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Integrative epigenomic and high-
throughput functional enhancer profiling
reveals determinants of enhancer
heterogeneity in gastric cancer
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Abstract

Background: Enhancers are distal cis-regulatory elements required for cell-specific gene expression and cell fate
determination. In cancer, enhancer variation has been proposed as a major cause of inter-patient heterogeneity—
however, most predicted enhancer regions remain to be functionally tested.

Methods: We analyzed 132 epigenomic histone modification profiles of 18 primary gastric cancer (GC) samples, 18
normal gastric tissues, and 28 GC cell lines using Nano-ChliP-seq technology. We applied Capture-based Self-
Transcribing Active Regulatory Region sequencing (CapSTARR-seq) to assess functional enhancer activity. An
Activity-by-contact (ABC) model was employed to explore the effects of histone acetylation and CapSTARR-seq
levels on enhancer-promoter interactions.
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Results: We report a comprehensive catalog of 75,730 recurrent predicted enhancers, the majority of which are GC-
associated in vivo (> 50,000) and associated with lower somatic mutation rates inferred by whole-genome sequencing.
Applying CapSTARR-seq to the enhancer catalog, we observed significant correlations between CapSTARR-seq
functional activity and H3K27ac/H3K4me1 levels. Super-enhancer regions exhibited increased CapSTARR-seq signals
compared to regular enhancers, even when decoupled from native chromatin contexture. We show that combining
histone modification and CapSTARR-seq functional enhancer data improves the prediction of enhancer-promoter
interactions and pinpointing of germline single nucleotide polymorphisms (SNPs), somatic copy number alterations
(SCNAs), and trans-acting TFs involved in GC expression. We identified cancer-relevant genes (ING1, ARL4C) whose
expression between patients is influenced by enhancer differences in genomic copy number and germline SNPs, and
HNF4a as a master trans-acting factor associated with GC enhancer heterogeneity.

Conclusions: Our results indicate that combining histone modification and functional assay data may provide a more
accurate metric to assess enhancer activity than either platform individually, providing insights into the relative
contribution of genetic (cis) and regulatory (trans) mechanisms to GC enhancer functional heterogeneity.

Keywords: Enhancer landscape, Gastric cancer, CapSTARR-seq, Enhancer-promoter interactions, Enhancer

heterogeneity

Background
Enhancers are a specific class of cis-regulatory elements
involved in regulating cell-specific gene expression [1,
2]. Enhancer dysregulation has been reported to contrib-
ute to multiple human diseases, including complex con-
ditions such as cancer, Alzheimer’s disease, and diabetes
[3, 4]. Specific to cancer, recent studies have highlighted
enhancer dysregulation as a pervasive feature of malig-
nancy [5-7], and the functional impact of enhancer het-
erogeneity, both between and within tumors, in the
establishment and maintenance of tumor phenotypes,
cancer prognosis, and treatment response [6, 8, 9]. For
example, transcriptome-defined subtypes of medullo-
blastoma have distinct enhancer landscapes and cellular
origins [5]. Moreover, genomic variants including single
nucleotide polymorphisms (SNPs), somatic mutations,
chromosomal rearrangements, and somatic copy number
alterations (SCNAs) can drive enhancer-linked pheno-
typic heterogeneity [10—14]. Examples include focal am-
plifications of super-enhancers near the MYC locus in
17% of lung adenocarcinomas [11], and elevated FOXA1
genomic occupancy at specific enhancers driving metas-
tases in subgroups of pancreatic cancer [12]. In ovarian
cancer, the rs7874043 germline SNP within a PSIPI-
linked enhancer affects Spl binding, and the C allele is
associated with poor progression-free survival [13].
Super-enhancers comprise a cluster of putative en-
hancers occurring in close genomic proximity, typically
characterized by high levels of transcription factor (TF),
Mediator (MED) binding, and active chromatin marks
such as histone H3 lysine 27 acetylation (H3K27ac) [15,
16]. Compared to typical enhancers, super-enhancers
have been reported to be more significantly associated
with tumor-specific gene expression, cancer hallmarks,
and disease-associated genetic variation [15, 17, 18].

However, conflicting data persists in the field as to
whether super-enhancers truly exhibit distinct functional
characteristics and properties compared to regular en-
hancers, or whether they are simply assemblies of regu-
lar enhancers [19, 20]. One possible reason for this
controversy is that the field’s ability to accurately identify
functional enhancers and to assess their contribution to
target gene expression (ideally in a quantitative manner)
remains challenging. While H3K27ac enrichment has
been widely utilized as a surrogate of enhancer activity,
predicting enhancers based on histone ChIP data can re-
sult in both false-positive and false-negative findings
[21], and assigning specific target gene(s) to distal en-
hancers remains imperfect [22]. Traditionally, reporter
assays such as luciferase assays have been used to dir-
ectly quantify enhancer strength [23]; however, there are
currently very few data sets in the public domain where
such reporter measurements are available in a high-
throughput scale. More recently, highly parallelized en-
hancer functional assays, such as STARR-seq and
CapSTARR-seq, have been described as high-throughput
and quantitative approaches to assess enhancer activity
in mice, humans, and cancer cells, facilitating the identi-
fication of enhancers and enhancer-gene relationships
[24-26]. In CapSTARR-seq [24], DNA fragments bear-
ing candidate enhancer elements are captured using
custom-designed probes and cloned by homologous re-
combination into mammalian vectors downstream of a
basal promoter. The CapSTARR-seq library is then
transfected en masse into cell lines, and RNA-seq is per-
formed to detect mRNA reads corresponding to the en-
hancer sequence.

Gastric cancer (GC) is one of the most common can-
cers worldwide and a leading cause of global cancer-
associated mortality, showing high incidence in East



Sheng et al. Genome Medicine (2021) 13:158

Asia, East Europe, Central and South America [27]. Indi-
vidual gastric tumors are highly heterogeneous with dif-
ferent subtypes and distinct molecular characteristics,
clinical outcomes, and responses to therapy [28]. Recent
studies from our group and others have highlighted a
role for epigenetic alterations and enhancer heterogen-
eity in GC [29]. Here, by integrating enhancer informa-
tion from both CapSTARR-seq and histone-ChIPseq, we
explored the mechanistic basis of enhancer heterogen-
eity in GC. Combining CapSTARR-seq and histone pro-
filing data, we identified germline SNPs, SCNAs, and
trans-acting TFs driving enhancer heterogeneity between
different GC patients. We also provide evidence that
combining histone modification and CapSTARR-seq
functional data may provide a more accurate metric to
assess enhancer activity than either platform
individually.

Methods

Cell lines and primary tumor samples

Primary patient samples were obtained from the Sin-
gHealth Tissue Repository with approvals from institu-
tional research ethics review committees and signed
patient informed consent. ‘Normal (that is non-
malignant) samples used in this study refer to samples
harvested from the stomach, from sites distant from the
tumor, and exhibiting no visible evidence of tumor or
intestinal metaplasia/dysplasia upon surgical assessment.
Tumor samples were confirmed by cryosectioning to
contain >40% tumor cells. AGS, Hs738, Hs746T, Hslnt,
and SNU16 cells were obtained from the American Type
Culture Collection. FU97, IM95, IST1, KATOIII, MKN?7,
NUGC4, OCUM1, RERF-GC-1B, and SCH cell lines
were obtained from the Japan Health Science Research
Resource Bank. CLS145 and HGC27 cells were obtained
from the Cell Lines Service. NCC19, NCC24, NCC59,
SNU1750, SNU1967, SNU484, and SNU719 cell lines
were obtained from the Korean Cell Line Bank. LMSU
cells were obtained from the Riken Gene Bank. HFE145
cells were a gift from Dr. Hassan Ashktorab (Howard
University, Washington, DC). GES1 cells were a gift
from Dr. Alfred Cheng, Chinese University of Hong
Kong. YCC3, YCC7, YCC10, YCC1ll, YCC21, and
YCC22 were gifts from Yonsei Cancer Centre (Seoul,
South Korea). MycoAlert Mycoplasma Detection Kits
(Lonza) and MycoSensor qPCR Assay Kits (Agilent
Technologies) were used to detect mycoplasma contam-
ination. All cell lines were negative for mycoplasma
contamination.

Patient cohorts used in this study

All patient cohorts and respective datasets used in this study
have been previously published. H3K27ac ChIP-seq data of
18 treatment-naive primary GCs and matched normal gastric
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tissues from the SingHealth tissue repository (Singapore) were
downloaded from GSE51776 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE51776) [30], GSE76153 (https://
www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE76153) [31]
and GSE75898 (https://www.ncbinlm.nih.gov/geo/query/acc.
cgi?acc=GSE75898) [32]. Gene expression profiles of 200 pri-
mary GCs and 100 matched normal gastric tissue samples
from National Cancer Centre, Singapore (Singapore cohort)
were downloaded from GSE15459 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE15459) [33], while genotype
information of Singapore cohort GCs was downloaded from
GSE31168 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE31168) [34]. RNA-seq profiles of 415 primary
GCs and 35 normal gastric tissue samples from the TCGA
cohort were obtained from the Broad Institute TCGA Gen-
ome Data Analysis Center (GDAC) Firehose (https://gdac.
broadinstitute.org/). Gene expression profiles of 300 chemo-
naive primary GCs and 100 matched normal gastric tissue
samples from Samsung Medical Centre, Seoul, Korea (ACRG
cohort) were obtained from GSE62254 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254)  [35] and
GSE66222 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE66222) [36] respectively.

