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Abstract

Background: Colorectal cancer is the 2nd leading cause of cancer-related deaths with few patients benefiting from
biomarker-guided therapy. Mutation expression is essential for accurate interpretation of mutations as biomarkers,
but surprisingly, little has been done to analyze somatic cancer mutations on the expression level. We report a
large-scale analysis of allele-specific mutation expression.

Methods: \Whole-exome and total RNA sequencing was performed on 137 samples from 121 microsatellite stable
colorectal cancers, including multiregional samples of primary and metastatic tumors from 4 patients. Data were
integrated with allele-specific resolution. Results were validated in an independent set of 241 colon cancers.
Therapeutic associations were explored by pharmacogenomic profiling of 15 cell lines or patient-derived organoids.

Results: The median proportion of expressed mutations per tumor was 34%. Cancer-critical mutations had the highest
expression frequency (gene-wise mean of 58%), independent of frequent allelic imbalance. Systematic deviation from
the general pattern of expression levels according to allelic frequencies was detected, including preferential expression
of mutated alleles dependent on the mutation type and target gene. Translational relevance was suggested by
correlations of KRAS/NRAS or TP53 mutation expression levels with downstream oncogenic signatures (p < 0.03), overall
survival among patients with stage Il and Il cancer (KRAS/NRAS: hazard ratio 6.1, p = 0.0070), and targeted drug
sensitivity. The latter was demonstrated for EGFR and MDM2 inhibition in pre-clinical models.

Conclusions: Only a subset of mutations in microsatellite stable colorectal cancers were expressed, and the “expressed
mutation dose” may provide an opportunity for more fine-tuned biomarker interpretations.

Keywords: Colorectal cancer, Exome sequencing, RNA sequencing, Allele-specific mutation expression, Mutant allele
fraction, Pharmacogenomics, Drug screening, Patient-derived organoids

Background

Mutation profiling is routinely used in several cancer
types to guide the selection of targeted therapies for pa-
tients. However, precision oncology guided by genomics
has been less useful than anticipated and was estimated
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to benefit less than 7% of cancer patients in 2018 [1].
Colorectal cancer (CRC) is the second most common
cause of cancer deaths worldwide [2], and the patients
have few molecularly guided treatment options [3, 4].
Beyond the microsatellite instability phenotype as a
cause of a high tumor mutational burden (TMB) and a
marker of response to immune checkpoint inhibition [5,
6], diagnostic mutation profiling is currently limited to
KRAS/NRAS (RAS) exons 2—4, which are mutations as-
sociated with resistance to monoclonal anti-EGFR
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antibodies, and to BRAF"®%F as a target for combination
therapies [7]. The efficacy of the anticancer agents varies
even in biomarker-selected populations, and more de-
tailed molecular pre-screening is needed. Examination of
mutation levels may increase the accuracy of response
predictions. This has been illustrated by an inverse cor-
relation between the allelic fractions of RAS/BRAFY*F/
PIK3CA mutations and response to anti-EGFR therapy
[8].

Microsatellite stable (MSS) CRCs have a median muta-
tion rate of approximately 3 mutations per megabase [9].
However, the number of mutated driver genes that con-
fer a selective growth advantage is limited [10], and the
vast majority of somatic mutations are likely insignifi-
cant passenger events. The expression of the mutated al-
lele is a determinant of its functional consequences, and
integrated genomic and transcriptomic analyses can aid
in the prioritization of cancer-critical mutations [11, 12].
The genome of CRCs has more frequent allele-specific
expression regulation than matched normal colonic tis-
sue [13], likely related to DNA copy number aberrations
and allelic imbalance [14]. In light of this, surprisingly
little has been done to analyze somatic mutations on the
expression level.

The few studies that have investigated cancer mutation
expression on a genome-wide scale have reported that
the proportion of mutations that are expressed ranges
from 27% in multiple myelomas [15] to 40% across non-
small cell lung cancers [16] and 59% in breast cancers
[12]. The large variation is likely associated with sample
selection and the small number of cancers analyzed in
each study (< 14), as well as by technical factors such as
sequencing depth [15] and bioinformatic data process-
ing. Current data, also including data from three cell
lines of different cancer types [17], indicate that allele-
specific expression levels at mutated loci correspond
with the mutant allele fraction (MAF) on the DNA level.
However, the potential regulation of mutations on the
expression level has not been systematically investigated
in large cancer series.

In this study, we combined whole-exome and RNA se-
quencing to map the landscape of mutation expression
according to the allelic fraction in a total of 362 MSS
CRCs. We also performed proof-of-concept analyses of
potential therapeutic associations in pre-clinical models.

Methods

Patient material

Patient samples were from an ongoing prospective ob-
servational study of patients treated by major resection
for primary CRC at Oslo University Hospital, Norway,
after December 2005. The study involves the collection
of fresh frozen samples of the tumor and adjacent nor-
mal colonic mucosa from surgical specimens, and the
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series is population-representative for the south-east of
Norway. Patients were treated according to the national
guidelines, including pre-surgical radiotherapy or che-
moradiation for locally advanced rectal cancers, and ad-
juvant 5-fluorouracil-based combination chemotherapies
with leucovorin and oxaliplatin according to cancer
stage, patient age, and tolerability. Patients in the current
study (n = 121) were selected to include only MSS tu-
mors diagnosed predominantly as stage II or III cancers
(89%) between December 2005 and August 2010, with
no residual tumor in the colon/rectum after elective sur-
gery (except one patient with microscopic resection
margin less than 1 mm), no in-hospital mortality, and no
treatment prior to surgery (except four patients with
pre-operative radiotherapy). Fifteen of the patients (ini-
tially diagnosed between September 2010 and March
2016) were also included in a separate ongoing prospect-
ive observational study of patients admitted for hepatic
resection of colorectal liver metastases at Oslo Univer-
sity Hospital after October 2013 [18]. Multiple tissue
samples were included from four of these patients for
analysis of tumor heterogeneity, including 2-3 spatially
separated samples from the primary tumor of three pa-
tients (in a total of 8 multiregional primary tumor sam-
ples) and 11 samples from 5 liver metastases from four
patients. All primary tumor samples (1 = 126 samples
from 121 tumors and patients) were included for all ana-
lyses unless otherwise stated. This is referred to as the
in-house series, and clinicopathological characteristics
are summarized in Table 1. Liver metastasis samples
were included only for separate analysis of tumor het-
erogeneity. DNA/RNA extraction and determination of
microsatellite instability status have previously been per-
formed [18, 19]. Extraction was either based on a mag-
netic bead approach using the Maxwell 16 DNA
Purification Kit (DNA) or the Qiagen AllPrep DNA/
RNA/miRNA Universal kit (DNA/RNA), both according
to the manufacturers’ instructions (Promega, Madison,
WI, USA, and Qiagen, GmBH, Hilden, Germany,
respectively).

