], a review by an ex-
pert gynaecological pathologist (S.D.) suggested that the
tumour more closely resembles LGSOC overall, with
low-grade cytological atypia and low mitotic activity.
Moreover, although predominantly heterogenous (wild-
type) p53 immunohistochemistry staining was present,
focal areas of strong staining were also evident, suggest-
ive of two potential populations of cells (Additional file
2: Fig. S3B). Thus, transcriptional classification may be
helpful in assisting pathological assessment in equivocal
cases.

For the two OCMs with pathology given only as ‘sus-
picious of adenocarcinoma arising from the gynaeco-
logical tract’, the RF classifier predicted OCM.87 to be
CCOC and OCM.195 to be LGSOC, both with high
probability, highlighting the utility of such a classifier
when only ascites is available for a cytological diagnosis.
Note that we previously concluded from the patient’s
case notes that OCM.87 was HGSOC [27]; however, our
up-to-date review suggests a clinical diagnosis of ‘suspi-
cious of adenocarcinoma arising from the gynaecological
tract’ is more appropriate. By PCA, OCM.87 clustered
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closely with other ‘non-HGSOC OCMs (Fig. 4C). In
addition, exome sequencing of this OCM suggests it re-
sembles CCOC, rather than HGSOC, as it is TP53 wild-
type, but does display a highly elevated mutational load,
possibly indicating a tumour driven by a mismatch re-
pair defect as it harbours an MLHI mutation [27]. This
is in line with previous reports finding microsatellite in-
stability in CCOC and ENOC [101, 102]. Furthermore,
clinical review finds that this patient presented with rela-
tively low CA-125 (77 IU/ml) and a paraneoplastic syn-
drome; both more indicative of CCOC than HGSOC ([3].
Finally, the RF classifier strongly predicts OCM.195 to
be LGSOC-derived. Pathology review identified clinical
features consistent with a diagnosis of LGSOC, including
minimal response to primary platinum-based chemo-
therapy (Additional file 2: Fig. S3A). Our sequencing
panel also demonstrated a mutation in KRAS, consistent
with the high frequency of mutation in this gene in
LGSOC [16, 17, 79-82]. No TP53 mutation was detected
and the OCM demonstrated a functional p53 response
to nutlin-3 treatment by immunofluorescence (data not
shown).

Overall, our data demonstrate the potential of a tran-
scriptional classifier as a tool for subtype validation of
novel epithelial OC models, identification of atypical
clinical presentations, and for classification of new
models when clinical annotation is unavailable or if a de-
finitive pathology-based diagnosis is not possible. Inclu-
sion of additional cell lines would improve predictive
performance, especially of subtypes that are underrepre-
sented in the CCLE dataset. Alternatively, the classifier
may be improved by repeating the NMF clustering on a
larger biobank of ex vivo cultures, to optimise the classi-
fier gene sets for these cultures and culture conditions.
Additionally, datasets containing patient-derived cell
lines could be utilised to further evaluate performance,
including expansion of our living biobank and others
[27, 39, 107].

Conclusions

Classification of disease subtype is important both for
clinical decision-making and for selection of appropriate
model systems for pre-clinical research into different
disease entities. Although it is widely accepted that epi-
thelial OC is a heterogenous disease with five main sub-
types, selection of appropriate models representative of
each of these subtypes remains a significant challenge
for research [25, 28—30]. Previous studies aimed to ad-
dress this challenge by defining an immunohistochemi-
cal, genetic or combinatorial panel and determining the
suitability of cell lines to fit this mould. Conversely, we
did not impose any prior knowledge or structure onto
RNAseq data, instead opting to use NMF, a clustering
algorithm that has also been used for other pattern-
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recognition problems such as facial recognition [37,
108]. Transcriptional profiling using NMF classified the
OC cell lines into five clusters, and the mutational land-
scape of the cell lines provides strong evidence that
these clusters represent the five main histological sub-
types. Our analysis therefore now informs selection of
CCLE cell lines as models for research on all five main
subtypes of epithelial OC.

Attempts to refine OC subtype disease classification
include the dualistic model of type I and II tumours [5,
6]. Our analysis supports previous concerns that CCOC,
ENOC and MOC are distinct and do not conform to a
simple dualistic type I classification [103]. Our results
do, however, confirm the stratification of serous tumours
into exclusive HGSOC and LGSOC groups. We have
also demonstrated the promise of a ‘transcriptional clas-
sifier’ developed by using machine learning approaches
that, with optimisation, could be utilised both for sub-
type validation of novel models and for supporting clas-
sification of new models when clinical annotation is
unavailable. Our results support the potential value of
such a classifier in providing confidence that appropriate
subtype models are being utilised in research; however,
wider use for disease classification could also be envi-
sioned following further research, for example, where
diagnosis is uncertain, to aid stratification of patients
into clinical trials for targeted therapy and to ensure ac-
curate histopathological diagnosis. Translation of this
classifier into a diagnostic biomarker will require testing
both on a larger biobank, with adequate representation
of all subtypes, as well as on RNAseq from complex pa-
tient samples with varying tumour heterogeneity.
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