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Integration of genetic, transcriptomic, and
clinical data provides insight into 16p11.2
and 22g11.2 CNV genes
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Abstract

Background: Deletions and duplications of the multigenic 16p11.2 and 22q11.2 copy number variant (CNV) regions
are associated with brain-related disorders including schizophrenia, intellectual disability, obesity, bipolar disorder,
and autism spectrum disorder (ASD). The contribution of individual CNV genes to each of these identified
phenotypes is unknown, as well as the contribution of these CNV genes to other potentially subtler health
implications for carriers. Hypothesizing that DNA copy number exerts most effects via impacts on RNA expression,
we attempted a novel in silico fine-mapping approach in non-CNV carriers using both GWAS and biobank data.

Methods: We first asked whether gene expression level in any individual gene in the CNV region alters risk for a
known CNV-associated behavioral phenotype(s). Using transcriptomic imputation, we performed association testing
for CNV genes within large genotyped cohorts for schizophrenia, 1Q, BMI, bipolar disorder, and ASD. Second, we
used a biobank containing electronic health data to compare the medical phenome of CNV carriers to controls
within 700,000 individuals in order to investigate the full spectrum of health effects of the CNVs. Third, we used
genotypes for over 48,000 individuals within the biobank to perform phenome-wide association studies between
imputed expressions of individual 16p11.2 and 22q11.2 genes and over 1500 health traits.

Results: Using large genotyped cohorts, we found individual genes within 16p11.2 associated with schizophrenia
(TMEM219, INOSOE, YPEL3), BMI (TMEMZ219, SPN, TAOK2, INO8OE), and 1Q (SPN), using conditional analysis to identify
upregulation of INOSOE as the driver of schizophrenia, and downregulation of SPN and INO8OE as increasing BMI. We
identified both novel and previously observed over-represented traits within the electronic health records of 16p11.2
and 22g11.2 CNV carriers. In the phenome-wide association study, we found seventeen significant gene-trait pairs,
including psychosis (NPIPBT1, SLX1B) and mood disorders (SCARF2), and overall enrichment of mental traits.
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Conclusions: Our results demonstrate how integration of genetic and clinical data aids in understanding CNV gene
function and implicates pleiotropy and multigenicity in CNV biology.

Keywords: Copy number variants, Transcriptome imputation, Electronic health records, Psychiatric traits, Phenome-

wide association studies

Background

Multi-gene copy number variants (CNVs), including a
600-kb region at 16p11.2 and a 3-Mb region at 22q11.2,
are known causes of multiple brain-related disorders.
The 16p11.2 CNV, originally identified as a risk factor
for autism spectrum disorder (ASD), has also been asso-
ciated with schizophrenia, bipolar disorder, intellectual
disability, and obesity [1-5]. The 22q11.2 CNV, identi-
fied as the cause of DiGeorge (velocardiofacial) syn-
drome, is associated with schizophrenia, intellectual
disability, obesity, bipolar disorder, and ASD, as well [6—
11]. The effects of these two CNVs can be further subdi-
vided into the effects of deletions vs. duplications. Some
disorders are shared among carriers of deletions and du-
plications of the same region, and others show opposite
associations. For instance, ASD and intellectual disability
are observed in both deletion and duplication carriers in
both 16p11.2 and 22q11.2 [3-8, 12-14]. Other traits are
specific to one direction of the copy number change:
schizophrenia and bipolar disorder are observed in
16p11.2 duplication carriers, but not deletion carriers
[2]. A third category of 16p11.2- and 22q11.2-associated
traits are “mirrored”. 16p11.2 deletion carriers show in-
creased rates of obesity, while duplication carriers tend
to be underweight. 22q11.2 duplication carriers show re-
duced rates of schizophrenia, as opposed to increased
rates in deletion carriers [1, 15, 16]. The question of
which specific genes drive which brain-related traits as-
sociated with 16p11.2 or 22ql1.2 CNVs remains un-
answered. Likewise, what else these genes might be
doing has been difficult to assess in small numbers of
identified CNV carriers, who are primarily children.
Identifying the role of specific gene(s) in behavioral and
medical traits will clarify the biological processes that go
awry as a result of these CNV mutations and the mecha-
nisms by which they do so. Knowledge of the genes and
mechanisms involved would, in turn, provide opportun-
ities to develop targeted treatments.

Three of the traditional ways to map CNV genes to
disorders are identifying loss-of-function mutations in
these genes, analyzing smaller subsets of the entire re-
gion, and finding mutations in animal models that are
sufficient to recapitulate the phenotype. The loss-of-
function mutation method was used to fine-map the
17p11.2 CNV, another CNV associated with behavioral
and non-behavioral traits [17, 18]. Most of the features
of the deletion syndrome, including intellectual

disability, are represented in individuals who carry a de-
fective copy of the RAII gene due to point mutation
[19]. Duplications of Rail appear to explain body weight
and behavior abnormalities in mouse models of 17p11.2
duplications [20]. Another example is the Williams syn-
drome CNV at 7q11.23 [21, 22]. The cardiac traits asso-
ciated with this syndrome are present in individuals with
only one functional copy of the ELN gene, but this gene
does not explain the behavioral traits [23, 24]. The sec-
ond method, of finding a smaller “critical region,” was
used to fine-map the 17q21.31 CNV [25, 26]. By com-
paring patients who had similar symptoms with overlap-
ping cytogenetic profiles, the common breakpoints of
the CNV region were refined to a region containing only
six genes [26]. Later, Koolen et al. identified patients
showing intellectual disability and facial dysmorphisms
characteristic of this CNV with disruptive mutations in
one of the six genes, KANSLI [27]. The third method of
recapitulating similar phenotypes in animal models was
successful in identifying TBXI as a gene important for
some of the physical traits involved with 22q11.2 dele-
tions. Mice with heterozygous mutations in the TBXI
gene show cardiac outflow tract anomalies, similar to
human 22q11.2 deletion carriers [28—30]. However, it is
unclear that TBXI is sufficient to explain brain-related
disorders in 22q11.2 carriers [31, 32].

The 16p11.2 and 22q11.2 CNVs have been resistant to
these traditional approaches for fine-mapping brain-
related traits. To date, no highly penetrant point muta-
tions in 16p11.2 or 22ql1.2 genes have been shown to
be sufficient for a brain-related disorder. The most re-
cent schizophrenia GWAS from the Psychiatric Genom-
ics Consortium discovered a common SNP association
near the 16pll.2 region; however, the specific genes
underlying GWAS signals are often unknown [33]. No
small subsets of 16p11.2 or 22ql11.2 genes have been
proven necessary and sufficient to cause a brain-related
disorder. A subregion of 22q11.2 has been proposed to
explain ASD associated with deletions [34]. As this sub-
set of 22ql1.2 contains approximately 20 genes, it is
likely that further fine-mapping within this subset is pos-
sible. At 16p11.2, a subset of five deleted genes was iso-
lated in a family with a history of ASD [35]. However,
this mutation neither caused ASD in all deletion carriers,
nor was responsible for ASD in some non-carrier family
members. Non-human models for the 16pl11.2 and
22q11.2 CNVs, as well as knockouts for individual genes
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are available in mouse, zebrafish, and fruit flies [36—41],
but have not successfully mapped individual genes in
these CNVs to brain-related traits [28—30]. Different
zebrafish studies of 16p11.2 homologs have implicated
different genes as phenotype drivers, as well as shown
that most were involved in nervous system development
[37, 38, 42]. The complex brain-related traits associated
with these CNVs are unlikely to be fully captured in
model organisms. Hallucinations, a common symptom
of schizophrenia, can be identified only in humans.
There may be other aspects of 16p11.2 and 22ql1.2
CNV biology that are human-specific. For example, mice
carrying 16p11.2 duplications are obese, while obesity is
associated with deletions in humans [43]. Given the in-
sufficiency of previous approaches, new approaches for
fine-mapping genes in these regions for brain-related
traits are necessary.

The motivation behind our approach is that in
16p11.2 and 22q11.2 CNV carriers, variation in gene
copy number is expected to lead to variation in RNA ex-
pression level (with downstream effects on protein prod-
uct). Expression measurements in mouse or human cell
lines carrying 16p11.2 and 22q11.2 deletions and dupli-
cations confirm that for nearly all genes, duplication car-
riers have increased expression of individual CNV genes
compared to controls, and deletion carriers have reduced
expression compared to controls [44—49]. As the break-
points of these CNVs are unlikely to cause gain-of-
function, we believe that the variation in expression of
one or more of the genes in/near the CNV is the cause
of pathogenicity. While these CNVs significantly disrupt
gene expression levels, most genes’ expression levels vary
among the general population, sometimes by a factor of
two or more, as studies such as the Genotype-Tissue Ex-
pression Consortium (GTEx) have shown [50-53]. This
variation can be, in part, attributed to common genetic
polymorphisms (expression quantitative trait loci,
eQTLs). If large expression deviation in duplication and
deletion carriers is a risk factor for a disorder, we
hypothesize that more modest expression variation in
the same genes among non-carriers will be a modest risk
factor for the same disorder or milder related traits. This
idea is analogous to the well-supported observation that
common polymorphisms of small effect associated with
a common trait can overlap with Mendelian genes for a
similar trait [54—56].

Here, we perform three in silico studies of the impact
of predicted expression of individual 16p11.2 and
22q11.2 genes, in comparison with the diagnosed CNVs,
on human traits (Fig. 1). First, we identify genes associ-
ated with brain-related disorders via expression vari-
ation. Recent tools have leveraged the heritability of
gene expression, allowing us to “impute” gene expression
for genotyped individuals using eQTLs [57, 58]. We
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perform association testing between imputed expression
and five brain-related traits common to the 16p11.2 and
22q11.2 CNVs for which large amounts of genetic data
have been amassed: schizophrenia, IQ, BMI, bipolar dis-
order, and ASD [59-63]. We find at least one 16p11.2
gene associated with schizophrenia, 1Q, and BMI. Sec-
ond, we use BioVU, a biobank containing electronic
health records (EHRs) for over 3 million individuals, to
determine the medical traits in CNV carriers detected in
our EHR system, confirming canonical CNV features
and discovering novel over-represented traits [64]. We
also probe the consequences of expression variation of
individual 16p11.2 and 22ql11.2 genes on the medical
phenome, by imputing gene expression in the >48,000
genotyped individuals in the BioVU health system and
performing a phenome-wide association test across all
available traits. We find that mental disorders are over-
represented among top gene-trait association pairs, and
we highlight genes associated with the traits over-
represented in CNV carriers. Taken together, our work
provides a comprehensive catalog of associations of indi-
vidual CNV genes to traits across the phenome.

Methods

GWAS data for schizophrenia, 1Q, BMI, bipolar disorder,
and ASD

We obtained the imputed individual-level genotypes for
ASD, bipolar disorder, and schizophrenia from the Psy-
chiatric Genomics Consortium in PLINK format (Add-
itional file 1: Table S1). These datasets include mainly
European populations and are comprised of several inde-
pendent cohorts: 30 in bipolar disorder (N = 19,202
cases 30,472 controls, downloaded July 2019), 46 in
schizophrenia (N = 31,507 cases 40,230 controls, down-
loaded July 2018), 14 in ASD (N = 7386 cases, 8566 con-
trols, downloaded May 2019) [60, 61, 65]. For two
additional traits, we used publicly available summary sta-
tistics: BMI from the Genetic Investigation of AN-
thropometric Traits (GIANT) consortium (2015, both
sexes, n = 339,224, downloaded June 2019) and IQ from
Savage et al. (2018) hosted by the Complex Trait Gen-
omics lab at VU Amsterdam (n = 269,867, downloaded
May 2019) [62, 63].