Data from MSS colon cancers in The Cancer Gen-
ome Atlas (TCGA [9]) were used for independent val-
idation analyses, and the validation series included
241 primary tumors of stage I-IV cancers (excluding
six tumors with POLE-associated hypermutation and
one tumor in which 59% of mutations were insertions
or deletions [indels], all with a TMB above 1600).
Clinicopathological characteristics and MSS status
have previously been obtained using the Broad Insti-
tute Firehose tool (https://gdac.broadinstitute.org/
in March 2017) and are summarized in Additional file
1: Table S1. Additional molecular data files were ob-
tained as described below and matched based on the
patient barcode.
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Table 1 Clinicopathological characteristics and expressed TMB of the in-house series of primary MSS CRCs
Patients with T™B? Expressed TMB?
'1"‘2515) CRC (n = Mean [95% CI] p Mean [95% CI] p
All tumors 121 (100%) 161 [147-174] - 38 [35-42] -
Gender
Male 63 (52.1%) 156 [139-173] 044 37 [33-42] 049
Female 58 (47.9%) 166 [145-188] 40 [34-46]
Age, median [10-90th] 72.5 [54.7-85.4]
Above median age 158 [141-175] 0.71 38 [34-43] 0.99
Below median age 163 [142-185] 39 [34-44]
Tumor localization®
Right 51 (42.1%) 177 [155-198] 0.088° 44 [38-50] 0.037¢
Left 42 (34.7%) 155 [134-175] 36 [31-40]
Rectum 27 (22.3%) 142 [110-175] 33 [26-40]
Synchronous 1 (0.8%) - -
Cancer stage
| 1 (0.8%) - - - -
Il 59 (48.8%) 166 [148-183] Reference 39 [34-45] Reference
Il 49 (40.5%) 170 [145-195] 0.50¢ 39 [34-45] 0.89¢
v 12 (9.9%) 107 [87-127] 0.0003° 32 [23-40] 0099°
Treatment prior to tumor sampling
Yes® 4 (3.3%) 61 [-9-131] 0.014 12 [-7-31] 0.016
No 117 (96.7%) 164 [151-178] 39 [36-43]
Adjuvant chemotherapy (non-available: n = 1)
Yes 36 (30%) 158 [128-189] 0.2 37 [30-43] 0.2
No 84 (70%) 162 [147-177] 39 [35-43]

#Non-synonymous SNVs, frameshift indels, splice site mutations (for 3 of the tumors: mean of multiregional samples)

PTumors in the transverse colon (n = 8) were considered right-sided

“Right versus left and rectum, based on the Mann-Whitney U-test, excluding four rectal tumors treated with pre-operative radiotherapy (including

the synchronous)
dMann—Whitney U-test with stage Il as a reference category
®Pre-operative radiotherapy for locally advanced rectal cancer

Whole-exome sequencing and mutation calling

Whole-exome sequencing was performed on patient-
matched tumor and normal colonic mucosa samples to
a mean depth of 311 (10-90th percentile among the pri-
mary tumor samples 168-472) and 171 (10-90th per-
centile 94-182) times coverage, respectively. Exome
libraries were generated from 1pg of genomic DNA
using the Agilent SureSelect Human All Exon v5 or vo+
COSMIC kits (Agilent, Santa Clara, CA, USA), and se-
quencing was performed with the Illumina HiSeq 2500/
4000 system (Illumina, San Diego, CA, USA) in 2 x 100
base-pair paired-end mode at the Oslo University Hos-
pital Genomics Core Facility (The Norwegian Radium
Hospital, Oslo, Norway). Processing of raw sequencing
reads was done according to our previously described
bioinformatics pipeline [20], including sequence align-
ment to the GRCh37 human reference genome using
BWA, file format manipulations, and filtering of

sequencing reads using Samtools, Picard, and GATK, as
well as mutation calling with MuTect (single nucleotide
variants (SNVs)) and Strelka (indels), mutation annota-
tion by Annovar, and conversion of variants to the
GRCh38 genome reference using the LiftoverVcf-
function in Picard. Candidate somatic mutations were
filtered to include only loci with MAF > 5%, and at least
15 times and 10 times coverage in the tumor and
matched normal sample, respectively. A single variant
read in the normal sample was accepted. Mutations in
KRAS and BRAF'®°°F were verified by Sanger sequen-
cing, as previously described [21].

Mutations were categorized as amino acid changing
(non-synonymous exonic SNVs [missense, nonsense,
stoploss], frameshift indels, and splice site mutations
[SNVs, indels]) or non-amino acid changing (exonic syn-
onymous SNVs and inframe indels). The total number
of detected mutations across the 126 primary tumor
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samples was 28,474, and the number of amino acid
changing mutations was 19,989 (Additional file 1: Table
S2).

Amino acid changing mutations were classified as
cancer-critical if found in genes included in the Cancer
Gene Census [22] (CGC; tiers 1 and 2; downloaded from
https://cancer.sanger.ac.uk/census in March 2019). Fur-
ther classification as oncogenes and/or tumor suppressor
genes was adopted from the CGC if based on relevant
mutation types (missense, nonsense, frameshift, or splice
site mutations). Genes included in the CGC based on
other mutation types (translocations, amplification, large
deletion, others) were classified as “CGC other.” Mutated
genes were categorized as “FLAGS” if included in a list
of genes (n = 100) for which frequent mutations de-
tected in exome sequencing studies have been associated
with common features such as a long protein-coding se-
quence and a large number of paralogs [23].

RNA sequencing and gene expression estimation

RNA sequencing of all in-house tumor samples, a subset
of the normal colonic mucosa samples (1 = 12), and
pre-clinical CRC models (described below) was per-
formed in a 2 x 101 base-pair paired-end mode on the
[llumina HiSeq 2500/4000 platform. Sample preparation,
including ribosomal RNA depletion using the Ribo-Zero
Gold rRNA removal kit and sequence library generation
with the TruSeq Stranded Total RNA Library Prep Gold
kit (Illumina), was done at the Oslo University Hospital
Genomics Core Facility. Bioinformatic processing of raw
sequencing reads was done as previously described [24],
including adapter trimming with Trimmomatic version
0.38, alignment to the human reference genome
GRCh38 using STAR, read sorting by SAMtools, and
quantification of reads mapping to protein-coding genes
using the HTSeq-count tool (version 0.10.0). The me-
dian number of uniquely mapped trimmed RNA sequen-
cing read pairs across the 126 primary tumor samples
was 30.2 x 10° (10-90th percentile 24.7 x 10°-50.2 x
10°).

