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Abstract

Background: Genetic studies have been tremendously successful in identifying genomic regions associated with a
wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and
their functional impacts has been more limited.

Methods: We identified 145 genes from IBD-associated genomic loci having endogenous expression within the
intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame
(ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. By comparing the
genes in which expression was modulated by each ORF, as well as the functions enriched within these gene lists,
we identified ORFs with shared impacts and their putative disease-relevant biological functions.

Results: Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as
HNF4a, IFIH1, and SMAD3 identified functions consistent with what is already known for these genes. These
analyses also identified two major clusters of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2,
NFKB1, and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas
Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses
highlight how multiple IBD gene candidates can impact on epithelial structure and function, including the
protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16 acts a regulator of MAPK
activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor,
involved in the protection of the intestinal mucosa from enteric microbiota.
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Conclusions: This functional screen, based on expressing IBD genes within an appropriate cellular context, in this
instance intestinal epithelial cells, resulted in changes to the cell’s transcriptome that are relevant to their
endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but
also provided insight into their biological functions. Furthermore, this work has highlighted the central role of
intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy
that targets epithelial functions in addition to the current therapies targeting immune functions.
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Background
The inflammatory bowel diseases (IBD) are character-
ized by chronic relapsing inflammation of the gastro-
intestinal tract. Crohn’s disease (CD) (MIM 266600) and
ulcerative colitis (UC) (MIM 191390) are the two main
subtypes of IBD. IBD are complex diseases and as such
are influenced by multiple contributing genetic and non-
genetic risk factors. Genome-wide association studies
(GWAS) have identified and validated over 200 genomic
regions associated with IBD, with the majority being
shared by CD and UC [1, 2]. However, GWAS alone
have only infrequently directly identified the actual
causal gene or variant(s) in any given locus [3, 4]. In
order to address this challenge, high-density genotyping
and targeted sequencing studies of a subset of these IBD
loci have been performed, successfully identifying candi-
date causal variants that implicate specific genes within
some loci as being causal [5–8]. Functional studies have
validated many of these [6, 9–12]. More recently, whole
exome sequencing (WES) and whole genome sequencing
(WGS) studies have identified additional loci as well as
likely causal genes within these loci and previously
known loci [13–15]. Taken together, these studies have
identified the causal gene, with one or more causal vari-
ants per gene, for two dozen of the validated IBD genetic
loci. Importantly, these studies have enabled the
identification of biological functions that are key to the
development of IBD, such as microbial recognition,
autophagy, cytokine signaling, and intestinal epithelial
barrier function [3, 4, 12, 16–18].
Given that the causal gene and their variants re-

main to be identified for most known loci, we sought
to develop a complementary approach for analyzing
known GWAS loci. This approach is based on the
observations that (1) most causal variants in IBD have
an impact on gene expression as opposed to gene
functions [19–21], (2) a gene’s function is believed to
be influenced by its cellular context, and (3) the
intestinal epithelium plays a key role in the develop-
ment of IBD. Indeed, we set out to expand our
understanding of biological functions relevant to IBD
by performing an expression-based functional screen
of genes from IBD loci in a human cell line com-
monly used as a model of intestinal epithelium.

Specifically, we created cell lines via lentiviral transfer
of open reading frame (ORF) of 145 genes from vali-
dated IBD loci that had significant endogenous expres-
sion within human intestinal tissues and/or cell lines
into the human colon adenocarcinoma HT-29 cell line.
The biological impact of expressing these different ORFs
was assessed using transcriptomics. Initial analyses of
this data demonstrated that the observed effects on the
transcriptome were robust, were reproducible, and were
biologically relevant. This transcriptomic data was then
analyzed to identify shared or opposite effects between
IBD genes, including genes known to be causal. Overall,
this approach led to the identification of clusters of
genes with shared effects on the epithelial cell’s tran-
scriptome. These results suggest that IBD genes impact
a broad set of functions important to the intestinal epi-
thelium barrier function and its contribution to host
anti-microbial defense.