For replication studies and comparison of PheWAS re-
sults, we used the publicly available GWAS summary
statistics for schizophrenia, IQ, BMI, bipolar disorder,
and ASD from the UK Biobank [66]. We could not use
the UK Biobank IQ data for replication of our discovery
IQ data, as the datasets overlap. The list of UK Biobank
phenotypes used is in Table S1 in Additional file 1. In
addition, we used individual-level data from the UK Bio-
bank (n = 408,375) to perform conditional analysis for
BMI fine-mapping, but chose not to use it for discovery
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phenotype in two ways. First (bottom left), we used large GWAS datasets for brain-related traits associated with both CNVs to determine whether
variation in predicted expression in any of the individual genes in each CNV was associated with case-control status for each trait. In the second
component of this study (top right), we used a biobank containing clinical and genotypic data to identify the individuals with 16p11.2 and
22q11.2 duplications or deletions and determined the clinical traits that were over-represented in CNV carriers. Third (bottom right), we used the
biobank to perform a phenome-wide association study to determine clinical traits that are driven by the predicted expression of individual CNV

genes, as well as whether these traits overlapped with traits over-represented in CNV carriers. Analyses 1 and 3 are integrated in their use of
imputed expression; analyses 2 and 3 are integrated in their use of electronic health data

analysis because of previously observed high inflation of
summary statistics [67, 68].

Expression prediction models

In order to impute gene expression, we obtained PrediX-
can models for 48 tissues based on GTEx v7 Europeans
[57, 58, 69]. These models were generated by training an
elastic net model that finds the best set of cis-SNP pre-
dictors for the expression of a gene in a tissue in the
GTEx genotyped individuals [57]. Only models with
predicted-observed correlation R*> >0.01 and cross-
validated prediction performance P < 0.05 are kept.

Genes studied

We studied all coding and noncoding genes at the
16p11.2 and 22q11.2 copy number variant loci for which
expression prediction models were available. We in-
cluded flanking genes in a 200-kb window upstream and
downstream of the CNV breakpoints. Overall, 37 coding

and 8 noncoding genes at or near 16p11.2, as well as 52
coding and 30 noncoding genes at or near 22q11.2, were
tested. Not all genes in the CNV regions were available
to be analyzed through our methods; noncoding genes
were especially unlikely to have a high-quality predictive
model in any tissue. Thirty-four genes (of which 27 were
noncoding) at or near 16p11.2 lacked high-quality pre-
diction models in every tissue. One hundred two genes
(of which 90 were noncoding) at or near 22q11.2 lacked
high-quality prediction models in every tissue. (Add-
itional file 2:Table S2, Additional file 3: Fig. S1).

Comparison of observed expression correlations with
predicted expression correlations

Observed expression correlations were calculated at a
tissue-specific level on data from GTEx v7 [70]. Tissue-
specific predicted expression was calculated by applying
the appropriate GTEx predictive model on the GTEx
v6p genotypes (dbgap id: phs000424.v6.pl) for 450
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individuals. To minimize spurious correlations, the pre-
dicted expression levels were rigorously filtered and nor-
malized. Specifically, the expression levels were filtered
for outliers (values above 1.5 x interquartile range, in ei-
ther direction), adjusted for the principal components of
both the predicted expression levels and the first 20 PCs
of the GTEx genotypes, inverse-quantile normalized, re-
adjusted for principal components, and re-filtered for
outliers. We observed that normalization of the pre-
dicted expression reintroduced correlation between ex-
pression and the genotypic PCs, leading us to perform
the correction twice.

Association analysis in individual-level data

Each of the three PGC collections went through quality
control, filtering, and PCA calculation, as described pre-
viously [59-61]. In each individual cohort, the convert_
plink_to_dosage.py script in PrediXcan was used to con-
vert chromosome 16 and 22 genotypes from PLINK to
dosage format, keeping only the SNPs used in at least
one predictive model. Using these dosages, the --predict
function in PrediXcan was used to generate predicted
expressions of CNV genes for each individual. Genes
with predicted expression of 0 for all individuals in a sin-
gle tissue were filtered out. The average number of genes
filtered out across tissue-cohort pairs was 0.89; the max-
imum was 11 in thyroid tissue in the Japanese schizo-
phrenia cohort. Cross-tissue association studies between
predicted expression and case-control status were per-
formed using MultiXcan. In brief, MultiXcan takes the
matrix of predicted expressions across tissues for a sin-
gle gene, calculates the principal components of this
matrix to adjust for collinearity, fits a model between
these PCs and case-control status, and reports the re-
sults of the overall fit [58]. As in the PGC association
studies, our analysis was adjusted by the principal com-
ponents that were significantly associated with each
trait—7 for bipolar disorder, 10 for schizophrenia, and 8
for autism case-control studies (the autism trios were
not adjusted for covariates). UK Biobank MultiXcan ana-
lysis was limited to individuals who reported their ethni-
city as “white,” and included age, age-squared, and 40
principal components as covariates.

Meta-analysis with METAL on the p values from Mul-
tiXcan, weighted by the sample size of each cohort, was
used to calculate a cross-cohort association statistic for
each trait individually [71]. The joint fit in MultiXcan
generates an F-statistic that is always greater than zero,
while some of our traits of interest have a specific ex-
pected direction (only seen in deletion carriers or only
seen in duplication carriers). Thus, a direction was
assigned to each MultiXcan result. This was done by
running a tissue-specific PrediXcan association analysis
between predicted expressions and case-control status
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(using --logistic), which calculates a signed association
Z-score for every gene. The sign of the mean Z-score for
that gene across all tissues was the direction of associ-
ation used for meta-analysis.

Association analysis in summary-level data

Both the single-tissue PrediXcan and the multitissue
MultiXcan methods have been extended to estimate the
association results between genetically regulated expres-
sion and a trait if only the summary statistics for the
trait are available. For each trait’s summary statistics, the
summary version of PrediXcan (S-PrediXcan) and the
associated MetaMany.py script was used to calculate the
per-tissue association results for each gene in 48 GTEx
tissues. Association results were aggregated across tis-
sues using the summary version of MultiXcan (S-Multi-
Xcan). The mean single-tissue Z-score (as reported in
the zmean column in the S-MultiXcan output) was used
as the direction of association. The UK Biobank replica-
tion studies were performed in the same way.

Conditional analysis to fine-map associations

Existing methods for fine-mapping PrediXcan associa-
tions (such as FOCUS [72] and MR-JTI [73]) are tissue-
specific and focus on summary statistics. Given that we
have individual-level data and use a cross-tissue ap-
proach, we chose to use a conditional analysis approach.
In order to adapt the multitissue association analysis to
perform conditional testing, “conditioned predicted ex-
pressions” were generated for a set of genes associated
with the same trait. As an example, take the set of three
genes [INOSOE, YPEL3, TMEM219] associated with
schizophrenia. In order to condition on INOSOE, for ex-
ample, the predicted expression of INOSOE was
regressed out of the predicted expressions of YPEL3 and
TMEM219. Conditioning was only done in tissues where
the predicted expressions of the genes were correlated
(Spearman correlation P <0.05). Another set of condi-
tioned predicted expressions was generated by adjusting
the predicted expression of INO8OE by the predicted ex-
pressions of [TMEM?219, YPEL3]. Separately, these per-
tissue conditioned predicted expressions were used as
inputs for a MultiXcan analysis and METAL meta-
analysis on schizophrenia as described earlier. All three
individually associated genes were tested in this manner.
The same analysis was later used to test for independ-
ence of association between BMI in the UK Biobank as
well as psychosis and morbid obesity traits in the Phe-
WAS. The P, reported in the text is the p value of a
gene-trait pair when adjusting for all other genes consid-
ered for conditioning for this trait, unless otherwise
stated. To validate that our approach explained all
GWAS signal at the loci, we also conditioned the Multi-
Xcan analysis on lead GWAS SNP(s) that were also
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eQTLs. The GWAS conditioning was performed in
PLINK using the --condition function, with principal
components (and age for BMI) as covariates. Linkage
disequilibrium patterns in the region were visualized
using LocusZoom [74].

Phenome-wide association studies

Vanderbilt University Medical Center (VUMC) houses
de-identified phenotypic data in the form of the elec-
tronic health records (EHR) within the synthetic deriva-
tive (SD) system [64]. The SD contains EHR data
including ICD9/10 billing codes, physician notes, lab re-
sults, and similar documentation for 3.1 million individ-
uals. BioVU is a biobank at VUMC that is composed of
a subset of individuals from the SD that have de-
identified DNA samples linked to their EHR phenotype
information. The clinical information is updated every
1-3 months for the de-identified EHRs. Detailed descrip-
tion of program operations, ethical considerations, and
continuing oversight and patient engagement have been
published [64]. At time of analysis, the biobank con-
tained 48,725 individuals who had been genotyped. DNA
samples were genotyped with genome-wide arrays in-
cluding the Multi-Ethnic Global (MEGA) array, and the
genotype data were imputed into the HRC reference
panel [75] using the Michigan imputation server [76].
Imputed data and the 1000 Genome Project data were
combined to carry out principal component analysis
(PCA) and European ancestry samples were extracted
for analysis based on the PCA plot. GTEx v7 models
from PredictDB were applied to the samples to calculate
genetically regulated expression (GReX).

Phenome-wide association study (PheWAS) was car-
ried out using “phecodes,” phenotypes derived from the
International Code for Diseases version 9 (ICD-9) billing
codes of EHRs. The PheWAS package for R, version
0.11.2-3 (2017), was used to define case, control, and ex-
clusion criteria [77, 78]. We required two codes on dif-
ferent visit days to define a case for all conditions, and
only phecodes with at least 20 cases were used for ana-
lysis (1531 traits). The single-tissue predicted expres-
sions were combined across tissues using MultiXcan, as
was done to analyze individual-level GWAS data from
the Psychiatric Genomics Consortium [58]. Covariates
for this analysis were age, sex, genotyping array type/
batch and three principal components of ancestry.

The top 1% (top 15 traits) of every gene’s association
results were kept for analysis. A binomial test was used
to compare whether the number of traits in any clinical
category (circulatory system, genitourinary, endocrine/
metabolic, digestive, neoplasms, musculoskeletal, injuries
and poisonings, mental disorders, sense organs, neuro-
logical, respiratory, infectious diseases, hematopoietic,
symptoms,  dermatologic,  congenital  anomalies,
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pregnancy complications) were over-represented in the
top 1% of results compared to the proportion of each
category among all 1531 traits tested. The expected
number of each clinical category as determined by [15
traits X #genes] X p; Where p; is the probability of a ran-
domly drawn (without replacement) code belongs to cat-
egory i. p; can be estimated by the number of codes
belonging to category i divided by all codes tested (n =
1531). The significance threshold was 0.05/[17 categor-
ies] = 0.0029.

To analyze the overlap between PheWAS results and
known Mendelian phenotypes associated with these
genes, we used OMIM [79]. “16p11.2” and “22q11.2”
were used as search terms and all CNV gene-trait pairs
in the region with OMIM entries were used as the list of
expected monogenic traits. For each gene-trait pair in
OMIM, relevant similar traits (where available) were
identified using the phecode catalog [80] and the top p
values for these gene-trait pairs in our PheWAS were se-
lected and shown in Additional file 4: Table S3.

Determining traits over-represented in carriers

3.1 million electronic medical records from the SD at
VUMC were queried for keywords corresponding to
copy number variants at 16pl1.2 and 22ql11.2 (Add-
itional file 5: Table S4). Individual charts identified as
containing the keywords were manually reviewed and
patients were labeled as cases if their medical records
provided evidence of CNV carrier status. Patients identi-
fied in the queries with insufficient evidence of CNV
carrier status were excluded from the analysis. Cases
with positive 16p11.2 and 22q11.2 CNV carrier status
were identified as: “16p11.2 duplication” (n = 48, median
age 11), “16p11.2 deletion” (n = 48, median age 12),
“22q11.2 duplication” (n = 43, median age 11). Add-
itional individuals in the 22q11.2 deletion case group
were identified by querying the medical records for al-
ternate terms including: “velocardiofacial”’, “DiGeorge”,
“conotruncal anomaly face,” “Cayler,” “Opitz G/BBB,”
“Shprintzen,” and “CATCH22” (n = 388, average age
17). Individuals were excluded from case groups if they
were included in the genotyped sample used for the
gene-by-gene analysis, or if their records included a
mention of additional CNVs. Individuals within the
16p11.2 case groups were also excluded if the size of the
reported CNV was 200-250 kb. Individuals within the
22q11.2 case group were excluded if the size of the CNV
was smaller than 500kb or if there was a mention of
“distal” when referring to the deletion or duplication.
PheWAS was carried out, with each of the four carrier
categories as cases and over 700,000 medical home indi-
viduals as controls, using age, sex, and self-reported race
as covariates. The medical home individuals are patients
seen at a Vanderbilt affiliated clinic on five different
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occasions over the course of 3 years. Because the sample
size for this analysis was larger (700,000 individuals vs.
48,000), and we used traits that were present in 20 or
more individuals, there were more traits available for
analysis here, n = 1795. After calculating PheWAS, we
excluded over-represented traits that were present in <
5% of carriers from further analyses.