Sample-wise normalization of gene expression levels
was done by estimation of the fragments per kilobase of
transcripts per million mapped reads (FPKM). The dis-
tinction between active genes and background expres-
sion was defined by zFPKM transformation of the
expression matrix using the R package zFPKM [25].
Genes with zFPKM < -3 were defined as non-
expressed. The median proportion of non-expressed
genes across the 126 primary tumor samples was 28%
(10-90th percentile 26-31%). Cross-sample
normalization was performed by voom-transformation
[26] of the trimmed mean of M values [27] using the R
package edgeR [28].
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Allele-specific expression at mutated loci

Allele-specific expression analysis at each mutated locus
was performed by sample-wise integration of whole-
exome and RNA sequencing data using the ASERead-
Counter function [29] included in the GATK toolkit
(version 3.8; https://software.broadinstitute.org/gatk/).
VCEF files from exome sequencing and BAM files from
RNA sequencing were used as an input. ASEReadCoun-
ter was run with the additional parameters min-
mapping-quality = 10, min-base-quality = 2, and U =
ALLOW_N_CIGAR_READS. Outputs were sample-wise
RNA read counts of both the mutated and wild-type al-
leles at SNV loci specified in the VCEF files, after filtering
based on the data quality parameters. Allele-specific
RNA read counts at indel loci were calculated using the
SAMtools mpileup command. The mutated loci were
additionally filtered by coverage in the RNA sequencing
data based on the zFPKM values of the mutated genes
and the total read count at the mutated position from
ASEReadCounter, as specified in Additional file 1: Table
S3. Of the 28,474 total mutations and 19,989 amino acid
changing mutations detected in the 126 primary tumor
samples, 19,981 (70.2%) and 14,228 (71.2%) were in-
cluded for allele-specific expression analyses, respect-
ively. Mutations were categorized as expressed if the
MAF in the RNA sequencing data was > 5% (mutated al-
lele expressed) and non-expressed if either the RNA
MAF was <5% (mutated allele not expressed) or the
zFPKM of the mutated gene was < -3 (mutated gene
not expressed).

For gene-wise summarization of mutation frequencies,
each mutated gene was counted once per sample (in-
cluding 19,069 of the total 19,989 amino acid changing
mutations in the primary tumor samples). For genes
with multiple mutations per sample, the expressed mu-
tations were included.

For comparison of allele-specific mutation expression
levels across samples, the RNA sequencing read counts
of the mutated alleles were normalized by the sequen-
cing depth of the sample: [read countytated alele/numMber
of uniquely mapped reads] x 10°.

Regulation of mutations at the allele-specific expression
level

The MAF at the RNA level (proportion of RNA sequen-
cing reads representing the mutated allele) was calcu-
lated to analyze the potential preferential or reduced
expression of the mutated versus corresponding wild-
type allele. The RNA MAF was compared with the DNA
MAF from the exome sequencing data to adjust for the
allelic fraction on the DNA level. A possible bias in these
comparisons was related to the sequencing of DNA and
RNA that did not originate from the same extraction of
115 of the 126 primary tumor samples. Neighboring
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tissue samples were used to minimize the potential influ-
ence from intra-tumor heterogeneity. Furthermore, data
correction was performed assuming that the majority of
expressed mutations have no allele-specific expression
regulation, that is, the RNA MAF is proportional to the
DNA MAF: all RNA MAFs were divided by a sample-
wise adjustment factor calculated as the median [RNA
MAF/DNA MAF] of all expressed mutations in the sam-
ple (RNA MAF,4justea)- The appropriateness of this ad-
justment was evaluated by comparing RNA MAFs from
two repeated RNA extractions of 3 tumors (MAF adjust-
ments needed for one of the samples per tumor), con-
firming high tumor-wise Pearson’s correlations (0.73—
0.87, p < 3 x 107°). For additional quality control, the re-
sults were compared with samples for which combined
DNA and RNA extraction was performed (a total of 11
samples from 6 tumors, including all 8 multiregional
samples from 3 tumors). In total, 17 (13.5%) of the pri-
mary tumor samples were excluded from the analyses of
allele-specific mutation expression levels (including two
of the four tumors treated with pre-operative radiother-
apy), either due to few expressed mutations (< 12) or a
high adjustment factor (median [RNA MAF/DNA MAF]
> 1.75). Among the remaining tumors (n = 109), the me-
dian adjustment factor was 1.22 (10-90th percentile
0.99-1.54). For reference, the median adjustment factor
among samples with DNA and RNA from the same ex-
traction procedure was 1.24 (10-90th percentile 1.04—
1.54).

DNA copy number estimation

Allele-specific DNA copy numbers and tumor purity
were estimated from the exome sequencing data using
paired tumor-normal BAM files as input for the R pack-
age FACETS with default settings [30]. The mutated loci
with an equal number of copies of the mutated and
wild-type allele were considered balanced. Other loci
were considered to have an allelic imbalance. Notably,
the term allelic imbalance was used only with reference
to the DNA-level data. Allele-specific data on the RNA
level were referred to as allelic expression.

Independent validation data set

A list of mutations from whole-exome sequencing of the
validation series of 241 primary MSS colon tumors from
TCGA was downloaded using the R package TCGABio-
Links [31] and filtered based on the same criteria for
MAF and coverage as in the in-house data set. Add-
itional filtering was performed to exclude mutation cat-
egories not annotated in the in-house data
(downstream/upstream gene variants, 3'/5° UTR vari-
ants, intergenic variants, intronic variants, non-coding
transcript/miRNA variants), retaining a total of 31,448
mutations and 23,493 amino acid changing mutations.
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Paired tumor-normal BAM files were also downloaded
and used as input for allele-specific copy number esti-
mation by FACETS. Allele-specific expression analyses
were carried out as for the in-house data set, and VCF
files from exome sequencing (mutation calling with
Mutect2) and BAM files from RNA sequencing were
downloaded from the NCI's Genomics Data Commons
[32] Data Portal (https://portal.gdc.cancer.gov; Decem-
ber 2019). FPKM values estimated from RNA read
counts quantified by HTSeq-count were also down-
loaded. Based on the same criteria as for the in-house
data set, 20,351 (64.7%) mutations in total and 15,164
(64.5%) amino acid changing mutations were included
for allele-specific expression analyses (Additional file 1:
Table S3). For cross-sample comparisons, RNA sequen-
cing read counts of mutated alleles were normalized by
the sequencing depth, and the number of uniquely
mapped reads per sample was calculated from the BAM
files using SAMtools with the following grep command:
samtools view <SAMPLE>.bam | grep —cw ‘NH:i:1'.f