Methods
Selection of candidate genes from IBD-associated regions
In order to identify the IBD gene candidates to test in
our transcriptome-based screen for IBD gene functions,
we focused on the 163 IBD-associated loci identified by
the International IBD Genetics Consortium [1]. First, we
selected all genes found within a linkage disequilibrium
(LD) region defined around each index single-nucleotide
polymorphism (SNP; r2 ≥ 0.8 using the SNAP [22] on-
line tool on the pilot 1K genome dataset (GRCh37/
hg19)). Second, for regions where no genes were identi-
fied within the LD region, we selected the closest gene
on either side of the index SNPs. For IBD-associated re-
gions where the causal gene was already known (NOD2,
IL23R, ATG16L1, IRGM, MST1, CARD9), only the
causal gene was considered. From the combined list of
genes identified in this manner, we removed the major
histocompatibility complex (MHC) region and HOX
gene clusters, as well as genes encoding known secreted
proteins (cytokines, chemokines, etc.) and receptors
(identified through bioinformatic analysis), as these clas-
ses of proteins are unlikely to yield any information in
an ORF-expression based screen without their required
ligand or receptor. Finally, we removed from this list any
gene that did not have detectable RNA expression in
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human intestinal tissues (small intestine, colon) or cell
lines (HT-29, HCT-15, Caco-2) from our profiling ex-
periment described below, although three known IBD
causal genes were kept regardless of their lack in epithe-
lial expression. In total, 169 genes from IBD-associated
loci were selected for our expression-based screen in
human colonic epithelial cells (Additional file 1: Table
S1, Additional file 2: Fig.S1).

Cloning of IBD open reading frames (IBD-ORFs)
For the screening stage of this study, we set-out to clone
the ORFs for all the IBD gene candidates selected above
into our modified GATEWAY® compatible polycistronic
lentiviral expression vector, pLVX-EF1a-IRES-PURO/
eGFP expressing an enhanced green fluorescent protein
(eGFP) and puromycin N-acetyl-transferase fusion pro-
tein, to use for expression in the HT-29 colonic epithe-
lial cell line model. First, we queried the UltimateTM
ORF Lite Clone Collection library (Invitrogen, Canada)
for the presence of pEntry plasmid clones containing the
longest validated isoform of each ORF, as defined by the
NCBI’s Consensus CDS (CCDS) project. The cloned
ORF sequences (supplied with the library) were then
screened for point mutations affecting the primary
amino acid sequence of the protein. In the cases where a
SNP was found affecting the amino acid sequence, we
only retained the cloned ORF if it contained the com-
mon allele. For any gene candidate either absent from
the library, showing only smaller ORF isoforms, or car-
rying changes to the accepted primary sequence of the
protein, a full-length codon-optimized attB-flanked se-
quence was synthesized using the Invitrogen GeneArt
gene synthesis service (Invitrogen, Canada) and inserted
into pDONR vector using BP reaction. All ORFs were
then cloned into the pLVX-EF1a-IRES-PURO/eGFP vector
using LR reaction, downstream of the constitutive
promoter and upstream of an IRES-controlled Puromycin-
eGFP hybrid reporter gene, so that transfection, transduc-
tion, and expression could be monitored by fluorescence.
Cloning was performed using the GATEWAY® cloning sys-
tem (ThermoFisher Scientific), and cloned ORFs were fully
sequenced to rule out any point mutations or cDNA rear-
rangements impacting on the primary protein sequence. A
total of 10 failed to clone in our expression vector and
therefore were dropped from the analysis.
In addition to the ORFs for the IBD gene candidates

identified within IBD-associated loci, we also cloned
three IBD-associated non-synonymous coding variants
of the IFIH1 gene (described in text) using the codon-
optimized ORF sequence (GeneArt String Synthesis and
GeneOptimizer technology, Invitrogen). Mutated IFIH1
ORF sequences were synthesized and cloned as de-
scribed above and were treated moving forward as any
of the other IBD gene candidate ORFs in this study.