Comparing gene-specific PheWAS to carrier vs. non-
carrier PheWAS

For the first comparison, for each of 16p11.2 duplica-
tions, 16p11.2 deletions, 22q11.2 duplications, 22q11.2
deletions, the entire carrier vs. non-carrier PheWAS re-
sults were ranked. All the traits in the top 1% of per-
gene 16pl11.2 and 22q11.2 PheWAS results were con-
verted to a value corresponding to the rank of the trait
in the carrier vs. non-carrier PheWAS. To determine
whether the per-gene PheWAS top traits were distrib-
uted nonrandomly with respect to carrier association,
the distribution of the ranks of the each CNV’s per-gene
PheWAS top traits was compared to the ranks of all car-
rier vs. non-carrier PheWAS traits for the same CNV (a
uniform distribution) using a one-tailed Wilcoxon rank
sum test.

For the second comparison, individuals carrying “ex-
treme” predicted expression across a CNV region were
identified using a sequence of rankings. Each expression
measurement (i.e., the expression of a single gene in a
single tissue in a single individual) was classified as “ex-
treme” if it ranked above the top 2nd percentile or below
the bottom 2nd percentile of the BioVU cohort, “nor-
mal” if the measurement was between the 25th and 75th
percentile, or “neither.” For a gene expressed in only one
tissue, the gene’s “extreme” expression label is simply
the same as the tissue’s “extreme” label. For a gene with
multiple tissue expressions, we counted the number of
tissues with “extreme” expression and assigned a gene-
level “extreme” label to individuals with the most tissues
consistently expressing “extremes” for the gene. A gene-
level “normal” label was assigned to half of the cohort
who had no extreme expression in any tissues and had
the most tissues with “normal” expressions. The
remaining individuals received a “neither” label for the
gene. After obtaining the gene-level labels (“extreme,”
“normal,” “neither”), we then ranked the individuals by
the number of “extreme” expression genes, and labeled a
subset of individuals (top 2% of the 48,600 individuals)
as extreme expression carriers. Note that we consider
extreme high and extreme low predictions together due
to prior data showing that eQTL direction can be spe-
cific to cell types or tissues, which our cross-tissue ap-
proach cannot distinguish [77]. These were compared to
a “control” group defined for each CNV region that in-
cluded individuals with the fewest extreme-expressed
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genes and most “normal” expression genes who com-
prised about half of the cohort. PheWAS was performed
to identify over-represented traits between the extreme
expression and control groups, analogously to the carrier
vs. non-carrier PheWAS. The top 10% most associated
traits in each category (16pll.2 extreme, 22q11.2 ex-
treme) were assigned a value corresponding to the rank
of the traits in the carrier vs. non-carrier association re-
sults, treating deletion and duplication CNV carrier
traits separately. We used a one-tailed Wilcoxon rank
sum test to test whether the top 10% traits of each ex-
treme category tend to have a shifted distribution for as-
sociation with the (corresponding) carrier status
(16p11.2 duplications and deletions for 16pl1.2 ex-
tremes, 22q11.2 duplications and 22q11.2 deletions for
22q11.2 extremes).

Significance threshold for association studies

The significance threshold used for each discovery Mul-
tiXcan or S-MultiXcan association study and conditional
analysis was 0.05/(number of traits x number of CNV
genes tested). In practice, this usually meant 5 traits and
127 CNV genes, for a threshold of P <7.9 x 107°. For
replication studies, the significance threshold was set at
0.05 in order to test a single gene. The exception was in
the BMI UK Biobank dataset. We first tried a
phenotype-swapping approach to generate an expected
distribution for the 16p11.2 genes. The distributions
were null and did not yield meaningful comparisons. In-
stead, 100 random subsets of adjacent genes of approxi-
mately the same length and gene count as the CNV
were tested for association with BMI. The 95th percent-
ile of the MultiXcan p values for these genes was used as
a permutation-based significance threshold.

In the gene-based PheWAS study, there were 1531
phecodes (each with at least 20 cases) tested overall, cor-
responding to a Bonferroni-corrected phenome-wide sig-
nificance threshold of 3.3 x 107°. For genes having no
phenome-wide significant results, their top 15 associa-
tions, corresponding to the top 1% of the 1,531 phe-
codes, were used. In the carrier vs. non-carrier PheWAS,
there were 1795 phecodes tested overall, corresponding
to a Bonferroni-corrected phenome-wide significance
threshold of 2.79 x 107°. Additional traits meeting a false
discovery rate threshold of 0.05 were considered in iden-
tifying traits both over-represented in carriers and repre-
sented in individual gene PheWAS.

Graphical summary of selected PheWAS results

The chordDiagram method in the circlize package was
used to generate the circle summary plots [81]. The
gene-trait pairs we selected for Tables 1 and 2 were used
as inputs, with the - log10 p value of association used as
the weighting to determine the edge width. For the
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Table 1 Selected 16p11.2 gene associations with PheWAS traits
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Gene PheWAS trait P value Reason for inclusion
NPIPB11 Psychosis® 1.04x 107 Brain-related, PheWs
Schizophrenia and other psychotic disorders 0.0016 Brain-related
Dysphagia 0.0031 Del/dup
Infantile cerebral palsy 0.0039 Dup, brain-related
BOLA2 Schizophrenia and other psychotic disorders 0.0082 Brain-related
Psychosis® 0.0083 Brain-related
SLX1B Psychosis® 303 x107° Brain-related, PheWsS
Schizophrenia and other psychotic disorders 0.000606 Brain-related
CA5AP1 Developmental delays and disorders 0.005 Del/dup, brain-related
Pervasive developmental disorders 0.01 Del/dup, brain-related
SPN Failure to thrive (childhood) 0.0039 Dup
Cl160rf54 Essential hypertension? 28 %107 PheWs
Bariatric surgery 0.0019 Brain-related
PRRT2 Other specified nonpsychotic and/or transient mental disorders 0.0031 Brain-related
Alteration of consciousness 0.0079 Brain-related
MVP Dysphagia 0.003 Del/dup
Symptoms involving head and neck 0.0073 Brain-related
CDIPT GERD 0.0032 Del
SEZ6L2 Other specified nonpsychotic and/or transient mental disorders 0.0025 Brain-related
Schizophrenia and other psychotic disorders 0.0029 Brain-related
Alteration of consciousness 0.0029 Brain-related
ASPHD1 Substance addiction and disorders 0.0015 Brain-related
Upper gastrointestinal congenital anomalies 0.0044 Del
KCTD13 Lack of coordination 0.0023 Del, brain-related
TMEM219 Mental retardation 0.00034 Del/dup, brain-related
TAOK2 Cardiomegaly 0.01 Dup
HIRIP3 Acute cystitis® 29%x10° PheWs
Disorders of uterus, NEC? 13x 107 PheWs
INOSOE Skull and face fracture and other intercranial injury 19% 107" Brain-related, PheWsS
Substance addiction and disorders 0.0032 Brain-related
Other specified cardiac dysrhythmias 0.0034 Del
FAM578B Upper gastrointestinal congenital anomalies 0.0011 Del
ALDOA Neurological disorders 0.0014 Del/dup, brain-related
Upper gastrointestinal congenital anomalies 0.0029 Del
Antisocial/borderline personality disorder 0.0043 Brain-related
Altered mental status 0.0043 Del, brain-related
Other specified nonpsychotic and/or transient mental disorders 0.0052 Brain-related
Abnormal movement 0.007 Del/dup, brain-related
Convulsions 0.0072 Dup, brain-related
TBX6 Chromosomal anomalies and genetic disorders 0.0011 Del/dup
Upper gastrointestinal congenital anomalies 0.0059 Del
YPEL3 Chromosomal anomalies and genetic disorders 0.0035 Del/dup
Other specified cardiac dysrhythmias 0.0038 Del
Delayed milestones 0.0053 Del/dup, brain-related
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Table 1 Selected 16p11.2 gene associations with PheWAS traits (Continued)

Gene PheWAS trait P value Reason for inclusion
MAPK3 Substance addiction and disorders 0.00063 Brain-related
Delayed milestones 0.0014 Del/dup, brain-related
Aphasia/speech disturbance 0.0036 Del, brain-related
Psychosis® 0.0054 Brain-related
Upper gastrointestinal congenital anomalies 0.0092 Del
CORO1TA Dysphagia 0.00034 Del/dup
Dementias 0.013 Brain-related
SULT1A3 Upper gastrointestinal congenital anomalies 0.0033 Del
Obsessive-compulsive disorders 0.0042 Brain-related
Altered mental status 0.006 Del, brain-related
Swelling, mass, or lump in head and neck [Space-occupying lesion, intracranial NOS] 0.01 Brain-related
CD2BP2 Substance addiction and disorders 0.0034 Brain-related
Dysphagia 0.0055 Del/dup
TBC1D10B Schizophrenia and other psychotic disorders 0.0013 Drain-related
Psychosis 0.0028 Brain-related
Alcoholic liver damage 0.0045 Brain-related
Lack of coordination 0.011 Del, brain-related
MYLPF Morbid obesity 0.0037 Brain-related
ZNF48 Bariatric surgery® 0.0071 Brain-related
SEPT1 Other specified nonpsychotic and/or transient mental disorders 0.00055 Brain-related
Alteration of consciousness 0.0018 Brain-related
lll-defined descriptions and complications of heart disease 0.0019 Dup
Psychosis® 0.0035 Brain-related
Substance addiction and disorders 0.0068 Brain-related

Possible reasons for inclusion are (1) del, dup, or del/dup: trait is over-represented in 16p11.2 deletion carriers, duplication carriers, or both (P < 2.8 x 107°); (2)

brain-related trait; (3) PheWS, phenome-wide significant
2Phenome-wide significant gene-trait pair (P < 3.3 x 107°)
PNot significant after conditional analysis

“In an independent dataset, this brain-related gene-trait pair reached P < 0.05 and was in the top 5% of genes associated with this trait overall

22q11.2 circle plot, only associations with P <5 x 10~
were used in order to create a legible plot. Descriptions
were cut off at 55 characters; to read the entire descrip-
tions, see Tables 1 and 2.

Results

Individual genes at 16p11.2 are associated with
schizophrenia, 1Q, and BMI

In order to find genes at copy number variant loci driv-
ing brain-related disorders, we performed an association
analysis between imputed gene expression levels and five
traits: schizophrenia, IQ, BMI, bipolar disorder, and
ASD. It has been observed that copy number variants
(including 16pl11.2 and 22q11.2) affect expression of
nearby genes [44, 45, 82]. As flanking genes affected by
copy number variation may be relevant to phenotype,
we additionally considered genes 200kb in each direc-
tion from each CNV [83]. Overall, we tested 52 coding
and 30 noncoding genes at or near 22ql1.2 and 37

coding and 8 noncoding genes at or near 16pl11.2 for
which a predictive model was available (Additional file 2:
Table S2, Additional file 3: Fig. S1). As cis-eQTLs are
often shared among tissues, we pooled together informa-
tion from all tissues in GTEx to boost our power to de-
tect brain-related traits [58].