Drug sensitivity and mutation expression in pre-clinical
models

Fifteen pre-clinical models with resistance mutations, in-
cluding CRC cell lines (n = 7; CACO2, COLO205,
HCC2998, 1S1, NCIH508, SW1116, and SW948) and
patient-derived organoids (PDOs) of CRC liver metasta-
ses (n = 8), were analyzed for drug sensitivity in relation
to mutation expression. Specifically, the associations be-
tween the gene-drug pairs RAS/BRAF'®°°* mutations
and EGFR or MEK inhibition, as well as TP53 mutations
and MDM2 inhibition, were investigated. The cell lines
were selected from an in-house collection of 29 cell
lines, for which targeted next-generation DNA sequen-
cing (including of RAS, BRAF, and TP53 [33]) and high-
throughput drug sensitivity screening [19, 34] have pre-
viously been published. PDOs were selected from a col-
lection of 39 PDOs established from distinct liver lesions
of 22 patients treated by hepatic resection for metastatic
CRC at Oslo University Hospital between 2017 and
2019. In short, organoids were cultured in Matrigel
(Corning) overlaid with ENAS media [35] (supplemented
with the ROCK inhibitor Y-27632, Selleck Chemical,
Houston, TX, USA, in the initial growth phase),
screened for sensitivity to 40 anticancer agents (450—600
strained organoids in 3% Matrigel/ENAS media supple-
mented with the ROCK inhibitor were seeded to each
well of the drug screen plates), and analyzed by Sanger
sequencing of RAS, BRAF'®*°F and TP53, all as previ-
ously described [36]. The MDM2-TP53 inhibitor idasa-
nutlin (MedChemExpress, Monmouth Junction, NJ,
USA), three EGFR inhibitors (afatinib: Selleck Chemi-
cals; erlotinib: MedChemExpress; and lapatinib: LC La-
boratories, Woburn, MA, USA) and two MEK inhibitors
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(binimetinib and trametinib, ChemieTek, Indianapolis,
IN, USA) were included in the screens at five and nine
different concentrations over a 10,000-fold concentra-
tion range each (typically 1-10,000 nmol/L) in the cell
lines and PDOs, respectively. Drug sensitivity scores
(DSS [37]) were calculated based on cell viability (CellTi-
ter-Glo assay; Promega, Fitchburg, WI, USA) after 72
and 96 h of drug exposure in cell lines and PDOs, re-
spectively, and relative to negative (0.1% DMSO) and
positive controls (100 pmol/L benzethonium chloride).
Additional details of the growth protocols and drug sen-
sitivity screens have previously been described [34, 36].
Among the EGFR inhibitors, afatinib and erlotinib had
strongly correlated sensitivity levels within the selected
cell lines (Spearman’s p = 0.96, p = 0.003) and PDOs
(Spearman’s p = 0.9, p = 0.005). The two MEK inhibitors
were also correlated (cell lines: Spearman’s p = 0.68, p =
0.11; PDOs: Spearman’s p = 0.90, p = 0.005). Erlotinib
and trametinib were chosen for data presentation based
on high cross-sample variance among PDOs.

The 15 pre-clinical models were selected for RNA se-
quencing from the larger sets of samples based on MSS
status, RAS/BRAF"**F, and/or TP53 mutation status, as
well as for representing a large range in DSS of the rele-
vant drugs. RNA sequencing was performed as described
above. Targeted analyses of allele-specific read counts at
the relevant mutated loci were performed using the
SAMtools mpileup command. For cross-sample compar-
isons, RNA read counts of the mutated alleles were nor-
malized by the RNA sequencing depth of the sample:
[read countyyiated anele/nNumber of reads mapped to
protein-coding genes] x 10°.

Statistical analyses

All statistical analyses were performed in R v.3.6.1. All
p-values were two-sided. Welch’s ¢-test and paired sam-
ples t-test were performed with the function t.test,
Mann-Whitney U-test with the function wilcox.test, cor-
relation analyses with the function cor.test (Pearson’s r
or Spearman’s p correlation coefficients as appropriate),
Fisher’s exact test with fisher.test, and 95% confidence
intervals (CIs) for the mean and median were calculated
using the R packages Rmisc and DescTools, respectively.
Cox proportional hazards analyses were performed with
the survival R package, and p-values were calculated
using the Wald test. Kaplan-Meier plots were made with
the survminer package, and p-values were calculated
using the log-rank test. Survival analyses included pa-
tients with stage II or III CRC in the in-house series, and
the endpoint was 5-year overall survival. Single-sample
gene set enrichment analyses of the hallmark gene set
collection (1 = 50 gene sets retrieved from the Molecular
Signatures Database [38]), as well as expression signa-
tures of KRAS mutations [39] and TP53 mutations (in-
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house signature based on 5 genes with high expression
in wild-type compared to TP53 mutated primary CRCs:
MDM?2, SPATAIS8, FAS, DDB2, HSPA4L [36]), were
done using the “ssgsea” method in the R package GSVA
[40]. Input was log2-transformed FPKM values after the
addition of a constant of 1 to avoid infinite values for
genes with FPKM = 0. Enrichment analyses of lists of
genes with expressed mutations were performed using
the Enrichr web server [41], querying the Reactome
pathway database. Binary dimensionality reduction of a
binary expressed mutation matrix of samples and genes
(expressed mutation 1 or 0) was performed by logistic
principal component analysis (PCA) using the R package
logisticPCA [42], with parameter k = 2 and the optimal
m determined by cross validation. Density plots of distri-
butions within mutation, gene, or sample groups were
made using the R package ggplot2 for illustration pur-
poses only and were not used for statistical analyses.
Matrices of scatter plots were drawn with the pairs.pa-
nels function in the R package psych.

