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Abstract

Deep learning is a subdiscipline of artificial intelligence that uses a machine learning technique called artificial
neural networks to extract patterns and make predictions from large data sets. The increasing adoption of deep
learning across healthcare domains together with the availability of highly characterised cancer datasets has
accelerated research into the utility of deep learning in the analysis of the complex biology of cancer. While early
results are promising, this is a rapidly evolving field with new knowledge emerging in both cancer biology and
deep learning. In this review, we provide an overview of emerging deep learning techniques and how they are
being applied to oncology. We focus on the deep learning applications for omics data types, including genomic,
methylation and transcriptomic data, as well as histopathology-based genomic inference, and provide perspectives
on how the different data types can be integrated to develop decision support tools. We provide specific examples
of how deep learning may be applied in cancer diagnosis, prognosis and treatment management. We also assess
the current limitations and challenges for the application of deep learning in precision oncology, including the lack
of phenotypically rich data and the need for more explainable deep learning models. Finally, we conclude with a
discussion of how current obstacles can be overcome to enable future clinical utilisation of deep learning.
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Background
Artificial intelligence (AI) encompasses multiple tech-
nologies with the common aim to computationally simu-
late human intelligence. Machine learning (ML) is a
subgroup of AI that focuses on making predictions by
identifying patterns in data using mathematical algo-
rithms. Deep learning (DL) is a subgroup of ML that fo-
cuses on making predictions using multi-layered neural
network algorithms inspired by the neurological archi-
tecture of the brain. Compared to other ML methods
such as logistic regression, the neural network

architecture of DL enables the models to scale exponen-
tially with the growing quantity and dimensionality of
data [1]. This makes DL particularly useful for solving
complex computational problems such as large-scale
image classification, natural language processing and
speech recognition and translation [1].
Cancer care is undergoing a shift towards precision

healthcare enabled by the increasing availability and in-
tegration of multiple data types including genomic, tran-
scriptomic and histopathologic data (Fig. 1). The use
and interpretation of diverse and high-dimensionality
data types for translational research or clinical tasks re-
quire significant time and expertise. Moreover, the inte-
gration of multiple data types is more resource-intensive
than the interpretation of individual data types and
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needs modelling algorithms that can learn from tremen-
dous numbers of intricate features. The use of ML algo-
rithms to automate these tasks and aid cancer detection
(identifying the presence of cancer) and diagnosis (charac-
terising the cancer) has become increasingly prevalent [2,
3]. Excitingly, DL models have the potential to harness
this complexity to provide meaningful insights and iden-
tify relevant granular features from multiple data types [4,
5]. In this review, we describe the latest applications of
deep learning in cancer diagnosis, prognosis and treat-
ment selection. We focus on DL applications for omics
and histopathological data, as well as the integration of
multiple data types. We provide a brief introduction to
emerging DL methods relevant to applications covered in
this review. Next, we discuss specific applications of DL in
oncology, including cancer origin detection, molecular
subtypes identification, prognosis and survivability predic-
tion, histological inference of genomic traits, tumour
microenvironment profiling and future applications in
spatial transcriptomics, metagenomics and pharmacogen-
omics. We conclude with an examination of current chal-
lenges and potential strategies that would enable DL to be
routinely applied in clinical settings.

Emerging deep learning methods
Covering all DL methods in detail is outside the scope of
this review; rather, we provide a high-level summary of
emerging DL methods in oncology. DL utilises artificial
neural networks to extract non-linear, entangled and
representative features from massive and high-
dimensional data [1]. A deep neural network is typically
constructed of millions of densely interconnected com-
puting neurons organised into consecutive layers. Within
each layer, a neuron is connected to other neurons in
the layer before it, from which it receives data, and other
neurons in the layer after it, to which it sends data.
When presented with data, a neural network feeds each
training sample, with known ground truth, to its input
layer before passing the information down to all suc-
ceeding layers (usually called hidden layers). This infor-
mation is then multiplied, divided, added and subtracted
millions of times before it reaches the output layer,
which becomes the prediction. For supervised deep
learning, each pair of training sample and label is fed
through a neural network while its weights and thresh-
olds are being adjusted to get the prediction closer to
the provided label. When faced with unseen (test) data,

Fig. 1 Deep learning may impact clinical oncology during diagnosis, prognosis and treatment. Specific areas of clinical oncology where deep
learning is showing promise include cancer of unknown primary, molecular subtyping of cancers, prognosis and survivability and precision
oncology. Examples of deep learning applications within each of these areas are listed. The data modalities utilised by deep learning models are
numerous and include genomic, transcriptomic and histopathology data categories covered in this review
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these trained weights and thresholds are frozen and used
to make predictions.

Fundamental neural network methods
There are multiple neural network-based methods, all
with different advantages and applications. Multilayer
perceptron (MLP), recurrent neural network (RNN) and
convolutional neural network (CNN) are the most fun-
damental and are frequently used as building blocks for
more advanced techniques. MLPs are the simplest type
of neural networks, where neurons are organised in con-
secutive layers so that signals travel through the network
in one direction (from input to output) [1]. Although
MLPs can perform well for generic predictions, they are
also prone to overfitting [6]. RNNs process an input se-
quence one element at a time, while maintaining history
of all past elements in hidden ‘state vector(s)’. Output
predictions are made at every element using information
from the current element and also previous elements [1,
7]. RNNs are typically used for analysing sequential data
such as text, speech or DNA sequences. By contrast,
CNNs are designed to draw spatial relationships from
image data. CNNs traverse an image and apply small
feature-filter matrices, i.e. convolution filters, to extract
granular features [1]. Features extracted by the last con-
volution layer are then used for making predictions.
CNNs have also been adapted for analysis of non-image
data, e.g. genomic data represented in a vector, matrix
or tensor format [8]. A review by Dias and Torkamani
[7] described in detail how MLPs, RNNs and CNNs op-
erate on biomedical and genomics data. Moreover, the
use of MLPs, RNNs and CNNs to assist clinicians and
researchers has been proposed across multiple oncology
areas, including radiotherapy [9], digital histopathology
[10, 11] and clinical and genomic diagnostics [7]. While
routine clinical use is still limited, some of the models
have already been FDA-approved and adopted into a
clinical setting, for example CNNs for the prediction of
malignancy in pulmonary nodules detected by CT [12],
and prostate and breast cancer diagnosis prediction
using digital histopathology [13, 14].