Two genes at 16p11.2 show predicted expression posi-
tively associated (P < 7.9 x 107°) with schizophrenia (Fig. 2;
Additional file 6: Table S5): TMEM219 (P = 1.5 x 10~°) and
INOSOE (P = 5.3 x 1071°). This positive direction of effect is
consistent with the association between 16p11.2 duplica-
tions and schizophrenia [2]. An additional gene, YPEL3,
was significantly associated with schizophrenia in the nega-
tive direction (P = 4.9 x 107°). For IQ, there was one strong
positive association at the 16p11.2 locus (Fig. 2; Additional
file 6: Table S5): SPN (P = 2.9 x 10~?). Intellectual disability
is observed in both deletions and duplications of 16p11.2,
so there was no expected direction of effect [3, 14]. Four
genes showed negative association with BMI (Fig. 2;
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Table 2 Selected 22q11.2 gene associations with PheWAS traits
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Gene PheWAS trait P value Reason for inclusion
TUBAS8 Acute reaction to stress 0.0006 Brain-related
Delirium dementia and amnestic and other cognitive disorders 0.0015 Brain-related
Attention deficit hyperactivity disorder 0.0031 Brain-related
USP18 Aphasia 0.00066 Brain-related
Pulmonary collapse; interstitial and compensatory emphysema 0.00091 Del
Arrhythmia (cardiac) NOS 0.0026 Del
GGT3P Endocrine and metabolic disturbances of fetus and newborn 0.00068 Del
Respiratory failure 0.0015 Del
Memory loss 0.016 Brain-related
DGCR6 Diseases of the larynx and vocal cords 0.0014 Del
Tobacco use disorder 0.0086 Brain-related
PRODH Gout and other crystal arthropathies® 13x107° PheWs
Diseases of the larynx and vocal cords 0.005893 Del
Voice disturbance 0.00801 Del
DGCR9 Gastrointestinal hemorrhage 0.00016 Del
TSSK1A Hypoparathyroidism 0.0011 Del
Disorders of parathyroid gland 0.0029 Del
SLC25A1 Acute upper respiratory infections of multiple or unspecified sites 0.00015 Del
CLTCL1 Anxiety, phobic and dissociative disorders 0.0054 Brain-related
C220rf39 Other disorders of tympanic membrane 0.0051 Del
Abnormality of gait 0.0092 Dup, brain-related
CDC45 Hypoparathyroidism 0.00061 Del
Impulse control disorder 0.0035 Brain-related
Pervasive developmental disorders 0011 Dup, brain-related
CLDN5 Eustachian tube disorders 0.0078 Del
TBX1 Curvature of spine 0.00083 Del
Agorophobia, social phobia, and panic disorder 0.0013 Brain-related
Personality disorders 0.0043 Brain-related
GNBI1L Delirium dementia and amnestic and other cognitive disorders 0.0023 Brain-related
Heart valve disorders 0.0029 Del
Dementias 0.0047 Brain-related
Acute upper respiratory infections of multiple or unspecified sites 0.0071 Del
Tachycardia NOS 0.0074 Del
ARVCF Obsessive-compulsive disorders 0.0024 Brain-related
Diseases of the larynx and vocal cords 0.0041 Del
Chromosomal anomalies 0.0075 Del/dup
Hypoparathyroidism 0.0094 Del
TANGO2 Autism 0.0011 Dup, brain-related
Tension headache 0.002 Drain-related
Antisocial/borderline personality disorder 0.0028 Drain-related
Epilepsy, recurrent seizures, convulsions 0.0049 Del/dup, brain-related
DGCR8 Dependence on respirator [Ventilator] or supplemental oxygen 0.00059 Del
Hallucinations 0.0061 Brain-related
TRMT2A Other specified nonpsychotic and/or transient mental disorders 0.0033 Brain-related
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Table 2 Selected 22q11.2 gene associations with PheWAS traits (Continued)
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Gene PheWAS trait P value Reason for inclusion
Alteration of consciousness 0.0061 Brain-related
RANBP1 Bariatric surgery 0.00034 Brain-related
Obsessive-compulsive disorders 0.0011 Brain-related
Pulmonary insufficiency or respiratory failure following trauma and surgery 0.0026 Del
Acute upper respiratory infections of multiple or unspecified sites 0.0035 Del
ZDHHC8 Autism 0.0013 Dup, brain-related
Tension headache 0.0035 Brain-related
Acute reaction to stress 0.0049 Brain-related
RTN4R Heart valve disorders 0.0035 Del
Swelling, mass, or lump in head and neck [Space-occupying lesion, intracranial NOS] 0.0044 Brain-related
Tension headache 0.0065 Brain-related
Epilepsy, recurrent seizures, convulsions 0.0084 Del/dup, brain-related
DGCRe6L Disorders of fluid, electrolyte, and acid-base balance 0.0065 Del
Other persistent mental disorders due to conditions classified elsewhere 0.0077 Brain-related
USP41 Impacted cerumen 0.0026 Del
Esophagitis, GERD and related diseases 0.006 Del
Alzheimer's disease 0.0072 Brain-related
ZNF74 Septicemia 0.00061 Del
Mood disorders 0.0053 Brain-related
Heart valve disorders 0.0057 Del
SCARF2 Mood disorders® © 13x 107 Brain-related, PheWs
Depression 0.00014 Brain-related
Schizophrenia 0.00027 Brain-related
Blood in stool 0.00071 Del
Obsessive-compulsive disorders 0.001 Brain-related
Alteration of consciousness 0.0011 Brain-related
Schizophrenia and other psychotic disorders 0.003 Brain-related
Major depressive disorder 0.0033 Brain-related
Respiratory conditions of fetus and newborn 0.0035 Del
KLHL22 Premature beats 0.00013 Del
Valvular heart disease/ heart chambers 0.0051 Del
Overweight, obesity and other hyperalimentation 0.0064 Brain-related
Mood disorders 0.01 Brain-related
Heart transplant/surgery 0011 Del
Posttraumatic stress disorder 0.012 Brain-related
Obsessive-compulsive disorders 0012 Brain-related
KRT18P5 Acute posthemorrhagic anemia 0.00048 Del
Other persistent mental disorders due to conditions classified elsewhere 0.0016 Brain-related
MED15 Other upper respiratory disease 0.0019 Del
Mood disorders 0.0120 Brain-related
SMPDA4P1 Other disorders of intestine 0.001 Del
Acidosis 0.0039 Del
Acid-base balance disorder 0.0054 Del
Renal failure 0.0059 Del
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Table 2 Selected 22q11.2 gene associations with PheWAS traits (Continued)
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Gene PheWAS trait P value Reason for inclusion
POM121L4P Acute reaction to stress 0.0022 Brain-related
Convulsions 0.0072 Del, brain-related
PI4KA Disorders of iris and ciliary body® 11x107 PheWs
Muscular calcification and ossification® 73x10° PheWs
Disorders resulting from impaired renal function® 22x107° PheWs
Stricture/obstruction of ureter® 31 %107 PheWs
Disorders of calcium/phosphorus metabolism 57%107° Del
Renal failure 0.0007 Del
SERPIND1 Other anemias 0.00044 Del
Essential hypertension 0.00045 Del
Renal failure 0.0009 Del
Acidosis 0.001 Del
Septicemia 0.0011 Del
SNAP29 Curvature of spine 0.0015 Del
Morbid obesity 0.0045 Brain-related
AIFM3 Renal failure® 23x107 Del, Phews
Pulmonary collapse; interstitial and compensatory emphysema 0.0053 Del
Mood disorders® 0.006 Brain-related
LZTR1 Malignant neoplasm, other? 14x107 PheWs
Renal failure 0.00077 Del
Septicemia 0.0014 Del
Obsessive-compulsive disorders 0.0018 Brain-related
Esophagitis, GERD and related diseases 0.0054 Del
Pulmonary collapse; interstitial and compensatory emphysema 0.0056 Del
TUBA3FP Psychogenic disorder 0.0017 Brain-related
Hypothyroidism NOS 0.0074 Del
P2RX6 Morbid obesity 0.00012 Brain-related
Other perinatal conditions of fetus or newborn 0.00022 Del
Renal failure 0.00067 Del
Eating disorder 0.0065 Brain-related
P2RX6P Morbid obesity® 0.00043 Brain-related
Paroxysmal tachycardia, unspecified 0.0014 Del
Eating disorder 0.0072 Brain-related
BCRP2 Disorders of parathyroid gland 0.0078 Del
GGT2 Depression 0.0038 Brain-related
Hypovolemia 0.0043 Del
Chromosomal anomalies and genetic disorders 0.0059 Del/dup
Mood disorders 0.0064 Brain-related
POM121L8P Immunity deficiency 0.0063 Del
HIC2 Bacterial infection NOS 0.00023 Del
Mood disorders® 0.000464 Brain-related
Tension headache 0.00069 Brain-related
Swelling, mass, or lump in head and neck [Space-occupying lesion, intracranial NOS] 0.00091 Brain-related
Esophagitis, GERD and related diseases 0.002 Del
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Table 2 Selected 22q11.2 gene associations with PheWAS traits (Continued)

Gene PheWAS trait P value Reason for inclusion
Pleurisy; pleural effusion 0.0023 Del
Posttraumatic stress disorder 0.0028 Brain-related
Pervasive developmental disorders 0.0031 Dup, brain-related
TMEM191C Other CNS infection and poliomyelitis® 72%x10° PheWs
Eustachian tube disorders 0.0022 Del
Renal failure 0.0029 Del
Septicemia 0.0038 Del
Bacteremia 0.0073 Del
Diseases of hard tissues of teeth 0.008431 Del
RIMBP3C Cellulitis and abscess of oral soft tissues® 18%x107° PheWs
Pulmonary insufficiency or respiratory failure following trauma and surgery 0.00047 Del
Obsessive-compulsive disorders 0.0018 Brain-related
UBE2L3 Acute reaction to stress 0.0019 Brain-related
YDJC Swelling, mass, or lump in head and neck [Space-occupying lesion, intracranial NOS] 0.00025 Brain-related
Symptoms involving head and neck 0.00072 Brain-related
lll-defined descriptions and complications of heart disease 0.0027 Del
Speech and language disorder 0.0042 Del, brain-related
CCDC116 Abdominal aortic aneurysm® 19%107° PheWs
Respiratory conditions of fetus and newborn 0.0032 Del
PPIL2 Arrhythmia (cardiac) NOS 0.006 Del

Possible reasons for inclusion are (1) del, dup, or del/dups: trait is over-represented in 16p11.2 deletion carriers, duplication carriers, or both (P < 2.8 x 107%); (2)

brain-related trait; (3) PheWsS, phenome-wide significant
2Phenome-wide significant gene-trait pair (P < 3.3 x 10™)
PNot significant after conditional analysis

“In an independent dataset, this brain-related gene-trait pair reached P < 0.05 and was in the top 5% of genes associated with this trait overall

Additional file 6: Table S5): SPN (P = 62 x 107%%),
TMEM219 (P = 2.2 x 107°), TAOK2 (P = 8.5 x 10"), and
INOSOE (P = 1.0 x 1077). We focused on genes with nega-
tive associations with BMI because, in humans, obesity is
associated with deletions at 16p11.2 [1, 16]. Two additional
genes, KCTDI13 (P = 9.5 x 10°% and MVP (P = 2.1 x 107),
were significantly associated with BMI in the positive direc-
tion. No gene at 16p11.2 was significantly associated with
bipolar disorder or ASD (Additional file 6: Table S5, Add-
itional file 3: Fig. S3). No individual genes at or near
22q11.2 had predicted expression significantly associated
with any of the five traits (Additional file 6: Table S5, Add-
itional File 3: Fig. S4).