Results
Heterogeneity of expressed tumor mutational burden of
MSS CRCs
A total of 126 primary tumor samples from an in-house
series of 121 MSS CRCs, including 8 multiregional sam-
ples from 3 tumors, were initially analyzed by whole-
exome and total RNA sequencing (Table 1). The median
TMB (number of non-synonymous and frameshift muta-
tions per tumor) was 151 (95% CI 133-164; Fig. 1a and
Additional file 1: Table S2), corresponding to a median
of 3.0 mutations per sequenced megabase (95% CI 2.7—
3.3; Additional file 2: Figure S1). The TMB was not asso-
ciated with the exome sequencing depth (Pearson’s r =
0.05; Additional file 2: Figure S1), but four rectal tumors
treated with pre-operative radiotherapy showed a signifi-
cantly lower TMB, likely related to fibrotic tissue and
poor data quality (Table 1). Right-sided tumors had a
higher TMB than left-sided or rectal tumors, also when
excluding pre-treated tumors, although the difference
was small and non-significant. The TMB was not associ-
ated with patient gender or age but was lower in tumors
from stage IV compared to stage II or III cancers (Table
1). Cox proportional hazards analyses showed no associ-
ations with 5-year overall survival among the 108 pa-
tients with stage II or III CRC, neither in univariate
analysis nor in a multivariable model including the pa-
rameters listed in Table 1 (p = 0.1 for the TMB as a con-
tinuous variable). The list of the most frequently
mutated genes corresponded well with the known muta-
tion profiles of MSS CRCs (Additional file 2: Figure S2).
The median proportion of non-synonymous and
frameshift mutations that was expressed per tumor was
only 34% (95% CI 33-36; Fig. 1b, c). This proportion
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was weakly associated with the tumor purity of the sam-
ples (estimated based on DNA copy numbers) and RNA
sequencing depth (Additional file 2: Figure S1), but the
association with the TMB was stronger, with a Pearson’s
correlation between the TMB and expressed TMB of
0.77 (p < 2 x 107'%, Fig. 1d; TMB after filtering based on
RNA sequence coverage: Pearson’s r = 0.85). The failure
to detect expressed mutations in 3 of the tumors was
likely accounted for by the low TMB (< 41 mutations)
and low DNA MAFs (Additional file 2: Figure S1). The
expressed TMB was higher in right-sided compared to
left-sided or rectal MSS CRCs, but not significantly
lower in stage IV compared to earlier stage cancers
(Table 1). Notably, there was no significant difference in
the proportion of mutations that were expressed among
tumors stratified according to localization or cancer
stage. Single-sample gene set enrichment analysis
showed that the expressed TMB was most strongly cor-
related to proliferative signatures (hallmark gene set col-
lection; Additional file 2: Figure S3a), but the expressed
TMB was not associated with patient survival (p > 0.3).
Validation analyses in MSS colon cancers from TCGA
(primary tumor from n = 241 stage I-IV cancers)
showed similar results, with a median proportion of
expressed mutations of 39% (95% CI 38—41), a Pearson’s
correlation between the TMB and expressed TMB of
0.68 (p < 2 x 107'°), and a significantly higher expressed
TMB in right-sided compared to left-sided colon cancers
(mean of 26 and 22, respectively, p = 0.006), but no dif-
ference in the TMB or expressed TMB according to can-
cer stage (Additional file 1: Table S1).

The majority of non-expressed mutations were found
in inactive, non-expressed genes (median of 47% [95%
CI 44-48] of all mutations per sample in the in-house
series). Furthermore, several mutated loci in expressed
genes had expression exclusively of the wild-type allele
(median sample-wise proportion of 18%, 95% CI 17-19;
Fig. 1b), and the mutations at these loci had lower DNA
MAFs (mean 15%) than loci with expressed mutations
(mean 25%, p < 2 x 107'% Fig. 1e). The results were
similar when analyzing only mutations at balanced DNA
copy number loci (equal number of copies of the mu-
tated and wild-type allele; corresponding mean differ-
ence in MAF of — 8 percentage points between loci with
wild-type only versus mutant allele expression, p < 2 x
107'%), and consistent in sample-wise analysis (mean
paired difference -9, p < 2 x 107*%; paired samples t-
test), suggesting independence of potential confounders
such as allelic imbalance and tumor purity of the sam-
ples, respectively. A similar difference in DNA MAFs at
loci with wild-type only compared to mutated allele ex-
pression was also found in the TCGA series, including
at copy number balanced loci (Additional file 2: Figure
S4da).
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Mutations in cancer-critical genes are more frequently
expressed

The frequency of mutation expression was also
dependent on the target gene, and summarized per gene,
the proportion of mutated tumors with expression of the
mutated allele ranged from 0 to 100% (Fig. 2a). This was
independent of the mutation frequency of the gene, but
mutations in oncogenes or tumor suppressor genes (de-
fined by the CGC [22]) were more frequently expressed
(mutations in each gene were expressed in a mean of
58% of the mutated tumors, 95% CI 52—64) than muta-
tions in other genes (mean 39%, 95% CI 38-41; p = 6 x
107% Fig. 2b). Again, this was associated with higher
DNA MAFs specifically of expressed (not of non-
expressed) mutations in oncogenes/tumor suppressor
genes than in other genes, both in the in-house series
(Fig. 2c) and the TCGA data (Additional file 2: Figure
S4b). However, mutated loci in cancer-critical genes
were also somewhat more frequently targeted by allelic
imbalance than other mutations (odds ratio [OR] 1.2, p
= 0.004 by Fisher’s exact test), and there was no clear
difference in DNA MAFs according to target gene cat-
egory for mutations (expressed or non-expressed) at
copy number balanced loci (Fig. 2c). Nonetheless, the
mutation expression frequency (proportion of mutated
tumors with the mutation expressed) was higher in on-
cogenes/tumor suppressor genes also at balanced loci
(mean mutation expression frequency of 57% versus 38%
in other genes, p = 2 x 107%; Fig. 2d; validation in TCGA
data; Additional file 2: Figure S4c), suggesting that allelic
imbalance is not a sole determinant of frequent expres-
sion of cancer critical mutations.

A heatmap of the expressed mutation matrix
(expressed mutation: yes/no) showed no distinct pat-
terns among samples or genes, indicating that genes
contributed to the expressed TMB in accordance with
their mutation expression frequency (Additional File 2:
Figure S5). Three genes had expressed mutations in a
particularly large proportion of tumors including the
well-known CRC-critical genes APC (66%), TP53 (56%),
and KRAS (45%; Fig. 2e). The remaining genes (n =
3,017) contributed to a “long tail” of potentially func-
tional cancer mutations, with mutation expression in
less than 15% of tumors each (99% of genes in less than
5% of tumors, and 71% of genes were non-recurrent
among the 126 tumor samples; Additional file 1: Table
S4). APC, TP53, and KRAS were outlier genes also in lo-
gistic PCA of the binary expressed mutation matrix,
consistent with a strong correlation between PC1 and
the expressed mutation frequency per gene (Additional
file 2: Figure S6). The distinction of genes along PC2 ap-
peared to be driven by the co-occurrence of their
expressed mutations with mutation expression in either
KRAS or TP53. Exploratory analysis of genes not
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designated as oncogenes and/or tumor suppressors, but
with frequently expressed mutations, indicated enrich-
ment with gene sets related to mRNA splicing (HNRN
PC and PCBPI) and deactivation of B-catenin (TCF7L2
[implicated in CRC as fusion gene target], SOX9, and
SOX4; Additional file 2: Figure S3b).