Advanced neural-network methods
Graph convolutional neural networks (GCNNs) general-
ise CNNs beyond regular structures (Euclidean domains)
to non-Euclidean domains such as graphs which have ar-
bitrary structure. GCNNs are specifically designed to
analyse graph data, e.g. using prior biological knowledge
of an interconnected network of proteins with nodes
representing proteins and pairwise connections repre-
senting protein–protein interactions (PPI) [15], using re-
sources such as the STRING PPI database [16] (Fig. 2a).
This enables GCNNs to incorporate known biological
associations between genetic features and perceive their

cooperative patterns, which have been shown to be use-
ful in cancer diagnostics [17].
Semantic segmentation is an important CNN-based

visual learning method specifically for image data (Fig.
2b). The purpose of semantic segmentation is to pro-
duce a class label for every single pixel in an image and
cluster parts of an image together into each class, where
the class represents an object or component of the
image. Semantic segmentation models are generally su-
pervised, i.e. they are given class labels for each pixel
and are trained to detect the major ‘semantics’ for each
class.
To enhance the predictive power of DL models, differ-

ent data types (modalities) can be combined using multi-
modal learning (Fig. 2c). In clinical oncology, data
modalities can include image, numeric and descriptive
data. Cancer is a complex and multi-faceted disease with
layers of microscopic, macroscopic and molecular fea-
tures that can separately or together influence treatment
responses and patient prognosis. Therefore, combining
clinical data (e.g. diagnostic test results and pathology
reports), medical images (e.g. histopathology and com-
puted tomography) and different types of omics data,
such as genomic, transcriptomic and proteomic profiles,
may be useful. The two most important requirements
for a multimodal network are the ability to create repre-
sentations that contain dense meaningful features of the
original input, and a mathematical method to combine
representations from all modalities. There are several
methods capable of performing the representative learn-
ing task, e.g. CNNs, RNNs, deep belief networks and
autoencoders (AE) [21]; score-level fusion [22]; or multi-
modal data fusion [23]. The multimodal learning appli-
cations discussed in this review are based on AE models.
In simplistic terms, AE architecture comprises of an en-
coder and a decoder working in tandem. The encoder is
responsible for creating a representation vector of lower
dimension than the input, while the decoder is respon-
sible for reconstructing the original input using this low-
dimensional vector [24]. This forces the encoder to
‘learn’ to encapsulate meaningful features from the input
and has been shown to have good generalisability [24].
Moreover, it provides DL models the unique ability to
readily integrate different data modalities, e.g. medical
images, genomic data and clinical information, into a
single ‘end-to-end optimised’ model [8].
A major challenge with implementing DL into clinical

practice is the ‘black box’ nature of the models [25].
High-stake medical decisions, such as diagnosis, progno-
sis and treatment selection, require trustworthy and ex-
plainable decision processes. Most DL models have
limited interpretability, i.e. it is very difficult to dissect a
neural network and understand how millions of parame-
ters work simultaneously. Some even argue that more
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Fig. 2 (See legend on next page.)

Tran et al. Genome Medicine          (2021) 13:152 Page 4 of 17



interpretable models such as Decision Trees should be
ultimately preferred for making medical decisions [26].
An alternative approach is explainability—mathematical
quantification of how influential, or ‘salient’, the features
are towards a certain prediction (Fig. 2d). This informa-
tion can be used to ‘explain’ the decision-making process
of a neural network model and identify features that
contribute to a prediction. This knowledge can enable
resolution of potential disagreements between DL
models and clinicians and thus increase trust in DL sys-
tems [27]. Moreover, DL models do not always have per-
fect performance due to either imperfect training data
(e.g. assay noise or errors in recording) or systematic er-
rors caused by bias within DL models themselves, which
can result from the training data not being representa-
tive of the population where DL is later applied [27]. In
these circumstances, explainability can assist clinicians
in evaluating predictions [27]. While some explainability
methods were developed specifically for neural networks
[28, 29], others offer a more model- and data-agnostic
solution [30–33]. Excitingly, explainability methods can
be used in conjunction with multi-modal learning for
data integration and discovery of cross-modality insights,
e.g. how cancer traits across different omics types correl-
ate and influence each other.
Another challenge in applying DL in oncology is the

requirement for large amounts of robust, well-
phenotyped training data to achieve good model general-
isability. Large curated ‘ground-truth’ datasets of
matched genomic, histopathological and clinical out-
come data are scarce beyond the publicly available data-
sets, such as The Cancer Genome Atlas (TCGA) [34],
International Cancer Genome Consortium (ICGC) [35],
Gene Expression Omnibus (GEO) [36], European
Genome-Phenome Archive (EGA) [37] and Molecular

Taxonomy of Breast Cancer International Consortium
(METABRIC) [38]. Pre-training on abundant datasets
from other domains may help overcome the challenges
of limited data (a process known as transfer learning).
The pre-trained neural network would then be reconfi-
gured and trained again on data from the domain of
interest. This approach usually results in a considerable
reduction in computational and time resources for
models training, and a significant increase in predictive
performance, compared to training on small domain-
specific datasets [39].

Deep learning in oncology
A variety of DL approaches that utilise a combination of
genomic, transcriptomic or histopathology data have
been applied in clinical and translational oncology with
the aim of enhancing patient diagnosis, prognosis and
treatment selection (Fig. 1, Table 1). However, even with
the emerging DL approaches, human intervention re-
mains essential in oncology. Therefore, the goal of DL is
not to outperform or replace humans, but to provide de-
cision support tools that assist cancer researchers to
study the disease and health professionals in the clinical
management of people with cancer [79].