Follow-up conditional analyses narrow down genes
driving schizophrenia and BMI

To replicate our analysis, we used a large cohort from
the UK Biobank for which GWAS summary statistics
were available for multiple brain-related traits (Add-
itional file 1: Table S1) [66]. The predicted expression of
INO8OE and TMEM219 from the discovery analyses
were associated (P < 0.05) with having an ICD10 diagno-
sis of schizophrenia (ICD10: F20, 198 cases: INOSOE P =

0.04, TMEM219 P = 0.03, Additional file 7: Table S6).
Although this is only nominally significant, it is notable
that these genes are in the 3rd percentile of schizophre-
nia associations genome-wide within UK Biobank.

The UK Biobank GWAS of BMI is highly inflated, in-
cluding in the 16p11.2 region. Nearly every 16p11.2 gene
showed association at the previously used threshold (P
<79 x 107°). Using a permutation-based approach
within individual-level data, we adjusted the significance
threshold to 8.8 x 107''. All genes from the discovery
analysis replicated (Additional file 7: Table S6): SPN (P =
6.1 x 1072%), KCTDI13 (P = 1.2 x 107%°), TMEM219 (P =
7.1 x 107%), MVP (P = 5.1 x 10™"), and INOSOE (P =
1.9 x 107%). We were not able to replicate the IQ result
in the UK Biobank, because the UK Biobank sample
overlapped with our discovery GWAS.

We performed an additional fine-mapping study on
the three genes associated with schizophrenia. Linkage
disequilibrium between the eQTL SNPs in predictive
models may lead to correlation among predicted expres-
sions for nearby genes, so it is possible that not all three
detected association signals are independent. The pre-
dicted expressions of INOSOE, YPEL3, and TMEM219
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Fig. 2 Association between 16p11.2 genes and three brain-related traits. Association between predicted expression of 16p11.2 genes and
schizophrenia (left), BMI (middle), 1Q (right) using MultiXcan (schizophrenia) and S-MultiXcan (BMI, 1Q). Genes are listed on the horizontal access in
order of chromosomal position. The — log10 p values on the vertical axis are given a positive or negative direction based on the average
direction of the single-tissue results. The significance threshold, P < 7.9 x 107>, is a Bonferroni correction on the total number of 16p11.2 and
22q11.2 genes (127) tested across 5 traits (0.05/(5 x 127)). Genes exceeding the significance threshold in the expected direction (positive for

schizophrenia, negative for BMI, either for 1Q) are denoted as x's

were moderately correlated (the correlation of INOSOE
with the other genes is in the range of - 0.4 to 0.37
across GTEx tissues, for example), consistent with the
relationships between the observed expressions of these
genes (measured expression of INOSOE is correlated
with measured expression of the other genes in the
range — 0.36 to 0.31). In order to pick out the gene(s)
driving the association signal, we used a conditional ana-
lysis approach (Additional file 8: Table S7). We observed
that after adjusting the predicted expression of the other
CNV genes for the predicted expression of INO8OE, no
gene was significantly associated with schizophrenia.
However, when we adjusted the predicted expression of
INOSOE by the predicted expressions of the other two
highly associated genes, INOSOE remained significantly
associated with schizophrenia (P = 2.3 x 107°). The same
pattern was not observed for TMEM219 or YPEL3, sug-
gesting INOSOE explains the entire 16p11.2 signal for
schizophrenia.

While we did not have individual-level data for the
GIANT consortium, we obtained individual-level BMI
data from the UK Biobank [68]. We performed an analo-
gous conditional analysis on the six genes associated
with BMI, SPN, INO8OE, TMEMZ219, TAOK2 in the
negative direction, as well as KCTD13 and MVP in the
positive direction. Due to the inflation in the UK Bio-
bank data, all these genes had very low p values even

after conditioning; however, we see that some genes’ as-
sociation results stayed in the same range, while others
increased in p value by five orders of magnitude or more
after adjusting by the other five genes. Based on these
observations, it is likely that SPN (Pyxpp = 6.1 x 1075,
Popna = 7.5 x 1072Y), INO8OE (Pyxps = 1.9 x 107, Py
= 2.8 x 107%), and KCTD13 (Pyxsg = 1.2 x 107, P,
= 4 x 107*") were independently associated with BMI,
while TMEM219 (Pyxpg = 7 % 107, Ppuy = 2.3 x
107'%), TAOK2 (Puxpp = 42 x 107, Py = 2.3 x
107*), and MVP (Pyxps = 5.1 x 1071, P,,,0 = 5 x 107°)
were significant in the discovery analysis primarily due
to correlation with one of the independent genes.

To validate that our approach explained all GWAS sig-
nal at the locus, we took two phenotypes in which we
had both GWAS signal and individual-level data avail-
able—PGC Schizophrenia and UK Biobank BMI—and
conditioned the MultiXcan analysis on lead GWAS
SNP(s) in those datasets that were also eQTLs. In
schizophrenia (where INOSOE is our proposed sole
driver gene), conditioning on one GWAS SNP
(rs4788200, GWAS P = 2.8 x 107'°) was sufficient to ex-
plain the GWAS peak in the region (Additional file 3:
Fig. S2). Conditioning the MultiXcan analysis on this
SNP successfully removed all association signals, includ-
ing for INOSOE (Additional file 3: Fig. S2). In BMI
(where we propose three independent genes, INOSOE,
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KCTDI13, SPN), conditioning on four GWAS/eQTL
SNPs was sufficient to explain both the GWAS and Mul-
tiXcan signal (Additional file 3: Fig. S2). These were
rs4787491 (GWAS P = 7.6 x 1077), rs9936474 (GWAS
P =51 x 107), s2008514 (GWAS P = 3.3 x 107%),
and rs8046707 (GWAS P = 3.2 x 107*). The first two
SNPs explain the GWAS signal within the region, and
the latter two come from more distal GWAS peaks that
are nevertheless involved in the expression prediction of
16p11.2 genes; as a result, four SNPs are needed to fully
nullify the MultiXcan signal. The schizophrenia variant
rs4788200 is not a strong eQTL for any gene-tissue pair,
but it appears in the models for INO8OE in 22/37 tissues
where INOSOE has models. Similarly, one of the BMI
SNPs, rs4787491 is an expression-decreasing eQTL for
INOSOE in 35/37 tissues and is generally strong: the dis-
tribution of weights of this SNP was significantly differ-
ent from the distribution of all INO8OE-predicting SNPs,
(P = 48 x 10713, Kolmogorov-Smirnov test). We con-
clude that our approach is sufficient for explaining
GWAS signal and that the multi-SNP predictive models
involving both nearby and more distal SNPs are
advantageous.

Phenome-wide association studies identify previously
known and novel traits associated with 16p11.2 and
22q11.2 carrier status

While GWAS datasets provide insight into the impact of
genes on ascertained brain-related traits, the 16p11.2
and 22q11.2 CNVs may contribute to a wide spectrum
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of traits, including milder manifestations of brain-related
traits. Thus, biobanks containing both genetic and clin-
ical data can tell us about broader clinical impacts on
medical traits. We queried the de-identified electronic
health records for 3.1 million patients at VUMC to ex-
plore the impacts of the 16p11.2 and 22q11.2 CNVs, as
well as their individual genes, on the medical phenome
in a representative population [64]. CNV diagnoses are
documented in the medical records, which led us to ask:
what are the specific clinical phenotypes that are com-
mon in individuals identified as 16p11.2 or 22ql1.2
CNV carriers? Carriers were identified by diagnosis of
16p11.2 or 22q11.2 deletion/duplication (or syndromic
names for 22q11.2, see methods) in their medical record,
and over 700,000 individuals were used as controls. We
performed a phenome-wide association study (PheWAS)
between 16p11.2 and 22q11.2 deletion/duplication car-
riers and controls against 1795 medical phenotype codes
(Figs. 3 and 4) [77, 80]. Traits that were significantly
over-represented in carriers (P <2.8 x 107°) fell into
three major categories: (1) known primary CNV clinical
features, including possible reasons for the referral of
the patient for genetic testing (i.e., neurodevelopmental
concerns, epilepsy, congenital heart defects), (2) second-
ary CNV features known to be present in carriers but
unlikely to be a primary reason for referral for genetic
testing, (3) novel diagnoses not previously reported (Fig.
3, Fig. 4, Additional file 9: Table S8). We chose to focus
on traits present in at least 5% of carriers to avoid over-
interpreting rare traits.
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Fig. 3 Clinical traits over-represented in 16p11.2 deletion and duplication carriers. CNV carriers were identified in the EHR by keyword search and chart
review (left, 16p11.2 deletions [n = 48], right, 16p11.2 duplications [n = 48], see “Methods"). Controls included all individuals without the CNV within
the medical home population at Vanderbilt (n ~ 707,000). The x-axis represents the PheWAS codes that are mapped from ICD-9/ICD-10 codes,
grouped and color-coded by organ system. The y-axis represents the level of significance (— log;gp). The horizontal red line indicates a Bonferroni
correction for the number of phenotypes tested in this PheWAS (p = 0.05/1,795 = 2.8 x 10~°); the horizontal blue line indicates p = 0.05. Each triangle
represents a phenotype. Triangles represent direction of effect; upward pointing arrows indicate phenotypes more common in cases. Covariates
included age, sex, and self-reported race extracted from the EHR. Phenotypes reaching Bonferroni-corrected significance level are labeled in plot
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Fig. 4 Clinical traits over-represented in 22g11.2 deletion and duplication carriers. CNV carriers were identified in the EHR by keyword search and
chart review (left, 22q11.2 deletions [n = 388], right, 22q11.2 duplications [n = 43], see "Methods"). Controls included all individuals without the
CNV within the medical home population at Vanderbilt (n ~ 707,000). The x-axis represents the PheWAS codes that are mapped from ICD-9/ICD-
10 codes, grouped and color-coded by organ system. The y-axis represents the level of significance (— log;op). The horizontal red line indicates a
Bonferroni correction for the number of phenotypes tested in this PheWAS (p = 0.05/1,795 = 2.8 x 10™°); the horizontal blue line indicates p =
0.05. Each triangle represents a phenotype. Triangles represent direction of effect; upward pointing arrows indicate phenotypes more common in
cases. Covariates included age, sex, and self-reported race extracted from the EHR. Top phenotypes (P < 1.0 x 10™°) are labeled in the 22q11.2
deletion plot (left). Phenotypes reaching Bonferroni-corrected significance level are labeled in the 22q11.2 duplication plot (right)

Phenotypes

16p11.2 deletion carrier status was associated with de-
velopmental diagnoses (Fig. 3): lack of normal physio-
logical development (P = 2.8 x 107'®), developmental
delays and disorders (P = 6.3 x 107'°), delayed mile-
stones (P = 1.4 x 107*) [3]. In addition, 16p11.2 deletion
carrier status was associated with autism (P = 1.3 x
107! and mental retardation (P = 7.9 x 107*3) [5]. The
digestive diagnosis of GERD (P = 1.1 x 107°) has been
previously observed in carriers but was unlikely to be a
primary reason for genetic testing [84]. GERD was ac-
companied by other digestive diagnoses such as dyspha-
gia (P = 1.3 x 1077) and diseases of esophagus (P = 4.3 x
1077). Muscle weakness (P = 2.8 x 10°°) and abnormal
movements (P = 3.9 x 107°) are consistent with neuro-
logical traits reported in 16p11.2 deletion carriers such
as hypotonia and motor impairments [85]. Sleep apnea
(P = 8.9 x 107°) was a novel phenotype, potentially re-
lated to increased BMI in deletion carriers.

16p11.2 duplication carrier status was similarly associ-
ated with developmental diagnoses (Fig. 3): lack of nor-
mal physiological development (P = 56 x 107'%),
developmental delays and disorders (P = 2.5 x 1071%), de-
layed milestones (P = 9.0 x 1071, autism (P = 1.3 x
107*2), and mental retardation (P = 1.6 x 1077) [3, 5].
16p11.2 duplication carriers status was also associated
with multiple heart defects, including valvular heart dis-
ease/heart chambers (P = 4.6 x 1071% and cardiac
shunt/heart septal defect (P = 3.2 x 107%), both of which
have been reported previously [86]. 16p11.2 duplications
are known to be a risk factor for epilepsy and were

associated with an epilepsy-related diagnosis of convul-
sions (P = 2.9 x 107%) in the biobank [3, 87]. Infantile
cerebral palsy (P = 4.9 x 107°), while a potential reason
for genetic testing, has not previously been associated
with 16p11.2 duplications. While the 16p11.2 CNV con-
tains genes such as SPN and MVP that are active in the
immune system, there is no prior evidence of the sus-
ceptibility of duplication carriers to infection, making
the diagnosis Bacterial infection NOS (P = 5.5 x 1077) a
novel finding.