Cell lines and culture conditions
The HEK 293 T/17 (ATCC CRL-11268) cell line used
for lentivirus production was cultured in DMEM, 10%
fetal bovine serum (FBS) and used at 50–80% confluency
for transfection of lentiviral vector and packaging plas-
mids as described in the “Production of lentiviral stocks”
section. The colorectal adenocarcinoma cell line HT-29
(ATCC HTB-38) was maintained at confluence between
20% and 80% at all times in McCoy’s 5A (Wisent, 317-
010CL) 10% FBS. The HCT-15 (ATCC CCL-225) cell
line was cultured in RPMI-1640 (Gibco, 61870-036),
10% FBS and also maintained sub-confluent. Typically,
all cell lines were maintained at confluence between 20%
and 80% at all time in a 5% CO2 humidified atmosphere
at 37°C. Cells were passaged with incubation in TRYPLE
(ThermoFisher Scientific) at 37°C for 9 min and then di-
luted in order get a confluency of 20%. All experiments
described herein were performed in cell at passages
below 25.

Production of lentiviral stocks
Lentiviral particle stocks were produced for all cloned
IBD gene candidate ORFs. Lentiviral expression vectors
were purified with GenElute HP Plasmid Maxiprep Kit
(Sigma, St-Louis, MO), and only plasmid preparations
with absorbance (260/280) ratios 1.8 to 2.0 were used
for transfection. Each ORF cloned into the pLVX-EF1a-
IRES-PURO/eGFP lentiviral expression vector was added
to lentiviral packaging and envelope vectors (Sigma-
MISSION-gag-pol and the envelope Sigma-MISSION-
VSV-G (Cat: CST-DNA Sigma, St-Louis, MO)) in a 2:2:1
ratio and co-transfected into HEK-293 T packaging cells
via the calcium phosphate precipitation method accord-
ing to the Open-Biosystem protocol (as described in
[23]). Following an incubation of 7–8 h in DMEM sup-
plemented with 10 % FBS, 1% L-Glutamine 2 mM, 0.1%
Pen-Strep at 37°C, and 5% CO2 at 37°C under 5% CO2,
the culture media was replaced with fresh culture media
and the cells incubated at 37°C and 5% CO2 for an add-
itional 40 h. Lentivirus-containing medium was then har-
vested, cell debris pelleted, and viral particles were
concentrated using the Lenti-X Concentrator (Takara
Bio) and resuspended with McCoy’s 5A (Wisent) in 1/10
of the original volume (10X concentration). The lenti-
viral stock was divided in 100 ul single-use aliquots and
stored at − 80 °C.
All pLVX-EF1a-IRES-PURO/eGFP lentiviral stocks

containing the different IBD gene candidate ORFs were
titrated on HT-29 cells (ATCC HTB-38). Proliferative
HT-29 cells, grown in McCoy’s 5A (Wisent Cat: 317-
100-CL) supplemented with 10 % FBS, 1% L-Glutamine
2 mM, 1% Penicillin-Streptomycin (Pen-Strep) at 37°C
under 5% CO2, were transduced with 25 μl of a 5-fold
serial dilution (in McCoy’s 5A without serum) of each
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viral stock along with Polybrene (Sigma, Cat: H-9268) at
a final concentration of 8 μg/ml to improve transduction
efficiency. Cells were then centrifuged at 1200×g for 30
min at 37°C to increase transduction efficiency and
incubated for 4 h before media was changed and cells
cultured for an additional 48 h. Independent eGFP-
expressing cells/colonies were counted using an IN Cell
6000 confocal microscope (GE Healthcare, Marlborough,
MA); average background fluorescent cell counts of
non-infected cells subtracted and transduction values
were converted in Transducing units per ml (TU/ml).
All procedures were done in accordance with enhanced
BSL-2 (biosecurity level-2) containment guidelines.

Lentiviral transduction, tissue culture, and antibiotic
selection in HT-29 cells
Proliferative HT-29 cells at 50% confluency in 12-well
plate (Corning) were transduced in triplicate with viral
stock at a multiplicity of infection (MOI) of 40-100 with
8 μg/ml of polybrene (Sigma, Cat: H-9268). Twenty-four
hours post-transduction, media was changed and 3 μg/
ml puromycin (Millipore Sigma) was added. After 3 days
of puromycin selection, the percentage of eGFP-
expressing cells/colonies were counted using an IN Cell
6000 confocal microscope (GE Healthcare, Marlborough,
MA) and any well presenting less than 5% green fluores-
cent protein (GFP) positive cells was eliminated. The ap-
pearance and confluence of the cultures were recorded
daily, and cells were grown for an average of 8 days (with
a range of 5–27 days) to select successfully transduced
cells and reach confluence before RNA extraction.
Transduction of the whole set of IBD gene candidate
ORFs was performed in batches of about 15 ORFs, each
done in triplicate, and including an empty vector con-
trol. Some ORFs were repeated between batches for
quality control and validation purposes. A total of 12
ORFs failed to transduce into HT-29 cells and were
dropped from the analysis.