Deep learning for microscopy-based assessment of cancer
Cancers are traditionally diagnosed by histopathology or
cytopathology to confirm the presence of tumour cells
within a patient sample, assess markers relevant to can-
cer and to characterise features such as tumour type,
stage and grade. This microscopy-based assessment is
crucial; however, the process is relatively labour-
intensive and somewhat subjective [80, 81]. A histology
image viewed at high magnification (typically 20x or
40x) can reveal millions of subtle cellular features, and

(See figure on previous page.)
Fig. 2 An overview of Deep Learning techniques and concepts in oncology. a Graph convolutional neural networks (GCNN) are designed to
operate on graph-structured data. In this particular example inspired by [17–19], gene expression values (upper left panel) are represented as
graph signals structured by a protein–protein interactions graph (lower left panel) that serve as inputs to GCNN. For a single sample (highlighted
with red outline), each node represents one gene with its expression value assigned to the corresponding protein node, and inter-node
connections represent known protein–protein interactions. GCNN methods covered in this review require a graph to be undirected. Graph
convolution filters are applied on each gene to extract meaningful gene expression patterns from the gene’s neighbourhood (nodes connected
by orange edges). Pooling, i.e. combining clusters of nodes, can be applied following graph convolution to obtain a coarser representation of the
graph. Output of the final graph convolution/pooling layer would then be passed through fully connected layers producing GCNN’s decision. b
Semantic segmentation is applied to image data where it assigns a class label to each pixel within an image. A semantic segmentation model
usually consists of an encoder, a decoder and a softmax function. The encoder consists of feature extraction layers to ‘learn’ meaningful and
granular features from the input, while the decoder learns features to generate a coloured map of major object classes in the input (through the
use of the softmax function). The example shows a H&E tumour section with infiltrating lymphocyte map generated by Saltz et al. [20] DL model
c multimodal learning allows multiple datasets representing the same underlying phenotype to be combined to increase predictive power.
Multimodal learning usually starts with encoding each input modality into a representation vector of lower dimension, followed by a feature
combination step to aggregate these vectors together. d Explainability methods take a trained neural network and mathematically quantify how
each input feature influences the model’s prediction. The outputs are usually feature contribution scores, capable of explaining the most salient
features that dictate the model’s predictions. In this example, each input gene is assigned a contribution score by the explainability model (colour
scale indicates the influence on the model prediction). An example of gene interaction network is shown coloured by contribution scores (links
between red dots represent biological connections between genes)
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Table 1 Summary of deep learning methods, their relevant applications and brief technical descriptions of each DL model

Application DL method Reference Description

Microscopy-based
assessment of
cancer

CNN Ruy et al. [40]
Nir et al. [41]
Ström et al. [42]
Ehteshami Bejnordi et al. [43]
Vuong et al. [44]
El Achi and Khoury [45]

Trained CNNs on pathology images to predict grading of prostate [40–
42], breast [43], colon cancer [44] and lymphoma [45]

CNN &
explainability

Hägele et al. [46] LRP used to assigned feature contribution for cancer grade for each
pixel of WSIs

Semantic
segmentation

Poojitha and Lal Sharma [47] A semantic segmentation technique called GAN was used to segment
tissue maps for prostate cancer grade prediction

Molecular
subtyping

MLP DeepCC [48] Gene set enrichment analysis used to transform gene expression input
into functional spectra

CNN imCMS [49],
Sirinukuwattana et al. [50],
Stalhammar et al. [51], Couture
et al. [52]
Woerl et al. [53]

Models trained on histopathology images to classify molecular subtypes
of of lung [49], colorectal [50], breast [51, 52] and bladder cancer [53]

GCNN Rhee et al. [18] Utilised a hybrid GCNN model to organise input gene expression
profiles into STRING PPI network [16] and predict breast cancer
molecular subtypes

Multimodal
learning

Islam et al. [54] Two CNN models used to predict breast cancer molecular subtypes
from CNAs and gene expression;
Outputs of the last fully connected layer of each model concatenated
for a final subtype prediction

Cancer of
unknown primary

MLP Jiao et al. [55] Model trained to predict origins of 24 cancer types using somatic
mutation patterns and driver genes

CNN SCOPE [56],
CUP-AI-Dx [57]

Both studies trained models to predict different cancer types from gene
expression

RNN &
explainability

TOAD [58] RNN-based model called Attention was trained on WSIs to predict
metastasis and cancer origin;
Attention algorithm reveal image regions contributing most to
predictions were mostly cancer cells

Prognosis
prediction

MLP Cox-nnet [59],
DeepSurv [60], RankedDeepSurv
[61]

Cox regression used as the last layer of MLP models for prognosis
prediction

MLP & AEs AECOX [62] AE used to “compress” gene expression into low-dimensional embed-
ding vector and used as an input for Cox-regression

Explainability PASNET [63],
Cox-PASNET [64]

A pathway layer used between the input and the hidden layers with
each node representing a known pathway;
Analysis of weight differences in pathway layers reveal clinically
actionable genetic traits

MesoNet [65] Histopathology images split into tiles and scored by survival prediction
contributions;
Scores used to identify top-contributing regions, reviewed by
pathologists

GCNN &
explainability

Chereda et al. [19] Combine GCNN and explainability method LRP to identify biologically
and therapeutically relevant genes in predicting metastasis of breast
cancer

Explainability with
multimodal
learning

PAGE-Net [66] CNN used to compress features from WSIs;
Cox-PASNet used to incorporate gene pathway and provide cross-
modal analysis with image features extracted by CNN

PathME [67] AEs used to compress features from four omics modalities, which are
combined to predict survival;
SHAP used to assign each omics feature survival prediction contribution
score