For 22q11.2 deletion carriers, the canonical associated
features were cardiac defects such as cardiomegaly (P =
3.5 x 1072*®) and cardiac shunt/heart septal defects (P =
47 x 10728 (Fig. 4) [6, 7]. Other highly associated diag-
noses were developmental: lack of normal physiological
development (P = 1.7 x 10°), developmental delays and
disorders (P = 6.3 x 107%), delayed milestones (P = 6.0 x
107" [6, 7]. Congenital anomalies such as cleft palate
(P = 94 x 107%%) were also over-represented. The sec-
ondary known traits for 22q11.2 deletion carriers in-
cluded immunity deficiency (P < 1072*°), and disorders
involving the immune mechanism (P <10728%). Previ-
ously, it has been reported that 50% of 22q11.2 deletion
carriers have T cell dysfunction and 17% have humoral
dysfunction [7]. Very few traits over-represented in
22q11.2 deletion carriers were novel; one of these was
hyperpotassemia (P = 1.4 x 107'°).

22q11.2 duplication carrier status was also associated
with developmental diagnoses (Fig. 4): delayed mile-
stones (P = 1.1 x 107*3), lack of normal physiological
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development (P = 9.7 x 107'3), pervasive developmental
disorders (P = 1.2 x 107°) [8]. 22q11.2 duplication status
was associated with cardiac phenotypes such as cardiac
shunt/ heart septal defect (P = 2.3 x 107°). Cardiac fea-
tures have not as often been reported in 22q11.2 dupli-
cation carriers compared to 22q11.2 deletion carriers [8].
Remaining traits such as abnormality of gait (P = 3.1 x
1071?) and hearing loss (P = 2.1 x 1077) have also been
seen in 22q11.2, including as indications for genetic test-
ing [88].

Phenome-wide association studies identify phenotypic
consequences of expression variation in 16p11.2 and
22q11.2 genes

As our study of the impact of the entire CNV on pheno-
type confirmed our ability to detect important CNV-
associated traits within the BioVU biobank, our next goal
was to catalog how each individual CNV gene might affect
the medical phenome. We generated predicted expression
for CNV and flanking genes, as in the initial GWAS ana-
lyses, for the 48,630 non-CNV carrier individuals geno-
typed in BioVU. We tested 1531 medical phenotypic
codes meeting frequency criteria (m = 20 cases) in this
subset. There were six phenome-wide significant (P < 3.3
x 107°) gene-trait associations at 16p11.2 including the
following: INOSOE with skull and face fracture and other
intercranial injury (P = 1.9 x 107*?), NPIPBI1 with psych-
osis (P = 1.0 x 107°), and SLX1B with psychosis (P = 3.0 x
107°). There were eleven phenome-wide significant gene-
trait associations at 22q11.2 including as follows: AIFM3
with renal failure (P = 2.3 x 107°), LZTRI with malignant
neoplasm, other (P = 1.4 x 107°), SCARF2 with mood dis-
orders (P = 1.3 x 107°), PI4KA with disorders of iris and
ciliary body (P = 1.1 x 1077), and disorders resulting from
impaired renal function (P = 2.2 x 107%). These include
two renal traits, consistent with the 22q11.2 deletion car-
rier status association with renal failure. The associations
of LZTRI and PI4KA with neoplasms and eye disorders
correspond to similar traits associated with these genes in
prior literature [89-91].

Previously established gene-trait associations came up
as suggestive (top 1 percentile), although not phenome-
wide significant, associations in the BioVU cohort.
TBX1I, a gene at 22q11.2 tied to heart development, had
other chronic ischemic heart disease, unspecified (P =
0.001), endocarditis (P = 0.0046), cardiomyopathy (P =
0.0055), and coronary atherosclerosis (P = 0.0076) among
its top 1% phenome associations [28-31]. TBX6 at
16p11.2, which has a role in bone development and
scoliosis, has pathologic fracture of vertebrae in its top
1% phenome associations (P = 0.0028) [92-94].
TANGO2 mutations at 22q11.2 have been associated
with metabolic abnormalities such as hypoglycemia, as
well as epilepsy, and our PheWAS for TANGO2 showed
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abnormal glucose (P = 0.0013) and epilepsy, recurrent
seizures, and convulsions (P = 0.0049) as top phenotypes
[95, 96]. We identified additional genes at 16p11.2 and
22q11.2 that are associated with Mendelian traits, using
OMIM [79], and browsed our PheWAS for potentially
similar clinical traits, including those not meeting the
top 1 percentile threshold. We find that of 13 such
genes, 7 have a relevant clinical trait at P <0.05, and 12
at P <0.1. In 6 of the 13 genes, the relevant clinical traits
are within the top 1% of PheWAS associations for the
gene (Additional file 4: Table S3).

As few gene-trait pairs reached phenome-wide signifi-
cance and established associations were present at more
nominal levels, we also considered traits that did not
meet the significance threshold in our analysis but were
in the top 1% of phenotypic associations for a given gene
(Additional file 10: Table S9). We found that traits cate-
gorized as “mental disorders” were over-represented in
the top 1% of the phenome of CNV genes (P = 5.2 x
107°). Of all 17 clinical categories tested, “mental disor-
ders” was the only category with enrichment p value
meeting multiple testing thresholds (Additional file 11:
Table S10). This suggested that the effect of CNV genes
is more widespread on brain-related traits than simply
those detected as statistically significant.

Some of the top 1% PheWAS traits for CNV genes
overlapped with the original five traits we studied:
schizophrenia, IQ, BMI, bipolar disorder, and ASD. At
16p11.2, there were genes whose top PheWAS results
included schizophrenia-related traits (psychosis, schizo-
Pphrenia and other psychotic disorders), 1Q-related traits
(developmental delays and disorders, mental retardation,
delayed milestones), BMl-related traits (bariatric surgery,
morbid obesity), and ASD-related traits (pervasive devel-
opmental disorders) (Table 1, Fig. 5). At 22q11.2, there
were genes whose top PheWAS results included
schizophrenia-related traits (hallucinations), BMI-related
traits (overweight, obesity and other hyperalimentation,
morbid obesity), ASD-related traits (autism, speech and
language disorder), and bipolar-related traits (mood dis-
orders) (Table 2, Fig. 5). We could not perform strict in-
dependent replication for these associations because
many of these traits are difficult to define in the same
way across datasets (for example Speech and language
disorder vs. Autism). Instead, we compared the top asso-
ciation statistics within our GWAS discovery and repli-
cation datasets for the genes identified to be associated
with brain-related traits in PheWAS as an extension of
this study (Additional file 8: Table S7). The following
genes were associated at P <0.05 and also in the top 5th
percentile within at least one of the GWAS discovery or
replication datasets (Additional file 7: Table S6): SEPT1
(psychosis—in UK Biobank schizophrenia 20002_1289 P
= 0.03), AIFM3 (mood disorders—in UK Biobank bipolar
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Fig. 5 Graphical summary of selected PheWAS results by gene. Each circle contains the CNV genes, in chromosomal order, on the bottom, and
their associated PheWAS traits at the top. Genes are connected to their PheWAS-associated traits, with the width of the line proportional to the —
log10 p value of the association. If a trait is also over-represented in duplication and/or deletion carriers, it is marked with a + (duplications), —
(deletions), or +/— (both). The complete list of gene-trait pairs can be found in Tables 1 and 2, and Supplemental Table S9 in Additional file 10
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F31 P = 0.04), SCARF2 (mood disorders—in UK Biobank
bipolar F31 P = 0.003), HIC2 (mood disorders—in UK
Biobank bipolar 20002_1991, P = 0.004), ZNF48 (bariat-
ric surgery—in UK Biobank BMI 3.7 x 107°). Of these,
the association between SCARF2 and mood disorders
reached phenome-wide significance in the PheWAS.

Predicted expression may be correlated between
nearby genes, thus multiple genes can share a PheWAS
trait association due to correlation alone. We are under-
powered for independence testing for the majority of
our GWAS traits, but we selected several notable traits
that appeared in multiple genes to test for independence,
in the same way as in our GWAS analysis (Additional
file 8: Table S7). We performed a conditional analysis on
16p11.2 genes whose top phenome associations included
psychosis: NPIPB11, BOLA2, MAPK3, SEPT1, SLXIB,
TBC1D10B. By comparing whether the p value of associ-
ation stayed constant vs. increased after conditioning, we
found that NPIPB11, SEPTI, SLXIB, and TBCIDI0OB
were likely independent associations, whereas BOLA2
and MAPK3 may be associated with psychosis at least
partly by correlation with the other four. We also per-
formed the same analysis for 22q11.2 genes whose top
phenome associations included morbid obesity: SNAP29,
P2RX6, P2RX6P. Of these genes, the only one with a p
value increase was P2RX6P, suggesting that its associ-
ation with morbid obesity may be explained at least in
part by another gene. From conditional analysis, we see
evidence of a multigenic contribution to both traits from
CNV genes.

Genes in 16p11.2 and 22q11.2 are associated with traits
that are also over-represented in carriers

We originally hypothesized that small variations in CNV
gene expression would be associated with phenotypes re-
sembling those that were present in CNV carriers, per-
haps with smaller effects. Our use of electronic health
records first on the entire CNV itself, then on individual
genes allows us to detect these potential effects across
traits. Unlike the five brain-related traits that we origin-
ally chose, many of the traits in the EHRs do not have
similar large GWAS datasets available. Considering that
our non-ascertained biobank is not well-powered for less
common traits, we chose to focus on the top one per-
centile of the phenome associations rather than the few
associations that passed the phenome-wide significance
threshold.

Traits that were found both in 16p11.2 carriers and in
individual genes’ PheWAS results included primary
CNV traits such as mental retardation and delayed mile-
stones, as well as secondary traits such as dysphagia and
convulsions (Table 1, Fig. 5). There were six genes
(ASPHDI, FAMS7B, ALDOA, TBX6, MAPK3, SULT1A3)
whose top PheWAS associations included the 16p11.2
deletion-associated trait of upper gastrointestinal con-
genital anomalies, though we are underpowered to know
whether all these signals are independent. Of the genes
that we found as drivers in the first analysis of GWAS
datasets, we note that INOSOE’s top PheWAS results
overlap the 16p11.2 deletion-associated trait other speci-
fied cardiac dysrhythmias and SPN’s top PheWAS
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results overlap the 16p11.2 duplication-associated trait
of failure to thrive (childhood).

Over 30 genes at 22ql1.2 had a top PheWAS trait
overlapping a trait over-represented in 22q11.2 duplica-
tion or deletion carriers (Table 2, Fig. 5). Top PheWAS
results for 22q11.2 genes included primary cardiac traits
such as tachycardia (P2RX6P, GNBIL) and primary
brain-related traits such as autism (TANGO2,
ZDHHCS8). We also found genes with top PheWAS re-
sults overlapping secondary traits from the carrier
screen, such as diseases of the larynx and vocal cords
(DGCR6, PRODH, ARVCEF).