Nano ChIP-seq and data analysis

Nano-ChIP-seq was performed as previously described
[29]. We assessed the qualities of ChIP-seq libraries
(H3K27ac, H3K4mel and H3K4me3, H3K27me3 and
H3K36me3) in two steps. First, we performed quality
control checks on the raw sequence reads generated
from ChIP experiments through FastQC software (ver-
sion 0.11.7). Second, we used two independent methods,
CHANCE (CHip-seq ANalytics and Confidence Estima-
tion) and ChIP enrichment assessment, to validate
whether a library showed successful enrichment across
the genome [29]. If proven to be high-quality, sequence
reads were mapped to the human genome (hgl9) using
Burrows-Wheeler Aligner [37] (BWA-MEM, version
0.7.0), after trimming the first ten and last ten bases.
Reads with high mapping quality (MAPQ) > 10 were
retained for downstream analysis. To exclude PCR amp-
lification biases, fragments that had the same starting
and ending coordinates were removed by the “rmdup”
algorithm of Samtools (version 0.1.19). Peaks with sig-
nificant ChIP enrichment for H3K27ac, H3K4me3, and
H3K4mel relative to the input library (FDR< 0.05) were
detected using CCAT (version 3.0). ChIP enrichments
for H3K27me3 and H3K36me3 relative to input libraries
were detected using macs2 (-q 0.05, --broad). Sequence
coverage was computed using the R package “MEDIPS”
(version 1.20.1) with a 50 bp bin size and read length ex-
tension to 200 bp. Peak density within a specific region
was calculated by counting the total number of mapping
reads normalized by the library size and the region
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length, equivalent to the RPKM metric. To account for
background noise, background-corrected read densities
were computed by subtracting corresponding input sig-
nals from the ChIP signal.

MeDIP-sequencing and data analysis

In brief, DNA was sonicated using COVARIS S2 and
peak fragment distribution between 100 and 500 bp was
verified on an Agilent Bioanalyzer (Agilent Technolo-
gies) using the DNA100O chip. Fragmented DNA was
end-repaired, dA-tailed and adapter ligated using NEB-
Next® DNA Library Prep Master Mix Set for Illumina
(E6040). Samples were then spiked with control DNAs
that were unmethylated, methylated, and hydroxymethy-
lated (Diagenode C02040010) as a quality control meas-
ure. For each sample, input DNA that was not exposed
to the primary antibody was included. Adapter-ligated
DNA was subjected to immunoprecipitation with a pri-
mary monoclonal antibody against 5-methyl cytosine
(Diagenode C15200081) as previously described [38].
Real-time PCR using primers against spiked DNA con-
trols were performed to verify successful and specific en-
richment of methylated DNA. Immunoprecipitated
samples were amplified using Phusion® High-Fidelity
DNA Polymerase (M0530) and NEBNext® Multiplex Oli-
gos for Illumina® (E7335) for 10 cycles. Amplified librar-
ies were run on the Agilent Bioanalyzer using the High
sensitivity DNA kit prior to Illumina sequencing using a
single-end 100 base pair configuration. Reads were
mapped to the human genome (hgl9) using Burrows-
Wheeler Aligner (BWA-MEM, version 0.7.0), after trim-
ming the first ten and last ten bases. Reads with high
mapping quality (MAPQ) > 10 were retained for down-
stream analysis. To exclude PCR amplification biases,
fragments that had the same starting and ending coordi-
nates were removed by the “rmdup” algorithm of Sam-
tools (version 0.1.19).

Identification of predicted enhancers/super-enhancers

We detected genomic regions enriched for H3K27ac
ChIP signals, previously shown to mark active cis-regula-
tory elements. To exclude potential promotor predic-
tions, we selected regions distant from known annotated
TSSs (>2.5kb, GENCODE v19) as predicted enhancer
elements. For each cell line, average profiles of histone
modifications (H3K27ac, H3K4mel, and H3K4me3) and
DNA methylation (5mC) at predicted enhancers and ac-
tive annotated promoters (500bp flanking annotated
TSSs) were plotted using the R package “ngsplot.” Here,
promoter regions overlapping H3K27ac peaks were de-
fined as active promoters. Predicted enhancer regions
with at least one base overlap across multiple cell lines
were merged using Bedtools (version 2.25.0) to form a
consistent coordinate reference. Predicted enhancers
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were further subdivided into predicted super-enhancers
or typical enhancers using the ROSE algorithm with de-
fault parameters.

In vivo validation of GC enhancer catalog

“Recurrent” predicted enhancers were identified as those
enhancers occurring in at least two GC cell lines. For ¢-
Distributed Stochastic Neighbor Embedding (¢-SNE), we
used signals from cell-line-predicted recurrent enhancers
showing H3K27ac enrichment in two or more patients.
Read densities over cell-line-predicted recurrent en-
hancers across GC samples and matched normal tissues
were corrected for potential batch effects using ComBat.
t-SNE analysis was then performed using the R package
“Rtsne” and plotted using R. WGS data from 212 GC
samples was processed as described in the previously
published paper [39]. The somatic point mutation rate
over a set of regions was calculated as the total number
of somatic point mutation calls divided by the sum of re-
gion lengths. Considering the variation in background
mutation rates of GCs, the relative somatic point muta-
tion rate was calculated as the log2 fold change of the
somatic point mutation rate over the background point
mutation rate.

CapSTARR-seq and data analysis

CapSTARR-seq was performed as previously described
[40]. Paired-end sequencing reads were aligned to hu-
man genome hgl9 by BWA-mem. Uniquely mapped
fragments with MAPQ = 10 were collected for further
analysis. To exclude PCR amplification biases, fragments
that had the same starting and ending coordinates were
removed by the Samtools “rmdup” algorithm. To gener-
ate an overview of CapSTARR-seq signals, we created
circular visualizations of CapSTARR-seq signals over re-
gions within 2000 bases flanking probes across the hu-
man genome using the R package “RCircos” (version
1.2.1). To identify potential functional enhancers, we
used macs2 (default setting; g value < 0.05; keep-dup all;
BAMPE mode; nomodel mode) to call peaks from all
reads combined from three biological replicates for each
cell line, OCUM1 or SNU16. We filtered out enhancer
peaks with summits not overlapping CarSTARR-seq
probes or the corresponding predictive enhancer regions
called by CCAT (using H3K27ac signals). The retained
enhancers were defined as active functional enhancers
and subsequently subdivided into four categories: in-
active (fold change < 1.5), weak (1.5 < FC < 2), moderate
(2 < FC <3), and strong (FC > 3). Average profiles of
histone modifications (H3K27ac, H3K4mel, and
H3K4me3) and DNA methylation (5mC) over strong,
moderate, or weak enhancers were generated by extract-
ing background-corrected ChIP-seq signal from wiggle
files around the summits of these selected enhancers.
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We calculated the mean RPKM values for the epigenetic
marks in each 50 bp non-overlapping window spanning
6 kb around the summits of enhancers.

We used Mann—Whitney U tests to compare
CapSTARR-seq signals over predicted enhancers/super-
enhancers defined using H3K27ac signals. The
CapSTARR-seq density within an enhancer was com-
puted using bigWigAverageOverBed (version 2). We cal-
culated the number of TF binding sites over an
enhancer using the ReMap database. To remove the po-
tential confounding effect of DNA accessibility, DNA
copy number, and region length of predicted enhancers
on CapSTARR-seq differentiation, we regressed out the
effects of those three factors from CapSTARR-seq sig-
nals using a generalized linear model (GLM). DNA ac-
cessibility and DNA copy number levels of an enhancer
were estimated using ATAC-seq data and WGS data, re-
spectively. We compared the corrected CapSTARR-seq
signals and TF binding enrichments over predicted en-
hancers/super-enhancers using Mann—Whitney U test.

ATAC-seq and data analysis

ATAC-seq was performed as previously described [40].
Sequence reads were mapped to the human genome as-
sembly (hg38) with Bowtie2. We used LiftOver to con-
vert genome coordinates for human build GRC38 (hg38)
to GRCh37 (hgl9). Mitochondrial and viral reads were
filtered out. We called ATACseq peaks using MACS2
(callpeak function with parameters —nomodel and -B),
and generated 300 bp bins flanking each summit. We fil-
tered promoter peaks (<2kb from TSS) and non-cell-
specific peaks open in over 30% of ENCODE cell lines
[41-43].

Learning of ChromHMM states

A 15-state ChromHMM [44] model was learned by virtu-
ally concatenating consolidated data corresponding to a
set of 5 chromatin marks assayed in OCUM1 and SNU16
cells (H3K4me3, H3K27ac, H3K4mel, H3K27me3, and
H3K36me3). We decided to use a 15-state mode since it
provided sufficient resolution to resolve biologically mean-
ingful chromatin patterns. For each state, enrichments for
different annotations were computed at 200-bp resolution.
We used genomic annotations obtained through the
UCSC Genome Browser for RefSeq transcription start site
(TSS), transcript end site (TES), gene, exon, and regions
within 2kb of the TSS, CpG islands and nuclear lamina
associated domains [45] were obtained through the UCSC
Genome Browser.

ABC model to infer enhancer-promoter interactions

We selected all predicted enhancers captured by
CapSTARR-seq probes as candidate regulatory elements
in OCUM1 and SNU16 cells. Enhancer activity of
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candidate elements was assessed by using a combination
of quantitative H3K27ac ChIP-seq and CapSTARR-seq
signals. H3K27ac levels and enhancer strengths assessed
by functional enhancer assay are commonly used to pre-
dict enhancers and are predictive of the expression of
nearby genes. Contact for each enhancer-gene pair in the
ABC model was estimated using a function of the gen-
omic distance between the enhancer and the TSS of the
gene (Contact = Distance ). 430 highly differentially
expressed genes between OCUM1 and SNU16 cells were
identified using a threshold method (Gene expression dif-
ference >200 TPM). For each gene, all captured
H3K27ac-defined enhancers within 5Mb of the gene’s
promoter were included as candidate functional en-
hancers. The total effect of all functional enhancers on tar-
get gene expression was assessed as the sum of ABC
scores of those enhancers. We validated the ABC model
in five pairs of GC lines (AGS/LMSU, CLS145/YCC10,
IM95/YCC3, MKN7/YCC7, and YCC21/KATOIII).