Precision Oncology MLP HER2RNA [68] Transcriptomic profiles inferred from histopathology images divided into
tiles;
Predictions added up for all tiles and compared with ‘ground truth’
transcriptomic profiles
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deep CNN models are exceptionally good at extracting
features from high-resolution image data [82]. Automat-
ing cancer grading with histology-based deep CNNs has
proven successful, with studies showing that perform-
ance of deep CNNs can be comparable with pathologists
in grading prostate [40–42], breast [43], colon cancer
[44] and lymphoma [45]. Explainability methods can en-
able and improve histology-based classification models
by allowing pathologists to validate DL-generated pre-
dictions. For example, Hägele et al. applied the Layer-
wise Relevance Propagation (LRP) [29] method on DL
models classifying healthy versus cancerous tissues using
whole-slide images of lung cancer [46]. The LRP algo-
rithm assigned a relevance score for each pixel, and
pixel-wise relevance scores were aggregated into cell-
level scores and compared against pathologists’ annota-
tions. These scores were then used to evaluate DL model
performance and identify how multiple data biases af-
fected the performance at cellular levels [46]. These

insights allow clinician and software developers to gain
insights into DL models during development and de-
ployment phases.
In addition to classification and explainability, seman-

tic segmentation approaches can also be applied on
histopathology images to localise specific regions. One
notable approach to perform semantic segmentation is
to use generative adversarial networks (GANs) [47].
GAN is a versatile generative DL method comprising a
pair of two neural networks: a generator and a discrim-
inator [83]. In the context of semantic segmentation, the
generator learns to label each pixel of an image to a class
object (Fig. 2b), while the discriminator learns to distin-
guish the predicted class labels from the ground truth
[84]. This ‘adversarial’ mechanism forces the generator
to be as accurate as possible in localising objects so that
the discriminator cannot recognise the difference be-
tween predicted and ground-truth class labels [84].
Using this approach, Poojitha and Lal Sharma trained a

Table 1 Summary of deep learning methods, their relevant applications and brief technical descriptions of each DL model
(Continued)

Application DL method Reference Description

CNN Image2TMB [69] Ensemble of three CNNs to extract features from histopathological
images at different resolutions (x5, x10 and x20);
Extracted features are combined to infer TMB

Kather et al. [70] TCGA histopathology images used to predict mutational status of key
genes, molecular subtypes and gene expression of standard biomarkers

Tumour
microenvironment

MLP Scaden [71] Ensemble of three models with different filter sizes to predict TME
composition from gene expression;
Predictions from the models are averaged into a final prediction

Explainability with
MLP

MethylNet [72] MLP and AE used to ‘compress’ CpG beta values into an embedding
vector for predicting TME composition;
SHAP used to assign feature contribution to each CpG site

Semantic
segmentation

Saltz et al. [20] Semantic segmentation model used on H&E images to localise spatial
heterogeneity patterns of TIL and necrosis

Spatial
transcriptomics

CNN ST-Net [73] Images split into tiles centred on spatial transcriptomics spots;
Tiles used to train a CNN to predict expression of 250 target genes

Pharmacogenomics CNN CDRscan [74] Two models used to extract features from somatic mutational
fingerprints and molecular profiles of drugs (cell lines);
Feature vectors combined to predict efficacy of drugs based on
genomic profiles

MLP DeepSynergy [75] Cell line gene expression and chemical features of drugs in drug
combinations used as input;
Predicts ‘synergy score’ between the drug combinations and
transcriptomic profiles

GCNN Jiang et al. [76] Utilised graph structure to integrate protein-protein, drug-drug and
drug-protein interactions to predict synergistic drug combination for
specific cell lines

Multimodal
learning

DeepDR [77] Collection of ten AEs to integrate ten drug-disease networks, which pre-
dict drug-disease associations

CNN DeepDTI [78] Protein sequence and drug fingerprint as input to predict drug protein-
binding sites

AE: autoencoder, CNA: copy number alterations, CNN: convolutional neural network, DL: deep learning, GCNN: graph convolutional neural network, H&E:
haematoxylin and eosin, LRP: layer-wise relevance propagation, MLP: multilayer perceptron, RNN: recurrent neural netowrk, SHAP: SHapley Additive exPlanations,
TIL: tumour-infiltrating lymphocytes, TMB: tumour mutational burden, WSI: whole slide image
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CNN-based generator to segment cancer tissue to ‘help’
a CNN-based classifier predict prostate cancer grading
[47]. The GAN-annotated tissue maps helped the CNN
classifier achieve comparable accuracy to the grading
produced by anatomical pathologists, indicating DL
models can detect relevant cell regions in pathology im-
ages for decision making.

Molecular subtyping of cancers
Transcriptomic profiling can be used to assign cancers
into clinically meaningful molecular subtypes that have
diagnostic, prognostic or treatment selection relevance.
Molecular subtypes were first described for breast cancer
[85, 86], then later for other cancers including colorectal
[87], ovarian cancer [88] and sarcomas [89]. Standard
computational methods, such as support vector ma-
chines (SVMs) or k-nearest neighbours, used to subtype
cancers can be prone to errors due to batch effects [90]
and may rely only on a handful of signature genes, omit-
ting important biological information [91–93]. Deep
learning algorithms can overcome these limitations by
learning patterns from the whole transcriptome. A
neural network model DeepCC trained on TCGA RNA-
seq colon and breast cancer data, then tested on inde-
pendent gene expression microarray data showed super-
ior accuracy, sensitivity and specificity when compared
to traditional ML approaches including random forest,
logistic regression, SVM and gradient boosting machine
[48]. Neural networks have also been successfully ap-
plied to transcriptomic data for molecular subtyping of
lung [94], gastric and ovarian cancers [95]. DL methods
have the potential to be highly generalisable in profiling
cancer molecular subtypes due to their ability to train
on a large number of features that are generated by tran-
scriptomic profiling. Furthermore, due to their flexibility,
DL methods can incorporate prior biological knowledge
to achieve improved performance. For example, Rhee
et al. trained a hybrid GCNN model on expression pro-
files of a cancer hallmark gene set, connected in a graph
using the STRING PPI network [16] to predict breast
cancer molecular subtypes, PAM50 [18]. This approach
outperformed other ML methods in subtype classifica-
tion. Furthermore, the granular features extracted by the
GCNN model naturally clustered tumours into PAM50
subtypes without relying on a classification model dem-
onstrating that the method successfully learned the la-
tent properties in the gene expression profiles [18].
The use of multimodal learning to integrate transcrip-