Transcriptomic analyses
RNA was extracted from transduced HT-29 cultures
using the RNeasy Plus Mini kit (#74036, Qiagen Inc.
Canada) according to manufacturer’s protocol. The RNA
samples were quantified and quality controlled using an
Agilent RNA 6000 Nano kit (Agilent, Cat No./ID 5067-
1511) on 2100 Bioanalyzer system. The samples with
RNA Integrity Number (RIN) below 8 were discarded;
RIN values were routinely in the range of 9.2–10.
Expression profiling of the RNA was performed using
two expression arrays: a custom-built targeted Agilent
array and an Illumina whole genome array. Specifically,
the Agilent iGenex v.2 gene expression array (Agilent,
Santa Clara, CA) is a custom-designed array with 31,344
probes targeting all exons of 2099 genes, including genes

associated with immune-mediated and autoimmune dis-
eases, markers of epithelial and immune differentiation
and function, as well as housekeeping genes, whereas the
Illumina Human HT-12 v4 beadchip (Illumina, San
Diego, CA) is a genome-wide array targeting about
31,000 genes (with on average 2 probes per gene) with
more than 47,000 probes. RNA sample labeling for the
Agilent array was done with the Agilent One-Color
Microarray-Based Exon Analysis Low Input Quick Amp
WT Labeling kit, and the arrays were processed on the
Montreal Heart Institute (MHI) Integrative Biology Plat-
form’s Agilent system (Agilent Microarray Hybridization
oven and SureScan Microarray scanner) in batches of ~
15 ORFs in triplicate (~ 45 samples), with triplicates ran-
domized on different arrays. Some RNA samples were
repeated between batches of arrays for quality control
and evaluation of batch effect correction. Two of the
three replicates for each ORF were randomly selected to
be evaluated on the genome-wide Illumina array.
Illumina arrays were processed at the Génome Quebec/
McGill Innovation Centre in 5 batches, with replicates
randomized between processing dates and arrays, with
some RNA samples repeated. We have uploaded the raw
expression data from the custom Agilent and the whole
genome Illumina Human HT-12 v4 beadchip arrays
onto GEO (accession numbers GSE186001 [24] and
GSE186110 [25] respectively).

Validation of IBD gene candidate ORF RNA expression
Expression of target ORFs was validated directly from
the expression arrays transcriptomic data when possible.
In order to validate the expression of ORFs that were
not detectable on the expression arrays, due to the ab-
sence of functional probes within available exons, probes
located only in untranslated region (UTR) sequences or
codon-optimized ORF sequences, we developed an alter-
native end-point PCR approach. Briefly, a common for-
ward primer located within the pLVX plasmid sequences
5′ to the ORF insertion site along with a reverse ORF-
specific primer (designed using Primer 3Web) were used
for end-point PCR (Additional file 1: Table S2). Levels of
eGFP RNA produced from the pLVX-EF1a-ORF-IRES-
PURO/eGFP plasmid were also used to validate expres-
sion levels from the transduced plasmids; these were
found to be within a similar expression range for all
transduced ORFs (data not shown).
All ORF-specific PCR primer sequences used in this

validation are shown in Additional file 1: Table S3 and
primers were obtained from Millipore Sigma unless
mentioned otherwise from Integrated DNA Technolo-
gies. Total RNA preparations (1 μg) from ORF trans-
duced cell lines were reversed transcribed using the
High Capacity cDNA RT kit (ThermoFisher Scientific),
and end-point PCRs were performed following 34 cycles
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(94 °C 30 s, 58 °C 30 s, 72 °C 1min) using the HotStar-
Taq Plus DNA polymerase (Qiagen, Canada) according
to manufacturer’s protocol.