Frequently mutated but non-expressed genes were
overrepresented among genes with features of non-
pathogenic mutation accumulation, such as a long cod-
ing sequence (OR 24.2, 95% CI 11.5-48.0; Additional file
2: Figure S7) [23]. The majority of these target genes
also had low expression levels in wild-type tumors and/
or normal colonic mucosa samples, indicating that the
mutations were not selectively silenced. Similarly, the
mutated loci with wild-type only allelic expression were

not associated with large variation in target gene expres-
sion between mutated and wild-type tumors (with the
notable exception of COLI2A1; Additional file 2: Figure
S8). However, mutations that were expressed in a subset
of mutated tumors, and silenced in others, showed a
varying pattern of target gene expression according to
mutation status, suggesting allele-specific expression
regulation (for example in ATRX and TP53; Additional
file 2: Figure S9).

Mutant allele-specific expression levels vary according to
mutation type, target gene, and allelic imbalance

Further investigation of preferential expression or down-
regulation of mutated alleles was performed after adjust-
ment for the allelic fraction on the DNA level, evaluated
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as the difference between RNA MAFs and DNA MAFs
(AMAF RNA|DNA; illustrated in Additional file 2: Fig-
ure S10). Notably, sample-wise adjustment of RNA
MAFs was performed prior to analysis, since combined
RNA and DNA extraction was performed for only a sub-
set of tumors (RNA MAF,gjustea; see the “Methods” sec-
tion for the description and assessment of the
adjustment). The majority of expressed mutations
showed little evidence of skewed allele-specific expres-
sion levels, with RNA MAF,gjustea proportional to the
corresponding DNA MAFs (AMAF RNA, gjusted| DNA =~
0; illustrated for one example tumor in Fig. 3a and
across all tumors in the in-house series in Additional file
2: Figure S11). The results were similar for mutations at
DNA copy number balanced loci separately and after ad-
justment for the tumor purity of the samples (Additional
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file 2: Figure S1la). A separate analysis of samples with
combined DNA and RNA extraction (11 samples from 6
tumors) confirmed a correlation between MAFs at the
two levels (Pearson’s r = 0.68, p < 2 x 107'¢) but also
showed a minor overall skewedness towards higher
RNA-level MAFs (mean sample-wise AMAF RNA|DNA
of 0.06 [95% CI 0.02—0.09]), independent of DNA copy
number imbalance and the overall expression level at
the mutated locus (Pearson’s r = 0.04; Additional file 2:
Figure S11). This indicated a slightly higher overall ex-
pression level of mutated compared to wild-type alleles,
and a median of 5% (95% CI 3-20) of expressed muta-
tions per tumor was highly overexpressed (AMAF
RNA|DNA above 0.25). Corresponding analyses of the
TCGA data supported a slight preferential expression of
mutated compared to wild-type alleles (mean AMAF
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RNA|DNA 0.040 [95% CI 0.037-0.044]), again inde-
pendent of allelic imbalance (Additional file 2: Figure
S12). Genes with high relative allelic mutation expres-
sion (AMAF RNA, gjusted| DNA > 0.25) in any tumor the
in-house series are listed in Additional file 1: Table S5
and illustrated in Additional file 2: Figure S13.
Exceptions from the proportionality between RNA-
level and DNA-level MAFs were found to associate with
the specific mutation type and/or target gene. Expressed
synonymous SNVs did not show allele-specific expres-
sion, neither in oncogenes/tumor suppressor genes nor
in other genes (in-house series: mean AMAF RNA, ;s
ted/ DNA 0.01 [95% CI -0.02-0.05] and 0.007 [95% CI
0.0009-0.01], respectively; Fig. 3b). However, truncating
mutations (frameshift indels and nonsense SNVs) had
reduced relative expression of the mutated allele, irre-
spective of the target gene category, with a mean AMAF
RNA,gjusted| DNA of — 0.1 both in oncogenes/tumor sup-
pressor genes and other genes (p < 3 x 1077 in compari-
son with synonymous SNVs, Welch’s ¢-test). In contrast,
splice site mutations had increased relative expression of
the mutated allele, with a mean AMAF RNA, gjusted| DNA
of 0.31 (95% CI 0.20-0.42, p = 1 x 107> in comparison
with synonymous SNVs). Missense SNV was the only
mutation type with variation in allele-specific expression
according to the target gene category. Missense SNVs in
non-cancer-critical genes had similar relative expression
to synonymous SNVs (p = 0.6, sample-wise paired t-test;
Fig. 3b), while missense SNVs in oncogenes and tumor
suppressor genes had slightly higher expression of the
mutated allele (mean AMAF RNA, gjusted| DNA of 0.04
[95% CI 0.03-0.05]), also compared to synonymous
SNVs in the same set of genes (p = 0.01, sample-wise
paired ¢-test). This skewedness was not determined by a
higher overall expression level (total read count) at the
mutated locus (p = 0.25) or by tumor purity of the sam-
ples. However, analyses according to DNA copy num-
bers suggested that allelic imbalance was the main
determinant of higher relative allelic expression of
cancer-critical missense SNVs (Additional file 2: Figure
S14). The results were supported in the TCGA data (Fig.
3c), including reduced expression of truncating muta-
tions (mean AMAF RNA|DNA - 0.1 both in oncogenes/
tumor suppressor genes and other genes; p < 4 x 107 in
comparison with synonymous SNVs), higher expression
of splice site mutations (mean AMAF RNA|DNA 0.14, p
= 3 x 107%), and significantly increased expression levels
of missense SNVs specifically in oncogenes and tumor
suppressor genes (mean AMAF RNA|DNA 0.1, p = 5 x
107, sample-wise paired ¢-test) associated with allelic
imbalance at the mutated locus (missense SNVs versus
synonymous SNVs: p = 0.8 and 0.004 at copy number
balanced and unbalanced loci, respectively; Additional
file 2: Figure S15). Of note, there was no difference
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between oncogenes and tumor suppressor genes in al-
lelic expression levels at missense SNV loci, neither in
the in-house series nor the TCGA data (p > 0.5).