tomic with other omics data may enable enhanced sub-
type predictions. A novel multimodal method using two
CNN models trained separately on copy number alter-
ations (CNAs) and gene expression before concatenating
their representations for predictions was able to predict
PAM50 breast cancer subtypes better than CNNs

trained on individual data types [54]. As multi-omics
analysis becomes increasingly popular, multimodal
learning methods are expected to become more preva-
lent in cancer diagnostics. However, the challenges of
generating multi-omic data from patient samples in the
clinical setting, as opposed to samples bio-banked for re-
search, may hinder the clinical implementation of these
approaches.
Digital histopathology images are an integral part of

the oncology workflow [11] and can be an alternative to
transcriptomic-based methods for molecular subtyping.
CNN models have been applied on haematoxylin and
eosin (H&E) sections to predict molecular subtypes of
lung [49], colorectal [50], breast [51, 52] and bladder
cancer [53], with greater accuracy when compared to
traditional ML methods.

Diagnosing cancers of unknown primary
Determining the primary cancer site can be important
during the diagnostic process, as it can be a significant
indicator of how the cancer will behave clinically, and
the treatment strategies are sometimes decided by the
tumour origin [96, 97]. However, 3–5% of cancer cases
are metastatic cancers of unknown origin, termed can-
cers of unknown primary (CUPs) [98, 99]. Genomic,
methylation and transcriptomic profiles of metastatic tu-
mours have unique patterns that can reveal their tissues
of origin [100–102].
Traditional ML methods, such as regression and

SVMs, applied to these omics data can predict tumour
origin; however, they usually rely on a small subset of
genes, which can be limiting in predicting a broad range
of cancer types and subtypes. In contrast, DL algorithms
can utilise large number of genomic and transcriptomic
features. The Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium [103] used a DL model to predict
the origins of 24 cancer types individually and collect-
ively using thousands of somatic mutation features
across 2 different classes (mutational distribution and
driver gene and pathway features) [55]. Remarkably, the
study found that driver genes and pathways are not
among the most salient features, highlighting why previ-
ous efforts in panel and exome sequencing for CUP pro-
duced mixed results [104–107]. Deep learning
approaches utilising transcriptome data have also shown
utility in predicting tumour site of origin [56, 57]. A
neural network called SCOPE, trained on whole tran-
scriptome TCGA data, was able to predict the origins of
treatment-resistant metastatic cancers, even for rare can-
cers such as metastatic adenoid cystic carcinoma [56].
The CUP-AI-Dx algorithm, built upon a widely used
CNN model called Inception [108], achieved similar re-
sults on 32 cancer types from TCGA and ICGC [57]. As
whole genome sequencing becomes increasingly
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available, these models show great potential for future
DL methods to incorporate multiple omics features to
accurately categorise tumours into clinically meaningful
subtypes by their molecular features.
In addition to genomic and transcriptomic data, a

new model call TOAD trained on whole slide images
(WSIs) was able to simultaneously predict metastasis
status and origin of 18 tumour types [58]. Moreover,
the model employed an explainability method called
attention [109, 110] to assign diagnostic relevance
scores to image regions and revealed that regions
with cancer cells contributed most to both metastasis
and origin decision making [58]. These results sug-
gested TOAD can ‘focus’ on biologically relevant
image patterns and is a good candidate for clinical
deployment.

Cancer prognosis and survival
Prognosis prediction is an essential part of clinical on-
cology, as the expected disease path and likelihood of
survival can inform treatment decisions [111]. DL ap-
plied to genomic, transcriptomic and other data types
has the potential to predict prognosis and patient sur-
vival [59–62, 112]. The most common survival predic-
tion method is the Cox proportional hazard regression
model (Cox-PH) [113–115], which is a multivariate lin-
ear regression model finding correlations between sur-
vival time and predictor variables. A challenge of
applying Cox-PH on genomic and transcriptomic data is
its linear nature, which can potentially neglect complex
and possibly nonlinear relationships between features
[116]. By contrast, deep neural networks are naturally
nonlinear, and in theory could excel at this task. Inter-
estingly, many studies have incorporated Cox regression
used for survival analysis into DL and trained these
models on transcriptomic data for enhanced prognosis
predictions [59–62, 112]. Among them, Cox-nnet was a
pioneering approach that made Cox regression the out-
put layer of neural networks, effectively using millions of
deep features extracted by hidden layers as input for the
Cox regression model [59]. Cox-nnet was trained on
RNA-seq data from 10 TCGA cancer types and bench-
marked against two variations of Cox-PH (Cox-PH and
CoxBoost). Cox-nnet showed superior accuracy and was
the only model able to uniquely identify important path-
ways including p53 signalling, endocytosis and adherens
junctions [59], demonstrating that the combination of
Cox-PH and neural networks has the potential to cap-
ture biological information relating to prognosis. The
potential of DL was confirmed by Huang et al. [62] who
found that 3 different DL versions of Cox Regression
(Cox-nnet, DeepSurv [60] and AECOX [62]) outper-
formed Cox-PH and traditional ML models. These re-
sults suggest that DL models can provide better

accuracy than traditional models in predicting prognosis
by learning from complex molecular interactions using
their flexible architecture.
The incorporation of biological pathways in DL has