GRO-cap and HiDRA data analysis

Mapping of transcription start sites (TSSs) captured by
GRO-cap in human lymphoblastoid B cell (GM12878)
and chronic myelogenous leukemia (K562) ENCODE
Tier 1 cell lines was collected [46]. H3K27ac enriched
regions and read density profiles in GM12878 and K562
cells are available through the ENCODE data portal
(www.encodeproject.org) under accession nos. ENCS
ROOOAKC (https://www.encodeproject.org/experiments/
ENCSRO00AKC/) [47], and ENCSRO00AKP (https://
www.encodeproject.org/experiments/ENCSRO00AKP/)
[48]. To assess the significance of enhancer-promoter in-
teractions in the genomic regions containing GRO-cap
TSS, we randomly permuted positions of sequences
within H3K27ac enriched regions distal to annotated
promoters using shuffleBed with the -incl flag. To assess
the significance of enrichment, we performed 10,000
shuffles of sequences. An empirical P value was then de-
rived by counting the number of times where the num-
ber of randomly shuffled sequences overlapping the
enhancer regions interacting with promoters exceeded
the observed number of genomic regions containing
GRO-cap TSS overlapping the enhancer regions inter-
acting with promoters. Raw sequencing files of the
HiDRA dataset were obtained from the Sequence Read
Archive (accession no. SRP118092 (https://trace.ncbi.
nlm.nih.gov/Traces/sra/?study=SRP118092) [49]) and
processed as described by Wang et al [50]. By analyzing
this dataset, we identified ~ 47,000 promoter-distal gen-
omic regions that are enriched for HiDRA signals which
was referred to as “STARR active enhancers.” STARR-
seq active regions and read density profiles in K562 cells
were collected [51].
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RNA-seq analysis

RNA-seq was performed as previously described [52].
RNA-seq reads were mapped to the human reference
genome (hgl9) using STAR (version 2.6.1a). The per-
base sequencing quality and the per sequence quality
scores of the mapped reads were assessed using FastQC.
Transcript abundances at the gene level were calculated
in the TPM metric using RSEM (version 1.2.31).

Identification of differential enhancers

CapSTARR-seq RPKM values were filtered by predeter-
mined log fold changes (>1.5) and absolute difference
(>5 RPKM) between OCUMI1 and SNUI16 cells. The
same filtering was also performed on the H3K27ac ChIP
data. As we have demonstrated that combining
H3K27ac-enrichment and CapSTARR-seq signal to esti-
mate enhancer activity outperforms the use of either of
these features, 1,888 differential enhancers were identi-
fied from the union of regions obtained for CapSTARR
and H3K27ac analyses.

Identification of SNPs and CNAs

Sequencing reads from WGS libraries of GC cell lines
were mapped to the human reference genome (hgl9)
using BWA. Duplicated reads marked by Picard (version
1.9.2) were removed. Indel regions were realigned by
using GATK [53]. Base quality score recalibration was
conducted by GATK. SNPs were called using GATK
Haplotype Caller. Copy number changes are generated
by using CNVkit with the default parameters (bcbio-
nextgen v0.9.3). As GC cell lines have no matched germ-
line samples, CNVs were called against a non-matched
normal sample. CNA breakpoints are defined as the
ends of non-diploid segments. As the purity of cell lines
is 100%, the DNA copy number of a segment is equal to
2"og2(tumor coverage/normal coverage). The copy
number of an enhancer is defined as the copy number of
the segment at which it is located.

CNA-associated differential enhancer analysis

To detect differential enhancers associated with CNA,
996 differential enhancers with DNA copy numbers
called as abnormal in either SNU16 or OCUM1 were
obtained (referred to as copy-number-abnormal en-
hancers thereafter). For each copy-number-abnormal en-
hancer, we employed the GLM model to test whether
there is a significant correlation between H3K27ac sig-
nals and DNA copy numbers across 28 cell lines. At
EDR threshold of 10%, 58 copy-number-abnormal en-
hancers exhibiting a significant correlation between
H3K27ac signals and DNA copy numbers were defined
as copy-number-associated. For each CNA-associated
enhancer, we used the Pearson correlation test in the R
package “stats” to estimate the significance of the
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correlation between expression levels of target genes and
copy numbers across multiple cell lines. P values of the
Pearson correlation tests were adjusted using the
Benjamini-Hochberg method. Level 3 TCGA genome
segment tables inferred from Affymetrix SNP 6.0 array
data for 415 GC and 35 normal gastric samples were
downloaded from the Broad Institute TCGA Genome
Data Analysis Center (GDAC) Firehose (http://
firebrowse.org/?cohort=STAD).

SNP-associated differential enhancer analysis

To exclude potential confounding effects of CNAs on
identifying differential enhancers caused by SNPs, we fo-
cused on 892 differential enhancers located in diploid re-
gions in both OCUM1 and SNU16 cells (referred to as
copy-number-normal enhancers thereafter). As differen-
tial enhancers were defined by comparing OCUMI1 and
SNU16 cells, only SNP calls covered by non-reference
bases in either of the two cells were retained. Finally, a
set of 605 SNPs within copy-number-normal enhancers
were obtained. We then employed the genotype-
independent signal correlation and imbalance (G-SCI)
pipeline to detect SNPs whose genotype correlates with
histone acetylation levels (HaQTLs). To reduce experi-
mental and other unknown variations, H3K27ac signals
over differential enhancers across 28 cell lines were
quantile-normalized before HaQTLs calling. For each
SNP, the raw P value obtained from the G-SCI test was
adjusted using Benjamini-Hochberg method. At FDR
threshold of 10%, 207 candidate HaQTLs were identi-
fied. To further explore how those HaQTLs cause his-
tone acetylation alterations across cell lines, 207
HaQTLs were assessed for functional impact using Reg-
ulomeDB. 43 HaQTLs predicted by RegulomeDB [54] to
influence protein DNA binding (RegulomeDB score 1 or
2) were retained for subsequent genotype-expression
correlation analysis.

Gene expression profiles of 200 GC and 100 matched
normal gastric samples from Singapore were generated
using Affymetrix Human Genome U133 Plus 2.0 Array
(GSE15459 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE15459) [33]) and processed as described
previously [55]. Genotype information of Singapore GC
patients was extracted from the.CEL files produced from
Affymetrix Genome-Wide Human SNP 6.0 Arrays
(GSE31168 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE31168) [34]) using the R package
“crlmm.” Outliers classified as gene expression values
that fall more than 1.5 interquartile ranges (IQRs) below
the first quartile or above the third quartile. Outliers
were excluded from each genotyping group to increase
statistical power. P values were calculated using Stu-
dent’s t-test.
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ARL4C shRNA knockdown and INGT overexpression
For ARL4C knockdown experiments, shRNA sequences
targeting ARL4C were cloned into pLKO.1l lentiviral
plasmid vector and transfected into HEK293T for virus
generation.

shRNA sequences used were:

shARL4C #1: CCGGGGAGCTGCGAAGTCTGATTT
ACTCGAGTAAATCAGACTTCGCAGCTCCTTTTTG

shARL4C #2: CCGGCGAGGGCATGGACAAGCTCT
ACTCGAGTAGAGCTTGTCCATGCCCTCGTTTTTG

shLuc: CCGGCACTCGGATATTTGATATGTGCTC
GAGCACATATCAAATATCCGAGTGTTTTTG

LMSU cells were infected with lentiviral particles and
selected with 2 pg/ml puromycin for at least 3 days be-
fore western blot validation and cell proliferation assays.

For INGI overexpression, the following primers were
used to clone the INGI cDNA:

ING1-F: CGACGATGACAAGGGATCCATGTTGA
GTCCTGCCAACGGG

INGI-R: GGAATTGATCCCGCTCGAGCTACCTG
TTGTAAGCCCTCTC

ING1 c¢DNA was cloned into a pHR CMVGFPIR-
ESWSIn18 based vector (gift from Dr. Shang Li, Duke-
NUS) using Gibson Assembly and transfected into
HEK293T for virus generation. LMSU cells were in-
fected with lentiviral particles and selected with 400 pg/
ml hygromycin for at least 3 days before western blot
validation and cell proliferation assays.

Western blot

Cells were harvested and lysed in RIPA buffer (Sigma) and
incubated on ice for 10 min. Lysates were cleared by cen-
trifuging at 9000 rpm for 10 min. Protein concentrations
were measured using the Pierce BCA protein assay kit
(Thermo Scientific). Samples were diluted in 4X Laemmli
Buffer (Biorad), boiled at 95 °C for 10 min, and loaded for
SDS-PAGE. The following antibodies were used: ARL4C
(#10202-1-AP, Proteintech), ING1 (#14625, Cell Signalling
Technology) and GAPDH (#60004-1-Ig, Proteintech).

Cell proliferation assays

Cell proliferation rates were measured using the Cell
Counting Kit-8 (Dojindo). Briefly, 1000-3000 cells were
seeded in 96-well plates and cell density was measured
every 2days following the manufacturer’s protocol. P
values were derived using Student’s ¢ test with P values
<0.05 considered as statistically significant.

Survival analysis

Three hundred GC patients in the ACRG cohort were col-
lected to study the association between expression levels of
selected genes and GC survival. We employed Kaplan—Meier
survival analysis with the overall survival as the outcome
metric. Log-rank tests were used to estimate the significance
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of Kaplan—Meier curves. We established multivariate Cox
proportional-hazards models using the R package “survmi-
ner” Gene expression of the ACRG cohort was profiled
using Affymetrix Human Genome U133plus 2.0 Array
(GSE62254 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE62254) [35] and GSE66222 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE66222)  [36]) and
processed as described previously [28].

TF-associated differential enhancer analysis

We interrogated enrichments of TFs in OCUM1-specific
enhancers and SNU16-specific enhancers using HOMER
with default parameters. The top 5 TFs identified from
the HOMER outputs were used for differential expres-
sion analysis. Level 3 TCGA RNA-seq normalized
matrix for 415 GC and 35 normal gastric samples was
downloaded from the Broad Institute TCGA Genome
Data Analysis Center (GDAC) Firehose (https://gdac.
broadinstitute.org/). HNF4a-associated differential en-
hancers were defined as SNU16-specific enhancers exhi-
biting a significant correlation between HNF4a binding
enrichment and H3K27ac signals among multiple lines.
HNF4« ChIP data of GC cell lines and RNA-seq data of
HNF4a perturbation were downloaded from GSE114018
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE114018) [56] and were processed as previously de-
scribed [52].