Mutant allele-specific expression levels correlate with
oncogenic signatures

Focused analyses of the three genes with the most fre-
quent mutation expression further illustrated the rela-
tionship among mutation types, allelic imbalance, and
allelic expression levels. TP53 was affected by both mis-
sense SNVs and putative truncating mutations, most of
which also had allelic imbalance (94% of all TP53 muta-
tions). Missense SNVs had significantly higher allele-
specific expression than putative truncating mutations
(in-house series: mean AMAF RNA, gjystea| DNA 0.18 and
—0.23, respectively, p = 4 x 1072, Welch’s t-test), inde-
pendent of the total DNA copy number at the mutated
locus (Fig. 4a). The allelic expression patterns further
corresponded with the overall gene expression levels of
TP53, and tumors with truncating mutations had lower
TP53 expression than tumors with either missense SNVs
or wild-type TP53 (p < 1 x 107°). A downstream func-
tional impact was suggested by an inverse correlation
between the expression of missense SNVs (analyzed as
the normalized RNA read count of mutated alleles) and
a sample-wise gene expression signature of wild-type
TP53 (Pearson’s r = —0.46, p < 0.001). Validation ana-
lyses in the TCGA data supported the allele-specific mu-
tation expression patterns, including the inverse
association with the TP53 expression signature (p =
0.02; Additional file 2: Figure S16a), suggesting that the
downstream impact of TP53 in MSS CRC is regulated
by a complex targeting of the gene, involving both muta-
tions and allelic imbalance.

The KRAS and NRAS (RAS) oncogenes were targeted
by missense SNVs only, and their allele-specific expres-
sion (RNA MAF,gjustea) Was generally proportional to
the corresponding DNA MAFs (in-house series: Pear-
son’s r = 0.89, p = 2 x 107'°), although the AMAF
RNA, gjusted| DNA was slightly higher at loci with allelic
imbalance caused by copy number gain (Fig. 4b). The
relative expression levels of KRAS mutant alleles showed
a weak but significant correlation with a sample-wise
oncogenic KRAS signature, both in the in-house series
(Pearson’s r = 0.32, p = 0.026) and the TCGA data
(Pearson’s r = 0.43, p = 4 x 107°; Additional file 2: Figure
S16b), suggesting that high relative allelic expression of
the mutations increases oncogenic KRAS signaling. Con-
sistently, high allelic expression of RAS mutations was
also associated with poorer 5-year overall survival among
patients with stage II and III cancers (including only pa-
tients treated by complete resection for BRAF wild-type
tumors; Fig. 4b). The univariate and multivariable hazard
ratios for RAS RNA MAF,gjuseed s @ continuous variable
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were 6.1 and 4.6, respectively (Wald test p = 0.0070 and
0.042; the multivariable model included parameters
listed in Table 1).

Mutant allele expression levels of APC were dependent
on two main factors, the position of the mutation and
the presence of double mutations. Using truncating non-
sense SNVs for illustration, mutations affecting the 3’
region of the gene had higher allele-specific expression
than more upstream mutations (p = 2 x 10~% Additional
file 2: Figure S17a), consistent with activation of
nonsense-mediated mRNA decay (NMD) only by the lat-
ter group [43]. Furthermore, targeting of APC by two
mutations appeared to have less effect than single muta-
tions, and tumors with double mutations had a signifi-
cantly lower both DNA-level and RNA-level MAF (p < 1
x 107 by Welch’s t-test). Only single truncating muta-
tions were associated with a lower APC gene expression
level compared to APC wild-type tumors (Additional file
2: Figure S17b).

High allele-specific expression of resistance mutations
may negatively impact sensitivity to targeted anticancer
agents

To further investigate a potential functional impact of
allelic 7P53 and RAS/BRAF mutation expression levels,
sensitivity to relevant anticancer agents was analyzed in
pre-clinical models. Across a panel of 29 unique CRC
cell lines (Additional file 1: Table S6), samples with
RAS/BRAFY®®F or TP53 mutations had low sensitivity
to erlotinib (EGFR inhibitor) and idasanutlin (MDM2/
TP53 inhibitor), respectively, while no association be-
tween RAS/BRAFY*°°F mutation status and sensitivity to
trametinib (MEK inhibitor) was found (Fig. 5a). Notably,
the variation in sensitivity to erlotinib among cell lines
with RAS/BRAFY*F mutations (10-90th percentile of
DSS values 1.3-9.9) was much larger than for idasanu-
tlin among samples with TP53 mutations (10-90th per-
centile 0-5.1), reflected also in a weaker statistical
difference between the RAS/BRAF'®F mutated and
wild-type groups. There was no significant difference in
sensitivity to idasanutlin between samples with truncat-
ing and missense mutations in 7P53 (p = 0.25; Add-
itional file 2: Figure S18).

Seven of the cell lines were selected for RNA sequen-
cing based on molecular characteristics (MSS, RAS/
BRAFY**F, and/or TP53 mutations) and a large range in
sensitivity to the three drugs (Additional file 1: Table
S6). There were indications of a negative correlation be-
tween the allelic expression levels (normalized allele-
specific read counts) of RAS/BRAF'®°F mutations and
sensitivity to erlotinib and trametinib, as well as between
TP53 mutations and sensitivity to idasanutlin, although
not statistically significant in this small sample set (Fig.
5b). The relationship was strongest for 7P53 mutations
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and idasanutlin (Spearman’s p = - 0.83, p = 0.058). For
independent validation, eight PDOs from resected MSS
CRC liver metastases were similarly selected and ana-
lyzed (Additional file 1: Table S7). Two individual PDOs
with particularly high allele-specific expression levels of
an NRAS or a TP53 mutation showed strong resistance
to erlotinib and idasanutlin, respectively. This supported
the negative impact of a high mutant allele-specific ex-
pression on drug sensitivity for both gene-drug pairs,
and the correlation was strongest for RAS|erlotinib
(Spearman’s p = - 0.57, p = 0.15, not statistically signifi-
cant), also when analyzing KRAS mutated PDOs only
(Fig. 5¢). Notably, there is no established relationship be-
tween RAS/BRAF'®*°F mutations and sensitivity to MEK
inhibition, but our data suggested a negative correlation
with allelic mutation expression levels, which among
PDOs was associated with a sample-wise correlation in
MEK and EGEFR inhibitor sensitivity (Pearson’s r = 0.85,
p = 0.007).