enabled the elucidation of key survival drivers among
thousands of features. PASNET [63] and its Cox-
regression version Cox-PASNet [64] are among the most
advanced DL models in this area. Both models incorpor-
ate a pathway layer between the input and the hidden
layers of the neural network, where each node of the
pathway layer represents a pathway (based on pathway
databases such as Reactome [117] and KEGG [118]), and
the connections between the two layers represent the
gene-pathway relationships. These trained pathway
nodes have different weights. By analysing the weight
differences across different survival groups and identify-
ing genes connected to each node, PASNet and Cox-
PASNet were able to identify clinically actionable genetic
traits of glioblastoma multiforme (GBM) and ovarian
cancer [63, 64]. In GBM, Cox-PASNet correctly identi-
fied PI3K cascade, a pathway highly involved in tumour
proliferation, invasion and migration in GBM [119].
Cox-PASNet also correctly detected MAPK9, a gene
strongly associated with GBM carcinogenesis and a
novel potential therapeutic, as one the most influential
genes [120]. The GCNN-explainability model from
Chereda et al. is the latest example of incorporating mo-
lecular networks in cancer prognosis [19]. The study
used gene expression profiles, structured by a PPI from
Human Protein Reference Database (HPRD) [121], to
predict metastasis of breast cancer samples. The explain-
ability method, LRP [29], was then used to identify and
analyse the biological relevance of the most relevant
genes for predictions [19]. Pathway analysis of these
genes showed that they include oncogenes, molecular-
subtype-specific and therapeutically targetable genes,
such as EGFR and ESR1 [19].
In addition to prognosis predictions from transcrip-

tomic data, CNN models trained on histopathology im-
ages have been used to infer survival in several cancers
including brain [122], colorectal [123], renal cell [124],
liver cancers [125] and mesothelioma [65]. Among them,
MesoNet [65] stands out for incorporating a feature
contribution explainability algorithm called CHOWDER
[126] on H&E tissue sections of mesothelioma to iden-
tify that the features contributing the most to survival
predictions were primarily stromal cells associated with
inflammation, cellular diversity and vacuolisation [65].
The CHOWDER algorithm enabled MesoNet to utilise
large H&E images as well as segment and detect import-
ant regions for survival predictions without any local an-
notations by pathologists [65]. These findings suggest
that ‘white-box’ DL models like MesoNet could be useful
companion diagnostic tools in clinical setting by
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assisting clinicians in identifying known and novel histo-
logical features associated with a survival outcome.
Multi-modal DL analysis integrating histopathology

images and, if available, omics data has the potential to
better stratify patients into prognostic groups, as well as
suggest more personalised and targeted treatments.
Most multi-modal prognostic studies have focussed on
three aspects: individual feature extraction from a single
modality, multi-modal data integration and cross-modal
analysis of prognostic features. The model PAGE-Net
performed these tasks by using a CNN to create repre-
sentations of WSIs and Cox-PASNet [64] to extract gen-
etic pathway information from gene expression [66].
This architecture allowed PAGE-NET to not only inte-
grate histopathological and transcriptomic data, but also
identify patterns across both modalities that cause differ-
ent survival rates [66]. More interestingly, the combin-
ation of multi-modal and explainability methods is
particularly promising. PathME [67] is a pioneer of this
approach by bringing together representation-extraction
AEs and an explainability algorithm called SHAP [31–
33, 127]. The AEs captured important features from
gene expression, miRNA expression, DNA methylation
and CNAs for survival prediction, while SHAP scores
each feature from each omic based on how relevant it is
to the prediction [67]. Together, the two algorithms de-
tected clinically relevant cross-omics features that affect
survival across GBM, colorectal, breast and lung cancer
[67]. The PathME methodology is cancer-agnostic,
which makes it a great candidate for clinical implemen-
tations to explore actionable biomarkers in large-scale
multi-omics data. Additionally, other studies [128–130]
have employed Principal Component Analysis (PCA)
[131] to compress gene expression, mutational signa-
tures and methylation status into eigengene vectors
[132], which were then combined with CNN-extracted
histopathology features for survival predictions. While
these methods could integrate histopathology data with
multi-omics, they are not as explainable as PAGE-Net
[66] or PathME [67] and thus less clinically suitable, as
the conversion of genes into eigengenes makes explor-
ation of cross-modality interactions challenging.

Precision oncology
The promise of precision medicine is to use high-
resolution omics data to enable optimised management
and treatment of patients to improve survival. An im-
portant part of precision oncology involves understand-
ing cancer genomics and the tumour microenvironment
(TME). DL offers the potential to infer important gen-
omic features from readily available histopathology data,
as well as disentangle the complex heterogeneity of
TME to enable precision oncology.

Genomic traits such as tumour mutation burden
(TMB) and microsatellite instability (MSI) have been
shown to be important biomarkers of immunotherapy
response across cancer types [133–136]. Assessment
of these traits requires sequencing (comprehensive
panel, exome or whole genome), which is still expen-
sive and is not readily available in the clinic.
Routinely used histopathological images are a po-

tential window to genomic features and may in future
prove useful for predictions of specific clinically
meaningful molecular features without the need for
tumour sequencing. Several CNN methods have been
developed to infer TMB, MSI and other clinically
relevant genomic features from H&E sections [68–70,
137]. A model called Image2TMB used ensemble
learning to predict TMB in lung cancer using H&E
images. Image2TMB was able to achieve the same
average accuracy as large panel sequencing with sig-
nificantly less variance. It also attempted to estimate
TMB for each region of an image [69], which could
enable studies of histological features associated with
molecular heterogeneity.
Another DL model called HE2RNA used weakly

supervised learning to infer gene expression from
histopathology images, which were then used to infer
MSI status in colorectal cancer [68]. When com-
pared with another DL method to predict MSI dir-
ectly from H&E slides [137], HE2RNA showed
superior performance on both formalin-fixed
paraffin-embedded (FFPE) and frozen sections, indi-
cating a high level of robustness across tissue pro-
cessing approaches.
Kather et al. [70] has also showed that CNN models