Results

Predicted enhancer landscapes in GC cell lines reflect
regulatory function in vivo

We analyzed 132 chromatin profiles covering multiple his-
tone H3 modifications (H3K27ac, H3K4mel, H3K4me3,
H3K27me3, and H3K36me3) across 28 GC cell lines, 4
gastric normal cell lines, 18 primary GCs and 18 matched
normal gastric tissues. Of these profiles, approximately
one-third (48 profiles) were newly generated for this study,
and have not been previously reported. Tables S1 and S2
(Additional file 1) provide clinical information and se-
quencing statistics. Several of the profiles were generated
using Nano-ChIP-seq, previously shown to exhibit good
concordance with both conventional ChIP-seq and also
orthogonal ChIP-qPCR results [29, 55]. We performed
two independent quality control assessments of the Nano-
ChIP-seq data: ChIP-seq enrichment analysis over known
promoters, and assessment by the quality control software
CHANCE (CHip-seq ANalytics and Confidence Estima-
tion) [57]. Comparison of input-corrected ChIP-seq and
input signals at 1000 promoters associated with highly
expressed protein-coding genes demonstrated successful
enrichment in the vast majority (99%) of H3K27ac and
(100%) H3K4me3 libraries (Additional file 1: Table S2).
CHANCE analysis also revealed that the majority (75%) of
ChIP libraries exhibited successful enrichment, including
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H3K4mel. We also calculated FRiP (Fraction of Reads in
Peaks) scores for all ChIP-seq samples. We found that
80% of ChIP-seq libraries have FRiP scores > 0.1, indicat-
ing that the high majority of our Nano-ChlIPseq libraries
are of acceptable quality (Additional file 1: Table S2).
Besides Nano-ChIP-seq, the samples were also charac-
terized by DNA methylation profiling (MeDIP-seq,
see Methods), ATAC-seq (Assay for Transposase-
Accessible Chromatin using sequencing), whole-
genome sequencing (WGS), and Illumina RNA-
sequencing. Figure 1 provides a graphical summary of
the analytical workflow performed in this study.

To map candidate cis-regulatory elements on a
genome-wide scale, we identified genomic regions of
H3K27ac enrichment, previously shown to be associated
with active promoters and enhancers [58] (Fig. 2a). We
initially focused on the GC cell lines, to identify en-
hancers active in epithelial cancer cells and to avoid po-
tential stromal contamination. Retaining H3K27ac ChIP
libraries with > 13,000 CCAT-detected peaks, we se-
lected peaks distal from annotated TSS sites (> 2.5 k), ex-
cluding four GC lines (NCC24, NUCG4, RERF-GC-1B,
and YCC22). Using this approach, we identified 5,451—
111,571 predicted distal enhancers per GC cell line. The
wide range of predicted enhancers across GC lines is un-
likely to be caused by technical variation, as they are
highly reproducible across biological replicates (R =
0.86-0.89, Fig. 2b and Additional file 2: Fig. S1). More-
over, all 24 GC lines showed successful H3K27ac enrich-
ment in the TSS flanking regions of 3,504 housekeeping
genes identified from previously published work [59],
demonstrating that our methodology can robustly detect
H3K27ac enriched regions across the whole genome
(Additional file 2: Fig. S2), and supporting the notion
that the variation between lines is not due to the tech-
nical inability to detect H3K27ac signals. Our results are
similar to previous studies of luminal breast cancer,
where the number of predicted enhancers across bio-
logical samples ranges from 2,383 to 172,092 [6].

Concordant with previous studies [25, 58, 60], the pre-
dicted enhancer regions manifested enriched bimodal
H3K27ac signals, H3K4me3 signal depletion, H3K4mel
signal enrichment, and were distinct from promoter-
associated regions that are H3K4me3/H3K4mel positive
(Fig. 2¢). Both predicted enhancers and active promoters
were depleted for 5-methylcytosine (5mC), a marker of
gene repression and inactivation (Fig. 2c). We detected
183,788 predicted distal enhancer regions in total, where
some enhancers occurred in multiple lines (“recurrent”;
present in 2 or more lines) while other regions existed in
only one line (“private”). The frequency of recurrent pre-
dicted enhancers approached saturation at about 18 GC
lines, larger than the number of GC lines analyzed in
previous studies (n = 11; Fig. 2d) [29]. Increasing the
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recurrence threshold from 2 to 3 did not appreciably
alter the number of cell lines required for saturation
(Additional file 2: Fig. S3). We thus defined a compre-
hensive GC enhancer catalog of ~75K enhancers
present in 2 or more lines (n = 75,730).

Using the ROSE algorithm [61], we also identified
super-enhancers from the GC enhancer catalog, corre-
sponding to enhancer subgroups spanning large genomic
regions and associated with high levels of TF binding
and H3K27ac histone marks. We identified 483 to 2,089
predicted super-enhancers per GC line and a consensus
set of 8,293 super-enhancers across the lines. Supporting
previous findings that super-enhancers play important
roles in cell identity and cancer hallmarks, we observed
super-enhancers associated with several known GC on-
cogenes, such as MYC, KLF5, and EGFR (Additional file
2: Fig. S4).

To determine which cell-line-predicted enhancers are
also present in vivo, we compared H3K27ac enrichment
levels for these regions across 18 primary GCs. Of
75,730 cell-line-predicted enhancers, around two-thirds
(n = 52,457) were also present in two and more primary
GC samples (Fig. 2e). Of 52,457 cell-line-predicted en-
hancers present in primary tumors, around two-thirds
(n= 34,438; 66%) exhibited tumor-associated gain in two
or more primary GCs (>2-fold enrichment in tumor,
minimum 0.5 RPKM difference, Additional file 2: Fig.
S5). Supporting their association with cancer malig-
nancy, ¢-Distributed Stochastic Neighbor Embedding (z-
SNE [62]) using the predicted enhancers confirmed sep-
arations between GCs and matched normal tissues (Fig.
2f). In addition, integrating somatic mutation rates from
previously published WGS data from 212 GCs con-
firmed that regions harboring predicted super-
enhancers/enhancers were associated with significantly
lower somatic mutation rates (P <2 x 107, Student’s ¢
test, Fig. 2g). As cis-regulatory elements are known to be
more accessible to DNA repair complexes, this result
further supports the in vivo validity of the GC enhancer
catalog.

Functional enhancer profiling reveals intrinsic regulatory
potential and elevated super-enhancer activity

While H3K27ac-enrichment is widely used as an epigen-
etic surrogate of enhancer activity, only a limited num-
ber of studies have experimentally investigated the
extent to which H3K27ac-enriched regions exhibit bona
fide transcriptional activity. To explore if enhancer re-
gions predicted by H3K27ac can indeed function as true
enhancers, we employed CapSTARR-seq technology to
assess enhancer activity (Fig. 3a). Notably, as enhancer
elements in CapSTARR-seq are cloned into exogenous
plasmids, CapSTARR-seq transcriptional signals are
likely to reflect intrinsic transcriptional activity of the
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(See figure on previous page.)

Fig. 1 Workflow of analyses conducted in this study. The diagram describes the general flow of analyses performed in this study and datasets
used. Briefly, distal enhancer landscapes of GC were profiled using H3K27ac ChIP-seq, supported by additional H3K4me3 ChiIP-seq, H3K4me1
ChiP-seq, and 5mC MeDIP-seq datasets. CapSTARR-seq profiling was then performed to identify functional enhancers, and integrated with ATAC-
seq measuring chromatin accessibility. Enhancer-gene regulation was investigated using the ABC (“Activity-by-contact”) model, where RNA-seq
was used as a readout of target gene expression levels. Finally, we examined potential cis- and trans-regulation mechanisms of differential
enhancers. For cis-regulation, we derived SNP and CNA (copy number alteration) information using WGS datasets

enhancer, in the absence of other factors such as native
chromatin patterns and topologically associating do-
mains (TADs).

Informed by the GC enhancer catalog, we designed
CapSTARR-seq probes targeting 78,974 regions (median
size 5kb). In brief, 57.6% of the CapSTARR-seq probes
(n = 45,526) were located within super-enhancers; 16.3%
within typical enhancers (n=12,863); and as negative
controls we included 20,585 probes (n = 20,585; 26.1%)
capturing genomic regions outside of predicted enhancer
regions. The CapSTARR-seq library, covering ~ 100,000
genomic regions, was transfected into two GC lines
(SNU16 and OCUM1), and RNA-seq was performed to
provide a quantitative assessment of enhancer activity.
We selected OCUM1 and SNUI16 cells as cell line
models for two reasons. First, OCUM1 and SNU16 cells
were validated as two lines that closely resemble GC tu-
mors by Celligner, a tool aligning tumor and cell line
transcriptional profiles [63]. Second, OCUMI1 and
SNU16 have been previously used as GC models in
many other published studies, and are thus widely
regarded as accepted GC models in the field [29, 64].
CapSTARR-seq enriched regions (CaPERs) were identi-
fied using MACS2 (g value <0.05). We observed high
correlations between CapSTARR-seq replicates per-
formed in OCUML1 (Fig. 3b) and SNU16 cells, indicative
of high reproducibility (Pearson R = 0.91-0.95 for
OCUM]1; Pearson R = 0.77-0.81 for SNU16; Additional
file 2: Fig. S6). Figure 3c depicts CapSTARR-seq activ-
ities of enhancers captured across the whole human gen-
ome in OCUM1 or SNU16 cells.