It is difficult to meaningfully compare the carrier
screen to the gene-based PheWAS results because the
effects of modest expression variation in an individual
gene are not necessarily expected to be the same as
those of the deletion or duplication of an entire locus.
We tested whether the top associations from individual
gene PheWAS results were enriched for EHR pheno-
types over-represented in carriers. We did this by ana-
lyzing where top PheWAS traits associated with CNV
genes were ranked within PheWAS results of carrier sta-
tus. We found no evidence for enrichment in 16p11.2
duplications, 16p11.2 deletions, 22q11.2 duplications, or
22q11.2 deletions (Additional file 3: Fig. S3). As an alter-
nate way to compare the two PheWAS approaches by
‘mimicking’ the CNV effects, we identified individuals in
the genotyped cohort in BioVU that had the most ex-
treme (2nd percentile) predicted expression across CNV
genes in a region and were thus the most similar we
could identify to true CNV carriers (see “Methods”). The
top 10% of traits over-represented in this “extreme ex-
pression non-carrier” group were examined for their dis-
tribution within ranked (by p value) lists of traits in
CNV carriers. We found that in all four cases (16p11.2
deletions, 16p11.2 duplications, 22ql11.2 deletions,
22q11.2 duplications), the top traits in the “extreme ex-
pression non-carrier” group were more likely to rank
near the top of the CNV carrier traits than would be ex-
pected by chance; the distribution was significantly
shifted for 22q11.2 genes (P = 8.9 x 107'°, mean rank
487/1795, 22q11.2 deletions; P = 6.1 x 10°%, mean rank
563/1784, 22q11.2 duplications; P = 0.18, mean rank
770/1816, 16p11.2 deletions; P = 0.45, mean rank 805/
1816, 16p11.2 duplications; Additional file 3: Fig. S6).
These results demonstrate that within the same EHR
system, expression prediction based on common SNPs
independently shows enrichment for CNV carrier-
associated traits.

Discussion

In this study, we sought to identify individual genes in
the 16p11.2 and 22q11.2 regions driving brain-related
disorders, as well as the impact of both the entire CNV
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and specific CNV genes on the medical phenome. In a
novel in silico approach to CNV fine-mapping, we tested
whether genetically driven predicted expression variation
of the individual genes in each CNV was associated with
ascertained brain-related disorders ascertained in GWAS
data. We identified individual genes at 16p11.2 whose
expression was associated with schizophrenia (INOS8OE),
IQ (SPN), and BMI (SPN, INOSOE) in the expected dir-
ection based on known 16p11.2 biology. We then used
EHR data to detect (known and novel) traits over-
represented in 16p11.2 and 22q11.2 carriers for compari-
son with individual gene results. Third, we used the
same EHR system biobank containing over 1500 medical
traits to explore the consequences of expression vari-
ation of 16pll.2 and 22qll.2 CNV genes in non-
carriers, and we identified enrichment of brain-related
traits as well as individual genes potentially driving
carrier-associated traits. The results from the GWAS-
derived and PheWAS analyses can be considered as in-
dependent ways to probe the function of CNV genes
using expression imputation.

INOSOE, the gene we identified as a driver of schizo-
phrenia and BMI, is a chromatin remodeling gene and
has rarely been considered in the context of brain-
related traits [97]. Mice heterozygous for this gene have
shown abnormal locomotor activation [98]. Locomotor
activity in mice is a frequently used proxy for brain-
related disorders including schizophrenia [99]. Our re-
sults are consistent with a previous observation that
eQTLs from dorsolateral prefrontal cortex for INOSOE
co-localize with schizophrenia GWAS SNPs [100]. In
addition, an analogous imputed expression-based
transcriptome-wide association study observed associ-
ation between INOSOE and schizophrenia using sum-
mary statistics [101]. A third transcriptomic association
study using prenatal and adult brain tissues also pointed
to INOSOE as a risk gene for schizophrenia [102]. By fo-
cusing on a specific schizophrenia-associated region,
using individual-level data, and performing a conditional
analysis, we have obtained additional precision and were
able to fine-map the signal at 16p11.2 down to a single
gene. Our study differs from Gusev et al. and Walker
et al. in the expression prediction models used: we used
48 tissue models from the Genotype-Tissue Expression
consortium, Gusev et al. used brain, blood, and adipose
tissues from other consortia, and Walker et al. used pre-
natal and adult brain tissues only. The overlap in associ-
ation results shows that our approach is robust to
variation in predictive models. Furthermore, we find that
the utilization of non-brain tissues in our analysis did
not hinder our ability to detect this association. Mice
with a heterozygous mutation in Ino80e showed in-
creased body weight, consistent with our BMI associ-
ation result for the same gene [98].
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SPN, a gene highly associated with both IQ and BM],
is active in immune cells and is not known to play a role
in brain-related disorders [103, 104]. Recently, a large
genome-wide analysis of rare CNVs fine-mapped SPN
duplications as a driver of several phenotypic categories
including behavioral abnormality [105]. We note that
the association p values for SPN are much lower than
for any other genes showing association signal. This may
be because our approach detected relatively few eQTLs
for SPN (12 SNPs in two tissues), many of which over-
lapped with highly associated GWAS SNPs for both 1Q
and BM]I, rather than contributing to noise.

Our results give evidence that pleiotropy is involved in
the pathogenicity of 16p11.2, as opposed to a strictly
“one gene, one trait” model. Specifically, INOSOE was as-
sociated with both schizophrenia and BMI, and SPN was
associated with both BMI and IQ. Genetic correlations
of at least — 0.05 and as much as — 0.5 have been esti-
mated for the BMI/IQ and SCZ/BMI pairs, suggesting
that pleiotropy may play a general role in these disorders
[106-109]. Consistent with the genetic correlations,
most (8/12) eQTL SNPs in our prediction models for
SPN drove the associations with both IQ and BML

While most associations we detected were in the ex-
pected direction given previous knowledge, MVP and
KCTD13 were associated with BMI in the opposite
(positive) direction, and YPEL3 with schizophrenia in
the negative direction. We resolved the schizophrenia
result by conditional analysis, where we found that
YPEL3 was associated with schizophrenia simply due to
correlation with INO8OE. For BMI, we were able to use
UK Biobank data to determine that M VP was not an in-
dependent association with BMI, while KCTDIi3
remained. For an example like KCTD13, we offer three
explanations: these results may be false-positives due to
correlation-based “hitchhiking,” they may demonstrate a
limitation of our approach, or they may have a true
BMlI-increasing effect. First, we cannot rule out that it
“hitchhikes” to statistical significance with other nega-
tively associated genes due to correlation but does not
contribute to BMI itself. Second, this result might repre-
sent a limitation of our eQTL-based method. KCTD13 is
a highly brain-expressed gene, but had no high-quality
brain prediction models [50]. The direction of the
eQTLs regulating KCTD13 expression in the brain may
be brain-specific, and brain may be the only relevant tis-
sue for the effect of KCTD13 on BMI. That is, KCTDI13
may have a strong negative correlation with BMI, but
falsely appears positive due to the specific eQTLs used
for expression prediction. Such tissue-specific eQTL di-
rections of effect have been observed for at least 2000
genes [110]. Improved brain-specific prediction models
will resolve this limitation. Third, KCTD13 could have a
true BMlI-increasing effect. If so, the 16pll.2 region
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contains both BMlI-increasing and BMI-decreasing
genes, and the effect of the BMI-decreasing genes is
stronger. Such a model is a potential explanation for the
observation that duplications at 16p11.2 in mice, unlike
humans, are associated with obesity [43]. One set of
genes may be the more influential determinant of the
obesity trait in each organism.

Our PheWAS of traits over-represented in 16p11.2
and 22q11.2 carriers served as a validation of our bio-
bank EHR approach via detection of previously identified
CNV-associated traits. Brain-related traits, such as de-
layed milestones, mental retardation, and pervasive de-
velopmental disorders, were among the top over-
represented traits in both 16p11.2 and 22q11.2 CNV car-
riers. 22q11.2 deletion carriers were strongly associated
with cardiac congenital anomalies and cleft palate, two
of the hallmark features of the CNV. Even though the
total number of CNV carriers within the biobank was
relatively small, the strong known clinical associations
were observed. At the same time, we identified novel
traits that may be confirmed in larger samples of CNV
carriers such as sleep apnea in 16pl1.2 deletions and
hyperpotassemia in 22q11.2 deletions.

Our PheWAS between the predicted expressions of
16p11.2 and 22q11.2 genes and 1500 medical phenotypic
codes resulted in 17 phenome-wide significant gene-trait
pairs. Some of these genes have been shown to drive
similar traits in prior literature. The gene AIFM3 at
22q11.2 was associated with renal failure. AIFM3 is a
gene in a proposed critical region for 22q11.2-associated
kidney defects and led to kidney defects in zebrafish
[111]. SNAP29, another gene associated with kidney de-
fects in the same study, had renal failure, NOS in its top
1% phenome associations. LZTRI was significantly asso-
ciated with malignant neoplasm, other. This gene is a
cause of schwannomatosis, a disease involving neo-
plasms (albeit normally benign) [89]. Model organisms
with defects in PI4KA, associated with disorders of iris
and ciliary body in our study, showed eye-related pheno-
types [90, 91]. Because few genes had any associations
which were phenome-wide significant, we elected to
analyze the top 1% of associations of each gene. We no-
ticed that our gene-by-gene PheWAS recapitulated
known Mendelian effects of approximately half of Men-
delian genes at the 16p11.2 and 22q11.2 CNVs, includ-
ing the effect of TBX1 on the circulatory system, of
TANGO?2 on glucose and epilepsy, and of TBX6 on the
musculoskeletal system at this threshold [28-30, 92—94].
There are three common SNPs at 7BX6 contributing to
scoliosis (primarily in individuals who have additional
disruptive mutations at the gene), and one was identified
as an eQTL in our approach; perhaps an even stronger
signal could have been observed if all three were in-
cluded [112]. Notably, we found that clinical traits in the
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mental disorders category were over-represented in the
top 1% of associations among all genes tested, and men-
tal disorders was the only category significantly enriched.
Some mental disorders, such as psychosis, were top Phe-
WAS hits for multiple genes, but we were underpowered
for rigorous independence testing. Moreover, three novel
brain-related gene-trait pairs reached phenome-wide sig-
nificance: NPIPB11 and SLX1B near the CNV breakpoint
at 16p11.2 with psychosis, as well as SCARF2 at 22q11.2
with mood disorders. The expression of SLX1B is modi-
fied in 16p11.2 carriers; NPIPB11 expression differences
have not been detected in transcriptomic studies of
16p11.2 [43, 45]. SCARF2 has recently been proposed as
a driver of schizophrenia within a fine-mapping study
within CNV carriers [105]. Integrating genetic informa-
tion with the diagnosis of mood disorders in the clinical
data allowed us to find a new candidate, SCARF2, at
22q11.2 that we were unable or underpowered to detect
in the ascertained bipolar data alone.

We find that our results support the underlying hy-
pothesis in which small changes in CNV gene expression
affect risk for CNV-associated traits. In the three best-
powered traits we had available—schizophrenia, BMI,
and IQ—we were clearly able to prioritize individual
gene(s) at 16p11.2. Similarly, we were able to detect Phe-
WAS traits driven by small expression differences in
CNV genes that were overlapping with traits in CNV
carriers in the same biobank. Strikingly, we found that
our gene-based PheWAS overlapped well with the car-
rier screen PheWAS for 22q11.2 when we found the
most “CNV-like” extreme expression non-carriers. This
observation validates our underlying model in which
non-carriers with genetically predicted expression differ-
ences are more likely to show carrier-like traits.