trained and evaluated on TCGA H&E slides can ac-
curately predict a range of actionable genetic
alterations across multiple cancer types, including
mutational status of key genes, molecular subtypes
and gene expression of standard biomarkers such as
hormone receptor status. While these molecular infer-
ence methods demonstrate an intriguing application
of DL in histopathology, their current clinical utility
is likely to be limited as features such as MSI and
hormone receptor status are already part of the rou-
tine diagnostic workflows (immunohistochemistry
staining for mismatch-repair proteins in colorectal
and endometrial cancer or ER, PR in breast cancer).
However, these studies serve as proof-of-concept, and
the developed models could in future be adapted to
predict clinically important molecular features that
are not routinely assessed. Thus, future investigations
into histopathology-based genomic inference are war-
ranted, with the understanding that the accuracy of
such DL models needs to be exceptional for them to
replace current assays.
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The tumour microenvironment
The TME plays a key role in cancer progression, metas-
tasis and response to therapy [138]. However, there re-
main many unknowns in the complex molecular and
cellular interactions within the TME. The rise of DL in
cancer research, coupled with large publicly available
catalogues of genomic, transcriptomic and histopath-
ology data, have created a strong technical framework
for the use of neural networks in profiling the hetero-
geneity of TME.
Infiltrating immune cell populations, such as CD4+

and CD8+ T cells, are potential important biomarkers of
immunotherapy response [139, 140]. Traditional ML
methods can accurately estimate TME cell compositions
using transcriptomic [141, 142] or methylation data
[143]. However, most of these methods rely on the gen-
eration of signature Gene Expression Profiles (GEPs) or
the selection of a limited number of CpG sites, biassed
to previously known biomarkers. This can lead to
models susceptible to noise and bias and unable to dis-
cover novel genetic biomarkers. DL methods can be
trained on the whole dataset (i.e. the whole transcrip-
tome) to identify the optimal features without relying on
GEPs. Recently developed DL TME methods include
Scaden [71], a transcriptomic-based neural network
model, and MethylNet, a methylation-based model [72].
MethylNet also incorporated the SHAP explainability
method [31–33, 127] to quantify how relevant each CpG
site is for deconvolution. While these methods currently
focus on showing DL models are more robust against
noise, bias and batch effects compared to traditional ML
models, future follow-up studies are likely to reveal add-
itional cellular heterogeneity traits of the TME and pos-
sibly inform treatment decisions. For example, a CNN
trained on H&E slides of 13 cancer types [20] showed a
strong correlation between spatial tumour infiltrating
lymphocytes (TIL) patterns and cellular compositions
derived by CIBERSORT (a Support Vector Regression
model) [141]. These models have significant clinical im-
plications, as rapid and automated identification of the
composition, amount and spatial organisation of TIL
can support the clinical decision making for prognosis
predictions (for example, for breast cancer) and infer
treatment options, specifically immunotherapy. We ex-
pect future DL methods will further explore the integra-
tions of histopathology and omics in profiling tumour
immune landscape [144]. We also expect future DL
methods to incorporate single-cell transcriptomics
(scRNA-Seq) data to improve TME predictions and even
infer transcriptomic profiles of individual cell types. Sev-
eral DL methods have already been developed to address
batch correction, normalisation, imputation, dimension-
ality reduction and cell annotations for scRNA-Seq can-
cer data [145–147]. However, these studies are still

experimental and require further effort and validation to
be clinically applicable [148].

The new frontiers
An exciting new approach for studying the TME is
spatial transcriptomics which allows quantification of
gene expression in individual cells or regions while
maintaining their positional representation, thus cap-
turing spatial heterogeneity of gene expression at high
resolution [149, 150]. Given the complexity of this
data, DL approaches are well suited for its analysis
and interpretation. For example, by integrating histo-
pathology images and spatial transcriptomics, DL can
predict localised gene expression from tissue slides, as
demonstrated by ST-Net, a neural network capable of
predicting expressions of clinically relevant genes in
breast cancer using tissue spots from H&E slides [73].
As the cost of spatial transcriptomics decreases in the
future, it is expected more translational applications
of DL will arise, for example utilising spatial tran-
scriptomics information for improved prognosis pre-
dictions, subtype classification and refining our
understanding of tumour heterogeneity [151].
In addition, gut microbiome, i.e. metagenome, has

been an emerging field and shown to play an important
role in cancer treatment efficacy and outcomes [152,
153]. As more multi-omics datasets (genomics, tran-
scriptomics, proteomics, microbiotics) are being gener-
ated, annotated and made available, we speculate that
integrative analysis between these data types will help
mapping omics profiles of each individual patient to the
metagenome, which will unlock effective new exciting
options.
Lastly, pharmacogenomics, to predict drug responses

and the mechanisms of action using genomic character-
istics, is an important and exciting area in precision on-
cology where DL methods have significant potential
[154]. The increasing availability of public omics data
has facilitated recent growth of DL applications in can-
cer pharmacogenomics [155–157]. Most common appli-
cations include therapy response and resistance (e.g.
Dr.VAE [158] or CDRscan [74]), drug combination syn-
ergy (e.g. DeepSynergy [75] and Jiang et al. [76]), drug
repositioning (e.g. deepDR [77]) and drug-target interac-
tions (e.g. DeepDTI [78]). As pharmacogenomics is a
highly translational field, we expect many such DL
models will be applied in clinical setting in the future.

Challenges and limitations: the road to clinical
implementation
This review provides an overview of exciting potential
DL applications in oncology. However, there are several
challenges to the widespread implementation of DL in
clinical practice. Here, we discuss challenges and
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limitations of DL in clinical oncology and provide our
perspective for future improvements.