We defined CapSTARR-seq functional enhancer activ-
ity as the CapSTARR-seq fold change (FC) over input
signal and demarcated three groups based on FC values:
weak (1.5 < FC <2), moderate (2 < FC < 3), and strong
(FC = 3). We then proceeded to explore relationships
between levels of epigenetic mark enrichment (e.g.,
H3K27ac) against CapSTARR-seq activity. As antici-
pated, enhancers exhibited significantly  higher
CapSTARR-seq signals compared to negative controls
(P<2 x 107, Mann—Whitney U test, Additional file 2:
Fig. S7). When analyzed against H3K27ac, H3K4mel,
H3K4me3, and DNA methylation, we found that strong
enhancers displayed the highest H3K27ac and H3K4mel
signals while moderate enhancers were associated with
intermediate levels (H3K27ac: P < 0.01; H3K4mel: P <

0.05; Additional file 2: Fig. S8). All three CapSTARR-seq
categories were also depleted for 5mC (Additional file 2:
Fig. S8).

To further investigate associations between chromatin
marks and CapSTARR-seq activity, we applied a multi-
variate hidden Markov model (ChromHMM, see the
“Methods” section) that utilized combinational patterns
of five chromatin marks (H3K4me3, H3K27ac,
H3K4mel, H3K27me3, and H3K36me3) to distinguish
chromatin states. We defined 15 states showing distinct
biological enrichments for transcriptional start sites
(TSSs), transcriptional end sites (TESs), genes, exons,
CpG islands, and inactive genomic regions associated
with the nuclear lamina (Fig. 3d). We focused on six
enhancer-associated chromatin states, which we refer to
as strong enhancer 1-2, genic enhancer, weak enhancer
1-2, and bivalent enhancer (states 5-10) (Fig. 3d). We
found that strong enhancers (state 8-9) are marked by
H3K27ac and H3K4mel, whereas weak enhancers (state
6-7) are solely marked by H3K4mel. We next asked if
different enhancer classes might exhibit distinct patterns
of CapSTARR-seq activity. We observed that the
CapSTARR-seq functional enhancer activity at strong
enhancer elements is greater than that of weak enhancer
elements, supporting consistent associations between
CapSTARR-seq activity and chromatin state (Fig. 3e).

Although in aggregate enhancer regions exhibited sig-
nificant consistency between CapSTARR-seq activity
and H3K27ac signals, in absolute terms only 21-26% of
CaPERs overlapped H3K27ac-enriched region in the
lines tested (Fig. 3f). As expected, we observed signifi-
cant correlations between H3K27ac signals and
CapSTARR-seq signals over H3K27ac active CaPERs in
both OCUMI1 and SNU16 cells (OCUMI1: Pearson R =
042, P <0.001; SNU16: Pearson R = 0.36, P <0.001;
Additional file 2: Fig. S9). As a representative example,
Fig. S10 (Additional file 2) depicts a H3K27ac inactive
CaPER at the SNX30 genomic region in OCUMI cells,
exhibiting high CapSTARR-seq signals but no H3K27ac
and ATAC-seq enrichment. We reasoned that these re-
sults might be due to, at least in part, by CapSTARR-seq
measuring signals from cytoplasmic reporter constructs
and thereby likely reflecting a region’s potential regula-
tory activity independent of native chromatin context.
Three findings support this model. First, in SNU16 and
OCUM1 cells, we found that regions with positive
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Fig. 2 Distal enhancer landscapes of GC cell lines. a Histone profiles of OCUM1 and SNU16 cells show enrichment of H3K27ac and H3K4me3
around the UTP15 TSS. A predicted distal enhancer enriched for H3K27ac and > 2.5 kb distant from UTP15 TSS is observed. b Comparison of
H3K27ac signals over common predicted enhancers between two KATOIIl replicates. € Genome-wide average profile of chromatin marks
(H3K27ac, H3K4me1, and H3K4me3) and DNA methylation (5mC) at all predicted enhancers and active promoters. Active promoters are those
annotated promoters overlapping H3K27ac peaks. H3K27ac, H3K4me1, and H3K4me3 profiles were generated by ChIP-seq. 5mC profiles were
generated by MeDIP-seq. RPM: Reads per million mapped reads. The “summit” of a predicted enhancer region refers to the midpoint of the
bimodal peak. The indicated windows (1 kb, 6 kb) were chosen as indicated to highlight the bimodal pattern of histone marks. d Recurrence rates
of predicted enhancers. Recurrent predicted enhancers were identified as those enhancers occurring in at least two GC cell lines. Data presented
are the mean percentage +/— standard deviation of commonly predicted enhancers found in two or more gastric cancer cell lines, as a function
of the number of cell lines. e Distribution of predicted super-enhancer and typical enhancers present in GCs across the human genome. f t-
distributed stochastic neighbor embedding (t-SNE) analysis using predicted enhancers present in GCs reveals separation between GCs and
matched normal tissues (n =36). g Difference in somatic point mutation rates among predicted super-enhancers, typical enhancers, and randomly
selected genomic regions. P value: two-side Student’s t test. Relative somatic point mutation rate was calculated as the log2 fold change of the

somatic point mutation rate over the background point mutation rate

CapSTARR-seq signals but inactive by H3K27ac were
associated with reduced H3K4mel and ATAC-seq sig-
nals, implying that these are ‘dormant’ enhancers with
lower accessibility to trans-acting factors (Fig. 3g). Sec-
ond, among CaPERs, approximately four-fifths of en-
hancers “dormant” in either OCUM1 or SNUI16 cells
exhibited an “open” chromatin state (i.e., active ATAC-
seq signals) in at least one of 17 GC lines (Fig. 3h).
Third, we observed that the gene expression levels of
genes near H3K27ac active CaPERs are higher than that
near H3K27ac inactive CaPERs (OCUMI: P = 8.1 x
1073 SNU16: P = 3.3 x 10'% Mann—Whitney U test,
Additional file 2: Fig. S11). These findings thus suggest
that CapSTARR-seq and H3K27ac data are complemen-
tary, with the former reflecting regions with regulatory
potential, while the latter reflects native chromatin
accessibility.

We next asked if super-enhancers and typical en-
hancers might exhibit distinct patterns of CapSTARR-
seq activity. We found that super-enhancer regions dem-
onstrated statistically higher functional enhancer signals
than typical enhancers (P <2.22 x 107'¢, Mann—Whit-
ney U test, Fig. 3i). Using a generalized linear model
(GLM), we confirmed that the increased activity levels
of super-enhancers were independent of differences in
DNA accessibility (assessed by ATAC-seq), DNA copy
number levels, and genomic length (Additional file 2:
Fig. S12). When analyzed at the level of DNA se-
quence and comparing TF binding sites over each
predicted enhancer (using the Remap database [65]),
we discovered that TF binding occupancy was associ-
ated with increasing functional enhancer strength
(Fig. 3j). These results demonstrate that even when
decoupled from their original chromatin context, re-
gions associated with super-enhancers still exhibit
higher functional enhancer activity than typical en-
hancers, and this increased activity is likely due to an
abundance of dense TF cis-binding occupancy at
super-enhancer regions.

Combining CapSTARR-seq enhancer activity with H3K27ac
profiling may improve prediction of enhancer-promoter
connections

Due to their localization at distal genomic regions, accur-
ately assigning specific genes to enhancers (“enhancer-
gene connections”) remains challenging [66, 67]. Previous
studies have used H3K27ac-enrichment as a surrogate of
enhancer activity to predict enhancer-promoter connec-
tions [68, 69]. To explore if CapSTARR-seq functional en-
hancer activity might enhance the prediction of enhancer-
promoter interactions, either alone or combined with
H3K27ac, we employed the recently-published Activity-
by-contact (ABC) model [70], previously developed to pre-
dict functional enhancer—gene connections. Briefly, in the
ABC model, the quantitative effect of a regulatory element
on the expression of a target gene depends on its own
strength as an enhancer (Activity) weighted by the fre-
quency of its 3D contact with the gene’s promoter (Con-
tact). The relative contribution (ABC score) of an
enhancer to one gene’s expression is calculated by that en-
hancer’s effect divided by the total effect of all enhancers
associated with the gene (Fig. 4a).

We first examined if differential enhancer landscapes
based on differences in H3K27ac ChIP-seq signals can
explain (at least in part) gene expression differences be-
tween OCUM1 and SNU16 cells using the ABC model.
Operationally, we estimated Activity as the level of
H3K27ac-enrichment at an enhancer region, and Con-
tact as a function of the genomic distance between the
enhancer and the TSS of the gene (Contact = Dis-
tance™") (Fig. 4b). We selected 430 highly differentially
expressed genes between OCUM1 and SNUI16 cells. For
each gene, we included all H3K27ac-predicted enhancers
within 5Mb of the gene’s promoter as candidate func-
tional enhancers. The total effect of all functional en-
hancers on gene expression was estimated as the sum of
ABC scores of those enhancers. We found that gene ex-
pression differences between OCUM1 and SNU16 were
significantly correlated with ABC score differences
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Fig. 3 (See legend on next page.)
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using the ReMap database. P values: Mann-Whitney U test