Limitations

The 16p11.2 and 22q11.2 CNVs are significant risk fac-
tors for ASD and schizophrenia, respectively, and yet no
individual genes in either CNV were associated with
case-control status for the associated trait in the best-
powered datasets available to us. Assuming the true
causal gene(s) for these disorders do exist within the
CNV, limitations in our approach may preclude us from
discovering them. As our predicted expressions are
based on GWAS data, we end up underpowered to de-
tect gene-based association signal where we are under-
powered to detect SNP-based association signal. This is
particularly true for ASD, in which the sample size is
over 4 times less than that of schizophrenia. At the same
time, predictive models for gene expression are imper-
fect; while they capture some of the cis-heritability of
gene expression, they may not capture the entire vari-
ability of the expression of a gene (the largest single-
tissue prediction R* for our genes is 0.45, and the
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average R” is 0.07). For example, the expression predic-
tions of these genes are calculated solely using cis-
eQTLs within 1 MB of the gene [57]. It may be necessary
to consider the effect of trans-eQTLs to explore the gen-
etic effect of expression variation accurately. Similarly,
we have not considered trans-effects due to chromo-
some contacts, such as those that exist between the
16p11.2 region described here and another smaller CNV
region elsewhere at 16p11.2 [113, 114]. Moreover, there
are genes in both regions for which no high-quality
models exist. If the causal gene is among the genes that
cannot be well-predicted, we cannot detect this gene by
our approach. One category of genes that are not repre-
sented in our study are microRNAs. 22q11.2 carriers
have a unique microRNA signature, and the contribu-
tion of microRNA to 22q11.2-CNV-associated schizo-
phrenia has been previously hypothesized [115, 116]. If
the microRNAs are important regulatory elements for
22ql1.2-associated traits, our approach is insufficient to
detect them.

Rather than focusing on any specific tissue(s), we
chose to perform a cross-tissue analysis, an approach
that improves power to detect gene-trait associations
and detected 16p11.2 genes associated with schizophre-
nia, IQ, and BMI [58]. While we might expect that
brain-specific models would be best at detecting relevant
genes for brain-related traits, we are limited by the
amount of data available—brain tissue transcriptomes
are available for fewer than half of the GTEx individuals
[51]. An underlying assumption behind the use of all tis-
sues (rather than just brain tissues) for these mental dis-
orders is that eQTLs for our genes of interest are shared
across tissues and that the same eQTLs affect the ex-
pression of a gene in the brain as in other tissues. In
general, eQTLs tend to be either highly shared between
tissues or highly tissue-specific, largely as a function of
the gene being expressed exclusively or nearly exclu-
sively in a single tissue [117]. The GTEx correlation of
eQTL effect sizes between brain and non-brain tissues is
0.499 (Spearman) [51]. We may miss genes of interest
that have brain-specific expression but not enough
power to detect eQTLs. Furthermore, as these eQTLs
come from adult tissues, we would miss genes where ef-
fects on brain-related traits are specific to early develop-
mental timepoints.

A further limitation is that the variation in expression
that can be modeled using eQTLs may be considerably
smaller for some genes than the effect of deletions and
duplications. For example, there may be a gene at
22q11.2 for which decreases in expression contribute to
schizophrenia, but only when expression levels are re-
duced beyond a threshold, e.g., to nearly 50% of the ex-
pression levels of non-carriers. We saw an improvement
in the overlap between the gene-by-gene and carrier/
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non-carrier PheWAS traits when we restricted our ana-
lyses to the individuals with the most extreme CNV gene
expression across the region, supporting this threshold
hypothesis which could be pursued in further study.

Alternatively, the overlap with carrier phenotypes ob-
served when considering predictions across the CNV re-
gion could support a multi-gene hypothesis. So far, we
have considered the effect of each CNV gene independ-
ently, when the genes may not be acting independently.
A Drosophila model for 16p11.2 genes has shown evi-
dence of epistasis between genes within a CNV as a
modifier of phenotype [39]. If there are 16p11.2 traits in
humans also driven by epistasis, our single-gene screen
would not have detected the appropriate genes for those
traits. Similarly, traits driven by multiple genes would be
detectable in our carrier screen but not in our gene-by-
gene PheWAS. Given the strong possibility that there
are multiple genetic drivers for each trait, efficient ways
to consider multiple genes are necessary [118, 119].

Because the CNV carrier individuals in our biobank
are young (median age < 18), we do not yet know what
traits might commonly occur once individuals reach
older age. There were traits in our analysis that were
over-represented in older CNV carriers, but difficult to
interpret as they did not meet our frequency threshold,
including the following: dementia with cerebral degener-
ations in 22q11.2 deletion carriers, anterior horn cell dis-
ease in 16pll.2 deletion carriers, and cerebral
degenerations, unspecified in 16p11.2 duplication car-
riers. These findings show a need for longitudinal studies
of carrier cohorts and studies of carriers in older age.
Such additional data may point to additional clinical fea-
tures of 16p11.2 and 22q11.2 CNV carriers.

Conclusion

In developing our approach, we hypothesized that natur-
ally occurring variation in gene expression of CNV genes
in non-carriers would convey risk for traits seen in CNV
carriers. We found that this was true for at least three
16pll.2-associated traits: BMI, schizophrenia, and IQ.
Promisingly, the direction of association was generally
consistent with whether the trait was found in duplica-
tion or deletion carriers. Our approach is computation-
ally efficient, extendable to other CNV-trait pairs, and
overcomes one limitation of animal models by testing
the effect of CNV genes specifically in humans.

In this study, we synthesized information from both
large GWAS studies and EHR-linked biobanks, benefit-
ing from the strengths of both approaches. Psychiatric
brain-related disorders such as autism, schizophrenia,
and bipolar disorder have a population frequency below
5%, so large datasets specifically ascertained for brain-
related disorders are better at providing sufficient statis-
tical power for association analysis, especially when the
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effect of each gene is small. On the other hand, the pres-
ence of many diagnostic codes in a biobank helps iden-
tify brain-related traits that may be relevant to CNVs
but not the primary reported symptoms, such as speech
and language disorder. We were also able to carry out
two distinct and complementary analyses using the same
dataset. The presence of CNV carrier status in the EHR-
linked biobank allowed us to probe the phenotypic con-
sequences of the entire deletion or duplication. Then,
we were able to test each CNV gene for association with
the same diagnostic descriptions.

Our novel approach provided insights into how indi-
vidual genes in the 16p11.2 and 22ql1.2 CNVs may
drive health and behavior in a human population. Ex-
pression imputation methods allowed us to study the
predicted effects of individual CNV genes in large hu-
man populations. The incorporation of medical records
into biobanks provided a way to determine clinical
symptoms and diagnoses to which expression differences
in the genes may contribute. We expect our ability to
detect genes with this type of approach to increase in
the coming years, as more individuals in biobanks are
genotyped, the number of individuals contributing to
large cohorts grows, and the methods to more finely and
accurately predict gene expression improve. Additional
experiments on our newly prioritized genes are neces-
sary to determine their specific functional impact on
brain-related disorders and to evaluate their value as pu-
tative therapeutic targets.

Abbreviations

CNV: Copy number variant; GWAS: Genome-wide association study;
PheWAS: Phenome-wide association study; PheWsS: Phenome-wide
significant; ASD: Autism spectrum disorder; BMI: Body mass index;
1Q: Intelligence quotient; eQTL: Expression quantitative trait locus;
EHR: Electronic health record; SD: Synthetic derivative

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/513073-021-00972-1.

Additional file 1: Table S1. List of genotyped discovery and replication
cohorts used in the study. List of datasets used for discovery and
replication of association results with sample sizes. The specific cohorts
from the Psychiatric Genomics Consortium that were used for this
analysis are listed. All variables from the UK Biobank that were used for
replication are shown.

Additional file 2: Table S2. List of genes at or near 16p11.2 and
22q11.2. List of coding and non-coding genes in the CNV region, as well
as flanking genes 200 kb on either side. Genes for which PrediXcan
models based on GTEx v7 were available and the range of model qual-
ities (R?) are noted, along with the number of tissues in which prediction
models were available. Genes are annotated with their type (e.g., protein-
coding, pseudogene, etc.), whether they are in the CNV or flanking, and
any other names by which they may be referred in the literature.

Additional file 3: Fig. S1-S6. Supplementary figures.

Additional file 4: Table S3. Mendelian phenotypes annotated to
16p11.2 and 22g11.2 genes in PheWAS results. We compare Mendelian
phenotypes annotated to 16p11.2 and 22q11.2 genes (as catalogued in



https://doi.org/10.1186/s13073-021-00972-1
https://doi.org/10.1186/s13073-021-00972-1

Vysotskiy et al. Genome Medicine (2021) 13:172

Page 23 of 26

OMIM) with our imputed gene expression PheWAS results. For each of
the Mendelian traits, we list one or more related traits that were tested in
PheWAS along with the p-value, selecting the trait(s) with the best p-
value to represent. Traits that are in the top 1% of associations for individ-
ual genes are marked. This table is a proof-of-concept that our PheWAS
approach can pick up known gene-phenotype associations but has not
been quantified for enrichment due to the subjective nature of identify-
ing related traits.

Additional file 5: Table S4: |dentifying 16p11.2 and 22q11.2 cases from
electronic health records (EHR). Keyword searches across all documents
within the Vanderbilt EHR were performed to identify individuals carrying
16p11.2 or 22g11.2 CNVs. Individuals with documents containing
matching keywords were reviewed manually to confirm the presence of
16p11.2 or 22g11.2 CNV. Individuals were excluded from case groups if
their records included a mention of additional CNVs. Individuals within
the 16p11.2 case groups were also excluded if the size of the reported
CNV was 200-250 kb. Individuals within the 22q11.2 case group were ex-
cluded if the size of the CNV was smaller than 500 kb or if there was a
mention of “distal” when referring to the deletion or duplication. Con-
firmed case numbers are listed, with the non-genotyped counts in paren-
theses. Non-genotyped individuals were used for downstream phenome-
wide analyses.

Additional file 6: Table S5. Results of MultiXcan and S-MultiXcan asso-
ciations between CNV genes and autism, schizophrenia, bipolar disorder,
BMI, and 1Q. For autism, bipolar disorder, and schizophrenia, z-scores and
p-values come from a METAL meta-analysis across PGC cohorts. For BMI
and 1Q, mean z-scores and p-values come directly from S-MultiXcan out-
put. Genes in each CNV are sorted by chromosomal position.

Additional file 7: Table S6. Comparison of association results to
independent data. For each gene-trait pair, we list the original p-value,
the GWAS trait(s) that we classified as most similar to a PheWAS trait, its
best p-value in an independent dataset, the number of GWAS datasets
that were used for this trait, and the rank of this gene within that dataset.
For UK Biobank summary statistics, we have genome-wide data; for data-
sets with individual-level data, only 16p11.2 and 22q11.2 genes were cal-
culated. See Table S2 for more information on datasets used.

Additional file 8: Table S7. Conditional analysis for independence of
associations. Conditional analysis was performed on the PGC
schizophrenia data, the UK Biobank BMI data, as well as two BioVU
clinical trait associations (16p11.2 genes and psychosis, 22q11.2 genes and
morbid obesity). For each trait, we performed MultiXcan first adjusting for
a specific gene, then by leaving a gene in and adjusting all the other
genes associated with that trait out. The P4 reported in the text is the
p-value of this gene-trait pair when adjusting for all other genes consid-
ered for conditioning for this trait, unless otherwise stated.

Additional file 9: Table S8. Traits over-represented in CNV carriers. The
four categories of CNV carrier — 16p11.2 duplication, 16p11.2 deletion,
22q11.2 duplication, 22g11.2 deletion — were tested separately. The re-
sults for all clinical traits tested are provided. The number of cases and
controls for each trait is given, as well as whether the p-value meets ei-
ther Bonferroni or FDR correction. Traits in bold were represented in over
5% of carriers.

Additional file 10: Table S9. Top PheWAS associations of 16p11.2 and
22q11.2 genes. The top 15 associated traits for each gene, regardless of
p-value, are shown. These represent the top 1% of associations among all
traits tested. Genes are listed in alphabetical order, with each trait’s sam-
ple size and phecode noted [80].

Additional file 11: Table S10. Enrichment of clinical categories among
the top PheWAS associations. The top 15 traits (codes) for each gene
analyzed (n = 1470 gene-trait pairs) were divided into 17 clinical categor-
ies (observed counts column). The values in the expected counts column
are calculated as 1470 * {the proportion of traits of that category tested}.
For example, 159 out of 1531 codes tested were from the “circulatory sys-
tem” category, so the expected counts for “circulatory system” are calcu-
lated as 1470%*159/1531. The last column contains the p-value from a
binomial test comparing whether the observed proportion of clinical cat-
egories is more extreme than expected.
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