Targeted therapies are primarily used in the metastatic
setting in CRC, and a comparison of matched primary
and metastatic tumors from 4 patients (n = 4—6 samples
per patient) showed a strong proportionality in the pat-
terns of allelic expression of mutations between the two
disease settings (Additional file 2: Figure S19 and Figures
S20-S23). This included a significantly higher mean
AMAF RNA|DNA of missense SNVs in oncogenes and
tumor suppressor compared to other genes also in me-
tastases (p = 0.008), independent of previous exposure
to chemotherapy (none of the patients received targeted
therapy prior to sampling). Proportional allelic expres-
sion levels were found also for RAS and TP53 mutations,
although one of the three patients with RAS mutations
had higher relative expression of the mutated allele in
the metastasis (AMAF RNA|DNA 0.49) than the pri-
mary tumor samples (range 0.07-0.31; Fig. 5d), suggest-
ing selection for addiction to KRAS signaling and
resistance to anti-EGFR therapy during metastasis of this
cancer.

Discussion

The “gene dosage” effect of DNA copy number aberra-
tions explains the association between ERBB2 amplifica-
tion, HER2 protein over-expression, and response to
HER?2 targeted combination therapies in metastatic CRC
[44]. Similarly, “mutation dosage” analyzed as the allelic
frequency of RAS/BRAF*°°F/PIK3CA mutations has
been shown to inversely correlate with response to anti-
EGER therapy [8]. In this study, we followed the same
reasoning and analyzed “mutation dosage” on the RNA
expression level. In light of the large efforts to map the
mutational landscape of CRCs [9, 45—47], surprisingly,
few studies have evaluated mutations at the expression
level. Our study supported the power of integrated
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genomic and transcriptomic profiling. Firstly, the major-
ity of mutations in the coding regions of CRC genomes
were not expressed (found in non-expressed genes). In
contrast, the majority of mutations in well-known CRC-
critical genes were expressed. Secondly, there was
strong, overall proportionality between the allelic fre-
quencies and allele-specific expression levels of muta-
tions across this relatively large MSS CRC series.
However, there were also indications of more frequent
expression of mutated compared to corresponding wild-
type alleles in general, independent of allelic imbalance.
This overall skewedness was small and context-
dependent. As an illustrative example, TP53 had signifi-
cantly reduced allele-specific expression of putative trun-
cating mutations, but preferential expression of the
mutated alleles at missense SNV loci. The latter is in line
with published results for TP53 mutations in other can-
cer types [16, 48, 49], and our study suggested an associ-
ation both with downstream TP53 transcriptional
activity and combined genetic targeting by allelic
imbalance.

Low expression levels of putative truncating mutations
(nonsense SNVs and frameshift indels) are likely ex-
plained by NMD and degradation of transcripts with
premature termination codons, as previously shown in
breast cancers [12] and cancer cell lines [17]. This asso-
ciation was particularly clear for nonsense SNVs in APC.
NMD is not activated against premature termination co-
dons in the 3" end of transcripts [43], and only nonsense
SNVs occurring closer to the 5 end of APC had reduced
allele-specific expression. Furthermore, the observed
preferential expression of mutant alleles at splice sites is
consistent with the failure of the splicing machinery to
recognize these sites. Splice site-disrupting mutations
may therefore have higher RNA levels as a result of ab-
errant intron retention, although intron retention has
been recognized as a widespread mechanism for tumor
suppressor inactivation, caused by NMD acting on pre-
mature termination codons commonly located in introns
[50]. These biological mechanisms support a determinis-
tic role of the mutation category on allele-specific ex-
pression levels. In contrast, exonic missense SNV
expression was further dependent on the target gene cat-
egory, with higher relative expression of mutated alleles
in cancer-critical genes specifically, associated with the
previously reported selection for oncogenic allelic imbal-
ance in cancer [51]. Notably, there was no consistent dif-
ference between oncogenes and tumor suppressor genes
with respect to allelic expression levels. Based on the ex-
pectation that tumor suppressor mutations act by loss of
function, this suggests that inactivation occurs at the
level of protein expression and/or modification. It should
be noted that these genome-wide observations may con-
ceal gene-specific features, and the low number of
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prevalently mutated genes in MSS CRCs precluded more
detailed analyses. Indeed, a gene-specific feature was
identified in APC, which is a gene commonly targeted by
more than one mutation. The seemingly lower effect of
APC mutations in double-targeted tumors is interesting
in light of the reported difference in prognostic associa-
tions of single and double-targeted MSS CRCs, although
the single-mutated group had improved survival com-
pared to double-mutated and APC wild-type cancers
[52].

Proof-of-concept analyses of a functional consequence
of allele-specific mutation expression levels were per-
formed by evaluation of potential predictive value for
sensitivity to targeted anticancer agents in pre-clinical
models. The well-known associations between the muta-
tion status of RAS/BRAF'®® or TP53 and sensitivity to
EGFR or MDM2 inhibition, respectively, were accom-
panied by variation in the level of drug resistance among
mutated samples, in particular for EGFR inhibition. Our
study suggested a fine-tuned association with the expres-
sion level of the corresponding resistance mutation. This
is consistent with clinical data demonstrating the efficacy
of rechallenge with anti-EGFR therapies after initial pro-
gression on treatment, when guided by RAS mutation
levels in the blood [53]. However, care should be taken
in the interpretation of these data due to the small sam-
ple size. Furthermore, other gene mutations with a po-
tential influence on drug sensitivity were not controlled
for, such as additional resistance factors for EGFR inhib-
ition in the MAPK signaling pathway [53]. It should also
be noted that MDM2 inhibition guided by wild-type
TP53 is not a clinically validated treatment strategy for
patients with CRC, and the rationale for this analysis
was based on previously published pre-clinical data [54].
Finally, the pharmacogenomic analyses did not allow dis-
crimination between allelic fractions at the DNA and
RNA levels. It has been shown that sensitivity to MAPK
inhibition in CRC cell lines increases with the allelic fre-
quency of KRAS mutations [55]. Furthermore, allelic im-
balance at mutated KRAS loci may be associated with
poor patient survival in CRC, compared to tumors with
balanced mutated loci [51]. In our study, poor prognos-
tic associations of a high RAS MAF were also found at
the RNA level, and the relative allelic mutation expres-
sion was indeed higher at loci with allelic imbalance and
copy number gain. This suggests that the genomic aber-
rations are faithfully recapitulated at the expression level,
mediating a mutation-associated gain-of-fitness to the
cancer cells. Comparisons of patient-matched primary
and metastatic tumors also suggested proportionality in
allelic mutation expression levels during metastasis.
However, based on the current study, we foresee that
the expression levels of “actionable” mutations will be
highly variable in response to targeted agents.
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Conclusions

This study reports the first large-scale analysis of allele-
specific mutation expression in CRC and indicated an
opportunity for more fine-tuned biomarker interpreta-
tions. Analyses in relation to oncogenic signatures, pa-
tient survival, and targeted drug sensitivity in pre-clinical
models proposed that the “expressed mutation dose” has
functional consequences.
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