Fig. 3 CapSTARR-seq Functional Enhancer Profiling. a CapSTARR-seq experimental workflow. b H3K27ac (red) and CapSTARR-seq (blue) profiles at the
ABHD11, CLDN3, and CLDN4 loci in OCUM1 cells. The top blue track depicts CapSTARR-seq signals merged from three CapSTARR-seq replicates. Black
boxes denote CapSTARR-seq probes. ¢ Circos visualization of CapSTARR-seq signals across the human genome in SNU16 (the inner circle) and OCUM1
cells (the outer circle). HDACT, MYC, and CD44 are highlighted as genes associated with CapSTARR-seq high enhancers. d Chromatin state discovery
and characterization. The leftmost panel displays a ChomHMM heatmap of emission parameters where each row corresponds to a different state and
each column a different histone mark. Shown to its left are candidate state descriptions for each state followed by a state abbreviation. The heatmap
in the middle displays the overlap enrichment for various external genomic annotations. The rightmost heatmap shows fold enrichment for each state
near TSSs. e Differences in CapSTARR-seq signals (log, RPKM) in six enhancer-associated chromatin states called from ChromHMM in OCUM1 (left) and
SNU16 (right). f Distribution of H3K27ac active and inactive elements in CapSTARR-seq enriched regions (CaPERs) in OCUM1 and SNU16 cells. g
Differences in H3K4me1 ChIP-seq and ATAC-seq peak enrichment at H3K27ac active and inactive CaPERs. Error bars indicate two independent
biological replicates. h Distribution of OCUM1/SNU16 H3K27ac inactive CaPERs in the “open” state across 17 cell lines. Red regions denote OCUM1/
SNU16 H3K27ac inactive CaPERs located in open chromatin in any of 17 cell lines. Gray regions denote OCUM1/SNU16 H3K27ac inactive CaPERs
located in closed chromatin across all the cell lines. i Differences in CapSTARR-seq signals (log, RPKM) in enhancer categories in OCUM1 cells. P values:
Mann-Whitney U test. j Differences in TF binding sites over enhancer categories. The number of TF binding sites over an enhancer was calculated

(Pearson R = 0.33, P = 1.44 x 10™*%, Fig. 4c). Extending
beyond OCUM1 and SNU16, we further confirmed that
gene expression differences between 5 other pairs of GC
cell lines were significantly correlated with ABC score
differences in the similar ballpark range as OCUM1 and
SNU16 (Pearson R = 0.26—0.36, P < 0.001, Additional file
2: Fig. S13). Notably, these correlation values are similar
to independent work reporting a similar range of correl-
ation between ABC scores and observed effects on gene
expression [70].

We hypothesized that CapSTARR-seq might capture
information relevant to enhancer activity beyond that
provided by H3K27ac levels. Specifically, recent studies
have reported that transcription can occur at distal en-
hancers and that transcribed enhancers can be identified
using GRO-cap-based annotations of TSSs. To explore if
transcribed enhancers provide a better reflection of ac-
tive enhancers and inference of enhancer-promoter in-
teractions compared to histone modifications [71], we
analyzed publicly available transcribed enhancers (in-
ferred from GRO-cap) interacting with promoters in
GM12878 lymphoblastoid cells. Of 34,436 transcribed
enhancers, we found 11,439 cases (33%) involved in
enhancer-promotor interactions. These interactions were
independently validated by promoter capture Hi-C
(pcHi-C) data [72] and were higher than enhancer-
promoter connections inferred using H3K27ac alone (~
8693 (25%) expected by chance inside H3K27ac active
enhancers, P<0.0001 vs. random shuffling of sequences
within H3K27ac active enhancers, Fig. 4d), indicating
that transcribed enhancers (inferred from the GRO-cap
assay) may be a more specific predictor of enhancer
function than H3K27ac signals.

Having shown that transcribed enhancers can function
as a more specific predictor of enhancer function than
H3K27ac, we then asked if transcribed enhancers can be
inferred from STARR-seq data. We reanalyzed “High-
resolution Dissection of Regulatory Activity” (HiDRA)
datasets [50], which test putative regulatory regions by

coupling accessible chromatin extraction with self-
transcribing episomal reporters (ATAC-STARR-seq).
From 7,000,000 DNA fragments in GM12878 lympho-
blastoid cells, we identified ~47,000 enhancer regions
enriched for HiDRA signals referred to as “STARR active
enhancers.” In parallel, by reanalyzing H3K27ac ChIP-
seq profiles of the same cell line, we identified ~ 61,000
enhancer regions showing significant H3K27ac enrich-
ment, referred to as “H3K27ac active enhancers.” Within
the H3K27ac active enhancers, 44% of STARR active ele-
ments exhibited native enhancer transcription (as deter-
mined by GRO-cap TSS profiling). By contrast, only
approximately 9% of STARR inactive elements within
the H3K27ac active enhancers were GRO-Cap TSS posi-
tive (Additional file 2: Fig. S14; P <2.2 x 107'¢, two-
sided Fisher’s exact test.). We validated these GRO-seq,
STARR-seq, and H3K27ac relationships in a separate
cell line (K562; Additional file 2: Fig. S14). These results
suggest that STARR active enhancers are more likely to
exhibit native enhancer transcription and involved in
enhancer-promoter interactions.

Combining these results, we thus tested if incorporat-
ing CapSTARR-seq functional enhancer activity also en-
hances the performance of the ABC model in our GC
data, estimating Activity as the geometric mean of
H3K27ac-enrichment and CapSTARR-seq signals at an
enhancer region, rather than H3K27ac alone. We ob-
served a significant and improved correlation between
gene expression difference and ABC score difference
(Pearson R = 0.41, P <22 x 107", Fig. 4e). The ABC
model incorporating H3K27ac-enrichment and func-
tional enhancer activity outperformed that using either
of the estimators individually (H3K27ac only: Pearson R
= 0.33, P = 0.05; CapSTARR-seq only: Pearson R = 0.20,
P <0.001, Dunn and Clark’s Z test [73]). For example,
an ABC model based on H3K27ac estimated enhancer
activity only connected three enhancers to the HSPBI
promoter in both OCUMI1 and SNU16 cells (Fig. 4f).
These three enhancer-promoter interactions were
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Fig. 4 Activity-by-contact model of enhancer-gene regulation. a ABC model schema. el and e2 denote two arbitrary enhancers (solid red circles) for a
gene (black arrow). “G" denotes a gene. Both “E” and “e” denote an enhancer. ABCg denotes the ABC score (predicted effect) of a E-G pair. Activity
("A") estimates the enhancer strength while Contact ("C") estimates the frequency of the enhancer-gene connection. The ABC score of an enhancer to
one gene's expression is calculated by that enhancer’s effect divided by the total effect of all enhancers for the gene. b ABC model for explaining
gene expression differences between OCUM1 and SNU16 cells. Activity is estimated as the level of H3K27ac-enrichment at an enhancer while Contact
is quantified as a function of the genomic distance between the enhancer and the TSS of the gene (Contact = Distance ). ¢ Comparison of ABC score
differences and observed gene expression differences between OCUM1 and SNU16 cells. Each dot represents a differentially expressed gene between
OCUMT1 and SNU16 cells. Activity of an enhancer is estimated as the H3K27ac signal. R: Pearson'’s correlation coefficient. P value: Pearson’s correlation
test. d GRO-cap data confirms a statistically higher percentage of transcribed enhancers involved in enhancer-promotor interactions compared to
H3K27ac-defined enhancers in GM12878 lymphoblastoid cells. Transcribed enhancers are inferred from GRO-cap-based annotations of TSSs. P values
were calculated empirically by random shuffling of sequences within H3K27ac-enriched regions. @ Comparison of ABC score differences and observed
gene expression differences between OCUM1 and SNU16 cells. Activity of an enhancer is estimated as the geometric mean of H3K27ac-enrichment
and CapSTARR-seq signal. f Comparison of the HSPBT expression difference and the ABC score difference between OCUM1 and SNU16 cells in the
HSPBT locus. Predicted E-P connections (dotted red arcs) are based on ABC maps in OCUM1 and SNU16 cells. Observed E-P connections (solid red

arcs) are derived from the pcHi-C database

validated by the pcHi-C database. Although the model
predicted that the sum of ABC scores (SNU16: 0.81;
OCUML1: 0.89) of these three enhancers was larger in
OCUM1 cells than SNU16 cells, HSPB1 exhibited higher
expression in SNU16 cells compared to OCUM1 cells
(SNU16: 930 TPM; OCUMI: 230 TPM). However, by
adding Cap-STARRseq enhancer activity into the ABC
model, the HSPBI expression difference between
OCUM1 and SNU16 cells became consistent with the
ABC score difference. We reasoned that the activation
of the enhancer el, which exhibited CapSTARR-seq ac-
tivity, may increase HSPBI expression in SNU16 cells.
By contrast, enhancer el exhibited no CapSTARR-seq
activity in OCUMI cells.

To further validate the improved correlation with gene
expression differences when combining Cap-STARRseq
with H3K27ac profiling, we extended our comparative
analysis of the ABC model to two other cell lines
(GM12878 and K562). Similar to our original observa-
tions, we observed a significant correlation between dif-
ferences in gene expression between GM12878 and
K562 and differences in ABC score calculated based on
H3K27ac signals (Pearson R = 0.25, P = 2.0 x 10°%, Add-
itional file 2: Fig. S15). Notably, we similarly observed an
improved correlation between gene expression difference
and ABC score difference when combining H3K27ac-
enrichment and CapSTARR-seq signals to assess enhan-
cer activity (Pearson R = 0.39, P <2.2 x 107'% P <0.001,
Dunn and Clark’s Z test, Additional file 2: Fig. S15), con-
firming our observations in OCUM1 and SNU16 cells.

Taken collectively, these results indicate that incorpor-
ating Cap-STARRseq enhancer activity may elevate the
accuracy of estimating enhancer functionality and the
ability of predicting enhancer-gene connections when
coupled with H3K27ac ChIP-seq data. Moreover, our re-
sults indicate that one possible reason why combining
CapSTARR-seq enhancer activity with H3K27ac profil-
ing improved prediction of enhancer-promoter connec-
tions is that enhancer transcription, evidenced as a more

specific predictor of enhancer function than H3K27ac
signals, may be inferred from cytoplasmic CapSTARR-
seq data.

Effects of large-scale copy number alterations on
differential enhancer activity

We then combined the CapSTARR-seq and H3K27ac
acetylation patterns (see the “Methods” section) to ex-
plore mechanisms associated with enhancer heterogen-
eity in GC. In total, we identified 1,888 differential
enhancers between OCUMI1 and SNU16 cells. We hy-
pothesized that differential enhancers might result from
at least two sources—cis-based genomic variation (CNVs
and SNPs) and trans-based TF binding (Additional file
2: Fig. S16 provides a cartoon comparing two samples).
In the “cis-model,” sample-specific SCNAs or SNPs re-
sult in differential enhancer activity, perhaps by influen-
cing the recruitment of TFs commonly expressed in
both samples. In the “trans-model,” differential expres-
sion of TFs between samples may underlie sample-
specific alterations in enhancer activity.