Data variability
Data variability is a major challenge for applying DL to
oncology. For example, in immunohistochemistry each
lab may have different intensity of staining or have dif-
ferent qualities of staining. It is currently unclear how
DL systems would deal with this inter- and intra-
laboratory variability. For transcriptomic data, one of the
principal difficulties is establishing the exact processing
applied to generate a sequence library and processed
dataset. Even properties as basic as ‘the list of human
genes’ are not settled and multiple authorities publish
and regularly update lists of genes, observed spliceforms,
so any analysis should specify both the source and ver-
sion of the gene model used. Additionally, there are a
large range of data transformations (log, linear, etc.) and
data normalisations (FPKM, TMM, TPM), with imple-
mentations in multiple programming languages resulting
in a combinatorially large number of possible processing
paths that should theoretically return the same results
but without any formal process to ensure that that as-
sumption is true.

Paucity of public phenotypically characterised datasets
One challenge of implementing DL into clinical practice
is the need for large phenotypically characterised data-
sets that enable development and training of DL models
with good generalisation performance. High-quality can-
cer datasets that have undergone omics profiling are dif-
ficult to acquire in the clinical setting due to cost,
sample availability and quality. In addition, clinical
tumour samples can be small and are typically stored as
FFPE blocks, resulting in degraded RNA and crosslinked
DNA not suitable for comprehensive molecular profil-
ing. To overcome this, explanability methods, such as
SHAP, could be applied on the current DL models, that
are developed in research setting, to identify the most
salient features and design targeted profiling workflows
suitable for clinical samples. This way, the DL models
could still capture the complexity and possible non-
linear gene relationships, but be retrained to make clin-
ical predictions using only the select salient features.
Multi-modal based DL models coupled with explainabil-
ity could also be explored due to their potential of using
features in one modality to complement missing data in
another. Transfer learning can also overcome challenges
of requiring large datasets by pre-training DL models
from other domains. In practice, however, large data sets
with thousands of samples per class are still needed for
accurate predictions in the clinic, as patient outcomes
are complex and there is clinical heterogeneity between
patients including responses, treatment courses,

comorbidities and other lifestyle factors that may impact
prognosis and survival. As more data is being routinely
generated and clinical information centrally collected in
digital health databases, we expect to see more DL
models developed for treatment response predictions as
well as the general prognosis predictions. More interest-
ingly, DL’s ability to continue learning from and become
more accurate with new training samples, i.e. active
learning, can significantly help pathologists reduce time
spent on training histopathology data annotation. For
example, a histopathology-based DL model by Saltz
et al. only required pathologists to annotate a few train-
ing images at a time, and stopping the manual annota-
tion process when the model’s performance is
satisfactory [20].
Lastly, clinical data about a sample or piece of data

usually do not capture all the complexities of the sam-
ples and phenotype and can be prone to incompleteness,
inconsistencies and errors. A potential strategy to ad-
dress this issue is to design DL models less reliant on or
independent from clinical annotations, for example the
MesoNet model was able to detect prognostically mean-
ingful regions from H&E images without any
pathologist-derived annotations [65].

AI explainability and uncertainty
Finally, for DL to be implemented and accepted in the
clinic, the models need to be designed to complement
and enhance clinical workflows. For human experts to
effectively utilise these models, they need to be not only
explainable, but also capable of estimating the uncer-
tainty in their predictions.
Over the last 5 years, research into explainable AI has

accelerated. For DL to obtain regulatory approval and be
used as a diagnostic tool, comprehensive studies of the
biological relevance of explainability are imperative. In
medical imaging, this entails validating DL-identified
clinically relevant regions against pathology review, and
in some cases, cross-validation with genomic features
[46]. In genomics, this entails validating DL-identified
relevant genetic features against those identified by con-
ventional bioinformatics methods, for example confirm-
ing that the most discriminatory genes in predicting
tissue types, as identified by SHAP, were also identified
by pairwise differential expression analysis using edgeR
[159] or showing that patient-specific molecular inter-
action networks produced in predicting metastasis status
of breast cancer were not only linked to benign/malig-
nant phenotype, but also indicative of tumour progres-
sion and therapeutic targets [19].
Furthermore, DL model’s ability to produce the ‘I

don’t know’ output, when uncertain about predictions, is
critical. Most DL applications covered in this review are
point-estimate methods, i.e. the predictions are simply
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the best guess with the highest probability. In critical cir-
cumstances, overconfident predictions, e.g. predicting
cancer primary site with only 40% certainty, can result
in inaccurate diagnosis or cancer management decisions.
Furthermore, when uncertainty estimates are too high,
companion diagnostic tools should be able to abstain
from making predictions and ask for medical experts’
opinion [160]. Probabilistic DL methods capable of
quantifying prediction uncertainty, such as Bayesian DL
[161], are great candidates to address these issues and
have recently started to be applied in cancer diagnosis
tasks [162–164]. We expect probabilistic models to be-
come mainstream in oncology in the near future.

Conclusions
In summary, DL has the potential to dramatically trans-
formed cancer care and bring it a step closer to the
promise of precision oncology. In an era where genom-
ics is being implemented into health delivery and health
data is becoming increasingly digitised, it is anticipated
that artificial intelligence and DL will be used in the de-
velopment, validation and implementation of decision
support tools to facilitate precision oncology. In this re-
view, we showcased a number of promising applications
of DL in various areas of oncology, including digital
histopathology, molecular subtyping, cancer diagnosis,
prognostication, histological inference of genomic char-
acteristics, tumour microenvironment and emerging
frontiers such as spatial transcriptomics and pharmaco-
genomics. As the research matures, the future of applied
DL in oncology will likely focus on integration of med-
ical images and omics data using multimodal learning
that can identify biologically meaningful biomarkers. Ex-
citingly, the combination of multimodal learning and
explainability can reveal novel insights. Important pre-
requisites of widespread adoption of DL in clinical set-
ting are phenotypically rich data for training models and
clinical validation of the biological relevance of DL-
generated insights. We expect as new technologies such
as single-cell sequencing, spatial transcriptomics and
multiplexed imaging become more accessible, more ef-
forts will be dedicated to improving both the quantity
and quality of labelling/annotation of medical data. Fi-
nally, for DL to be accepted in routine patient care, clin-
ical validation of explainable DL methods will play a
vital role.
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