To test the influence of SCNAs on differential enhan-
cer activity, we applied CNVkit [74] on WGS data of
OCUM1 and SNU16 to infer SCNAs in both lines.
When summarized across all differential enhancers, we
observed that H3K27ac and CapSTARR-seq signals were
positively correlated with SCNAs (P <4.6 x 107*3, Add-
itional file 2: Fig. S17). Of 1,888 differential enhancers,
approximately one quarter (513 enhancers, 27.2%) exhib-
ited concordance between H3K27ac signals and DNA
copy numbers in OUCM1 and SNU16 cells (Fig. 5a). To
extend these results, we then queried 26 additional cell
lines and identified 58 enhancers showing significant as-
sociations between H3K27ac and SCNA levels, of which
35 also showed a statistically significant correlation with
target gene expression levels. These included known on-
cogenes such as FGFR2 and MYC (Additional file 1:
Table S3). Notably, we observed a significant correlation
between copy number deletions of an INGI-associated
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Fig. 5 Cis-analysis of differential enhancers. a Distribution of enhancers associated with copy number. CN-abnormal enhancers represent differential
enhancers with altered DNA copy numbers in OCUM1 or SNU16. CN-associated enhancers represent differential enhancers showing concordant
changes in H3K27ac signals and DNA copy number. MYC, WDR11, FGFR2, CD44, PDHX, and INGI-associated enhancers are highlighted as they show a
statistically significant correlation between enhancer copy numbers with target gene expression levels. b Correlation of H3K27ac signals and INGT
gene expression with the DNA copy numbers for the INGT enhancer among multiple GC lines. ¢ H3K27ac ChiP-seq and CapSTARR-seq tracks at the
enhancer region harboring the ARL4C-associated SNP rs1464264 in OCUM1 and SNU16 cells. d H3K27ac ChiP-seq tracks in GC lines and pcHi-C
associations in gastric tissues. The SNP rs1464264 genotype is annotated above the H3K27ac ChIP-seq track in each cell line. Significant chromatin
interactions are shown below the axis (green loop). e Differences in expression of ARL4C in three groups of cell lines with different SNP rs1464264
genotypes (GG, AG, and AA). *: P < 0.05, ns: not significant, Mann-Whitney U test. f Difference in expression of ARL4C in three groups of GC patients
with different SNP rs1464264 genotypes (GG, AG, and AA) in the Singapore cohort (n= 161). *: P < 0.05, ns: not significant, Student’s ¢ test. g Survival
analysis comparing patient groups with samples exhibiting low (green) and high (red) expression of ARL4C in the ACRG cohort (n = 300). P value is

calculated using the Log-rank test. Survival data are indicated for every 25 months

enhancer, decreased H3K27ac signals, and decreased
INGI expression in multiple lines (Fig. 5b). For all iden-
tified differential enhancers exhibiting a statistically sig-
nificant correlation with the expression level of the
target gene, the copy number of the enhancer region
was the same as the copy number of the target gene in
GC lines (reciprocally, we identified cases where the
SCNA affects the gene body but not the enhancer). To
determine if the altered ING1 expression is a result of al-
tered copy number of the INGI gene itself, or altered
copy number of the INGI-associated enhancer only, we
analyzed the copy number profiles at the ING1 locus for
GC samples from the TCGA cohort. We applied a mul-
tiple linear regression model to analyze the relationship
between ING1 expression level, gene-body copy number,
and enhancer copy number. We found that both the
copy number of the INGI gene-body itself and the en-
hancer have significant effects on INGI expression
(gene-body copy number: P = 1.5 x 10°% enhancer copy
number: P = 7.1 x 10~%, Additional file 2: Fig. $18). Vari-
ance Inflation Factor (VIF) analysis of INGI gene body
and enhancer copy number in the regression model did
not reveal major multicollinearity (VIF 4.1, below the
threshold of 5). It has been reported that INGI encodes
a protein that physically interacts with the TP53 tumor
suppressor and negatively regulates cell growth [75], and
may function as a tumor suppressor gene in gastric can-
cer [76]. Using overexpression vectors, we confirmed
that overexpression of INGI in GC cells significantly re-
duced cell proliferation (Additional file 2: Fig. S19), con-
sistent with a purported anti-oncogenic function.

Effects of germline SNP variation on differential enhancer
activity

Next, we proceeded to explore the role of germline SNP
variation in differential enhancer activity. To exclude the
confounding effects of SCNAs, we restricted our analysis
to differential enhancers located in diploid regions in
both lines (“Copy number-normal enhancers”). Within
892 copy number-normal enhancers, we identified 605
unique germline SNPs using Genome Analysis Toolkit

(GATK) between OCUMI1 and SNU16 cells. To further
discover SNPs whose genotype correlates with histone
acetylation levels, we applied the genotype-independent
signal correlation and imbalance algorithm (G-SCI [77])
across a cohort of 28 cell lines. Specifically, we identified
SNPs correlating with cohort-variation in H3K27ac-
enrichment over the same regions, referred to as histone
acetylation QTLs (haQTLs). We identified 207 haQTLs
(34%) using the G-SCI test. Interestingly, this discovery
rate is significantly higher than (8%) reported in previous
studies [77] despite both studies using the same con-
trolled false-discovery rate (FDR) of 0.1. It is likely that
the higher haQTL discovery rate in our study might be
due to the combination of CapSTARR-seq and H3K27ac
ChIP-seq data, which allows finer-scale resolution of en-
hancer boundaries. Supporting this, we also applied G-
SCI to differential enhancers only based on H3K27ac. In
brief, of 8016 SNPs within H3K27ac-defined differential
enhancers, 2194 HaQTLs (27%) were detected using the
G-SCI test (FDR <0.1). Two-sided proportion test gave
us a significant difference when comparing the two ra-
tios (P = 3.2 x 107).

Of the 207 haQTLs, we focused on 43 germline SNPs
predicted by RegulomeDB [54], a database of human
regulatory variants reported to influence protein DNA
binding (RegulomeDB score 1 or 2, Additional file 1:
Table S4). For instance, we observed five haQTLs
(rs1464264, rs6053580, rs73931802, rs1029330, and
rs10759773), in which histone acetylation levels over the
enhancer region was associated with the haQTL geno-
type among multiple cell lines (Additional file 2: Fig.
S20). Notably, haQTL rs1464264 is located at an
OCUM1-specific enhancer (Fig. 5¢), and histone acetyl-
ation levels over this enhancer region were associated
with the rs1464264 genotype (Fig. 5d). Specifically, in-
creased H3K27ac at enhancers covered by the major A
allele coincided with increased expression of ARL4C
(ADP-ribosylation factor-like 4C, a class of GTP-binding
protein), suggesting that the A allele potentially upregu-
lates the gene (Fig. 5e). Moreover, the enhancer region
harboring rs1464264 exhibits long-range interactions
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with the ARL4C gene promoter region as evidenced by
pcHi-C database (P <1072, Fig. 5d). The correlation of
the A allele and increased ARL4C expression was also
confirmed in an independent validation set of primary
GC patients from Singapore (n = 161 patients, P = 0.029
between GG and AA, Fig. 5f) and another validation set
of colon samples collected by the Genotype-Tissue Ex-
pression (GTEx) project [78] (n = 368 individuals, P <
0.05 between GG and AA, Additional file 2: Fig. S21).
ARL4C was significantly upregulated in GC compared to
normal samples in the ACRG cohort (P = 0.008; Add-
itional file 2: Fig. S22). Survival analysis revealed patients
with GCs exhibiting high expression of ARL4C showed
poor overall survival compared with GC samples where
ARLA4C is relatively lowly expressed in the ACRG cohort
(P = 0.038, log-rank test, Fig. 5g). In multivariate ana-
lyses involving Cox proportional-hazards models, the
high expression of ARL4C (hazard ratio for death, 1.97;
95% CI, 1.2 to 3.2; P = 0.006, Additional file 2: Fig. S23)
remained significantly associated with poor survival after
adjustment for age and gender. For the TCGA cohort,
we observed a nearly significant correlation between the
high expression of ARL4C and poor survival in the
Kaplan—Meier analysis (P = 0.072) and Cox regression
analysis (P = 0.052, Additional file 2: Fig. S23). More-
over, it has been reported that ARL4C is a peritoneal
dissemination-associated gene in GC [79]. We confirmed
that knockdown of ARL4C in GC cells using two inde-
pendent shRNAs significantly reduced cell proliferation
(Additional file 2: Fig. S24), consistent with a purported
oncogenic function.

Effects of trans-acting TF binding on differential enhancer
activity

Finally, we explored the role of trams-acting factors in
differential enhancer activity. Using HOMER, a de novo
motif discovery algorithm, we found that OCUMI-
specific enhancers (n=1,014) were enriched in FRAI,
FRA2, and ATF3, while SNU16-specific enhancers (n =
847) exhibited enrichments in FOXA1l, HNF4a, and
KLF5/6 binding (Fig. 6a, Additional file 2: Fig. S25). Al-
though OCUM1-specific enhancers defined only based
on H3K27ac were also enriched in FRA1l, FRA2, and
ATF3 binding, the significance of enrichment and the
percentage of the target sequence with motif were lower,
indicating that combination of CapSTARR-seq and
H3K27ac ChIP-seq data may enable stronger enrichment
of TFs. In brief, the average rate of the target sequence
with FRA1, FRA2, and ATF3 motif on OCUM1-specific
enhancers defined based on two signals was twice as
much as that on enhancers defined only based on
H3K27ac (32% vs 14%, Additional file 2: Fig. S25).
Among these TFs binding on SNU16-specific enhancers,
we focused on HNF4a, as HNF4a was the only TF
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exhibiting significantly upregulated expression in GCs as
compared to normal tissues in two independent GC co-
horts (Singapore cohort: P = 4.9 x 10~% TCGA cohort: P
= 1.8 x 10™% Mann—Whitney U test, Fig. 6b).

To identify differential enhancers associated with
HNF4a binding, we focused on SNU16-specific en-
hancers exhibiting (1) occupancy of HNF4a in SNU16
cells and (2) a significant correlation between HNF4«a
binding enrichment and H3K27ac signals among mul-
tiple lines. Of 64 enhancers out of 847 fulfilling these
criteria, 22 were further highlighted as they exhibited a
statistical correlation between H3K27ac signals and the
expression levels of their corresponding target genes
(Additional file 1: Table S5). For example, Fig. 6¢ high-
lights one enhancer near the GRHL2 locus, where
GRHL?2 expression levels are significantly correlated with
H3K27ac signals over the enhancer region among mul-
tiple GC lines (Pearson R = 0.75, P = 8.9 x 107°, Fig. 6d).
This region was selected for two more reasons: (1)
GRHL?2 is significantly upregulated in GCs (Additional
file 2: Fig. S26); (2) GRHL2 has recently been reported to
be involved in Epithelial-mesenchymal transition in GC
[80]. To confirm that GRHL?2 is a target gene of HNF4a,
we performed HNF4a overexpression and knockdown
experiments in GC lines. We observed concordant dys-
regulation of GRHL2 RNA levels upon HNF4a perturb-
ation (Fig. 6¢). To independently validate this
relationship in vivo, we further confirmed a positive cor-
relation of GRHL2 and HNF4a expression in both the
Singapore cohort and the TCGA cohort (Singapore co-
hort: P = 22 x107'% TCGA cohort: P = 1.2 x107';
Pearson’s correlation test, Fig. 6e, f). Taken together, our
results suggest that differential HNF4a binding enrich-
ment at this enhancer is associated with differential
H3K27ac ChIP-seq and CapSTARR-seq signals, and also
GRHL?2 expression.

Discussion

In this study, we surveyed the GC enhancer landscape
across 28 GC cell lines, 4 normal gastric cell lines, 18
primary GCs and 18 matched normal gastric tissues. To
our knowledge, this epigenomic data set currently repre-
sents the largest such data set for GC, expanding previ-
ous studies by over one-third and conceptually
extending previous findings by applying CapSTARR-seq
to directly test > 70,000 candidate H3K27ac-positive en-
hancer elements. Previous studies using STARR-seq (a
predecessor to CapSTARR-seq) in Drosophila have dem-
onstrated that enhancer strengths correlate well with
average gene expression [81], and for STARR-seq-high
enhancers occurring nearby lowly expressed genes, these
are explainable by the former not being accessible in
their native chromatin context. In our study, we simi-
larly identified a cadre of enhancer elements showing
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Fig. 6 (See legend on next page.)
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Fig. 6 Trans-analysis of differential enhancers. a Top 5 transcription factor binding enrichments at SNU16-specific enhancers determined by
HOMER de novo motif analysis. The last column shows the percentage of target sequence with the corresponding motif. b Expression of HNF4a
in normal gastric (n = 89) and GC samples (n = 185) from the Singapore cohort. Expression of HNF4a in normal gastric (n = 35) and GC samples
(n = 415) from the TCGA cohort. P value: Mann-Whitney U test. ¢ Integration of H3K27ac ChIP-seq data, HNF4a ChiIP-seq binding profiles (SNU16,
YCC3, IM95, KATOI, ISTT, NUGC4, and OCUM1) and RNA-seq data in control, HNF4a overexpressing cells (HFE145), HNF4a knockdown (YCC3) at
the GRHL2 gene locus. The red box indicates an enhancer associated with GRHL2 (chr8: 102,449,130-102,450,795). d GRHL2 gene expression levels
and H3K27ac signals over the enhancer for GRHL2 are linearly correlated across 28 cell lines. R: Pearson’s correlation coefficient. P value: Pearson’s
correlation test. e Singapore cohort analysis reveals GRHL2 and HNF4a transcriptomic correlations using microarray data (Pearson’s correlation
test). f TCGA cohort analysis confirms GRHL2 and HNF4a transcriptomic correlations using RNA-seq data (Pearson'’s correlation test)

strong CapSTARR-seq signals but not exhibiting high
H3K27ac levels in the same cell line. However, these re-
gions exhibited H3K27ac signals when extrapolated to
other cell lines, suggest that these regions are likely “dor-
mant” enhancers that can activate gene expression in the
context of a hospitable and open chromatin environ-
ment. Supporting this idea, others have reported that
strong STARR-seq enhancers located at closed chroma-
tin regions can drive nearby gene expression when they
are opened by TSA, a histone deacetylase (HDAC) in-
hibitor [25].

The question of whether super-enhancers comprise a
novel paradigm that is distinct from regular enhancers
remains to be determined. By analyzing the a-globin
super-enhancer, Hay et al. reported that each constituent
enhancer “acts independently and in an additive fashion”
[82]. In contrast, Shin et al. reported that super-
enhancers associated with the Wap gene operate across
a temporal and functional hierarchy of constituent en-
hancers [83]. In our study, we found that even when
decoupled from their chromatin context, genomic re-
gions associated with super-enhancers exhibit higher
functional enhancer activities compared to regular en-
hancers. Our results suggest that this increased enhancer
activity is likely due to an intrinsic abundance of dense
TF cis-binding occupancy sites. Other studies have also
reported that individual enhancers within super-
enhancers can exhibit stronger activating features, such
as H3K27ac-enrichment and TF binding densities [15—
17]. Therapeutically, regions exhibiting dense TF binding
occupancies have been shown to represent important
regulatory nodes susceptible to changes in TF concen-
tration [17]. Such vulnerabilities to TF perturbation at
super-enhancers may offer productive targets for cancer
therapy. It will be interesting to explore this area further
using other methods of functional enhancer testing, such
as recently developed CRISPR interference (CRISPRi)
and CRISPR activation (CRISPRa) platforms [84, 85].

Identifying enhancer-promoter interactions remains
challenging because promoters and regulatory elements
can be separated by millions of base pairs [86], and
oftentimes the closest gene is usually not the true en-
hancer target [22, 70, 87]. Correlation-based approaches
identify enhancer-promoter connections by combining

genomic proximity with genetic associations (eg expres-
sion quantitative trait loci (eQTLs)) or chromatin state,
enabling detection of long-range interactions [88, 89].
Here, we found that combining CapSTARR-seq enhan-
cer activity with H3K27ac profiling improves the predic-
tion of gene expression differences. Previous studies
have shown that incorporating STARR-seq activity can
enable fine-scale resolution of active enhancer boundar-
ies derived from lower-resolution chromatin immuno-
precipitation (ChIP) profiles [71, 90]. Supporting these
results, we found that combining CapSTARR-seq enhan-
cer activity with H3K27ac profiling gave us a catalog of
enhancers with smaller region sizes compared to
H3K27ac only (average region size: 1 vs 4 kb), with en-
hancers defined using two signals being more enriched
in HaQTLs and TFs compared to those defined based
on H3K27ac only. Taken collectively, our results suggest
that the combination of CapSTARR and H3K27ac ana-
lyses might provide a more precise metric to describe
enhancer functionality in vivo.

Genomic variants (including SNPs and SCNAs), and
various TF binding enrichment at enhancer regions are
two sources of enhancer heterogeneity. SNPs in enhan-
cer regions may affect enhancer activity through several
mechanisms, including alteration of TF binding behav-
ior, chromatin accessibility change, and alteration of
H3K27ac levels [91]. Indeed, in our study, we observed a
SNP (rs1464264) associated with H3K27ac levels of an
enhancer and the expression of ARL4C. Specifically,
there were significantly higher ARL4C expression levels
among subjects with the rs1464264 AG genotype or the
AA genotype compared with the GG genotype. How-
ever, there were no statistically significant differences of
ARL4C expression between the AG and AA genotypes.
Notably, this phenomenon is not unprecedented, as pre-
vious studies have reported that the homozygous state of
a germline SNP may not certainly increase expression
levels beyond the heterozygous state [92-94]. For ex-
ample, the G allele of the Parkinson’s disease risk SNP
rs356168 was associated with increased SNCA expres-
sion in Parkinson’s disease patients (P = 0.03 between
GG and AA). However, there is no difference in SNCA
expression levels between the AA and AG state [93].
ARL4C has been reported to be a GC risk-associated
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gene identified in previous GWAS studies [95], and
rs1464264 has been reported as an eQTL for ARL4C in
Lymphoblastoid cells [96, 97]. This example deepens our
knowledge of the functional impact of cancer risk-
associated SNPs identified in GWAS studies.

Our study has limitations. First, our CapSTARR-seq
data is based on only two cell lines. While our key find-
ings were subsequently validated in multiple samples, we
acknowledge that more CapSTARR-seq libraries will be
required for providing a comprehensive overview of
functional enhancer activity in GC. Second, we still lack
a clear explanation of predicted enhancers that exhibit
H3K27ac enrichment but no CapSTARR-seq activity. It
is possible that the H3K27ac mark is not limited to en-
hancers, but may also mark other classes of distal regula-
tory elements targeted by CTCF [6, 17, 98]. We
hypothesize that the CapSTARR-low/H3K27ac-high ele-
ments may represent insulators or other unknown regu-
lators, which requires further study.

Conclusions

Our study demonstrates that cell-line-predicted en-
hancers are pervasively linked to epigenomic and regula-
tory circuitry in vivo, and reveals mechanisms involving
somatic CNVs, germline SNP variation, and trans-acting
transcription factors in driving enhancer heterogeneity.
We also provide evidence that combining histone modi-
fication and functional assay data provides a more accur-
ate metric to assess enhancer activity than either
platform individually, and identified novel genes associ-
ated with GC. Taken collectively, these studies will likely
deepen our knowledge of enhancer functions driving GC
development and progression.
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