Description of samples
Overall, for the transcriptome-based screen (Additional
file 2: Figure S1), we successfully cloned the ORFs, trans-
duced in HT-29 in triplicate, generated stable cultures,
and isolated RNA for 147 out of the 169 genes selected
from IBD-associated loci for a total of 441 RNA samples
(see Additional file 1: Table S1 for details on the differ-
ent ORFs transduced). All these samples were included
in the targeted (Agilent) transcriptomic analysis, and
two of the three samples from each ORF were included
in the genome-wide (Illumina) transcriptomic analysis
(see above). Two of the ORFs tested did not show over-
expression in our cell model and 18 ORFs lost a single
replicate in QC; these samples were removed from
downstream analytical steps (see Additional file 1: Table
S4 for details on the expression levels of the different
ORFs transduced) and datasets. After quality control,
426 samples were included in the analysis for the Agilent
platform (18 ORFs with n = 2, 126 ORFs with n = 3 and
empty vector with n = 12). After quality control, 330
samples were included in the analysis for the Illumina
platform (1 ORF with n = 1, 31 ORFs with n = 2, 112
ORFs with n = 3 and empty vector with n = 12). For
replication purposes, additional transductions (n = 3)
were performed for 9 of these genes (27 RNA samples,
also included in the analysis for the Illumina platform)
(Additional file 2: Figure S1). For functional validation
experiments, we transduced lentiviruses (n = 6) contain-
ing the wild-type IFIH1 ORF, as ORFs carrying 3 IBD-
associated variants (also included in the analysis for the
Illumina platform) (see results section for description),
as well as additional transductions (n = 3) for the
DUSP16 and KSR1 ORFs (Additional file 2: Figure S1).
For replication purposes, additional transductions (n =
3) were performed for 9 of these genes (27 RNA sam-
ples) (Additional file 2: Figure S1) and are included in
the Illumina dataset. For functional validation experi-
ments, we transduced lentiviruses (n = 6) containing the
wild-type IFIH1 ORF, as ORFs carrying 3 IBD-associated
variants (see results section for description; these sam-
ples are included in the Illumina dataset), as well as add-
itional transductions (n = 3) for the DUSP16 and KSR1
ORFs (Additional file 2: Figure S1).

Expression profiling of IBD gene candidates
Gene expression profiling of 297 genes from IBD-
associated loci was performed across a panel of different
RNAs from human tissues (n = 1, purchased from
Clontech Laboratories) and from different immortalized
intestinal and immune cell lines (n = 3, cell lines were

obtained from ATCC and grown in-house, RNA was iso-
lated using the RNeasy Plus Mini kit (#74036, Qiagen
Inc. Canada) according to manufacturer’s protocol) using
our custom-made Agilent iGenex v.2 gene expression array
(see above). An expression value was obtained for each
gene in each replicate by calculating the geometric mean of
all probes within the gene, followed by a median
normalization across all genes on the array. A geometric
mean was calculated from at least 3 independent measure-
ments for each tissue. Given that only one sample was
available for tissues, technical replicates were used.

Analysis of Agilent chip data from HT-29 screen
We used Limma v3.26.9 and sva v3.18.0 packages
(Bioconductor v3.1-3.2) [26, 27] to load the fluorescence
intensity files and handle the data into R V3.2.0. Arrays
failing Agilent quality control according to the Agilent
Feature Extraction software were flagged. Manual quality
control of each array was also performed. Arrays with
high background signals, too low or saturated fluores-
cence intensities, poor recovery of spiked-in standards,
or non-uniform signal (as detected by Agilent quality
metrics and/or visual inspection of the image) were re-
moved. Each array was also aligned to the median of the
whole batch and those showing bad alignment of the
positive, negative, or spiked in controls were removed.
Each sample was then investigated to confirm the iden-
tity of the ORF that was expressed. Strong outliers not
explained by biology were also removed. All removed
samples were repeated in the next batch. Quality control
was performed within each batch of arrays.
After stringent quality control, fluorescence signal was

processed to remove local background (bakgroundCor-
rect, method “normexp”) and then normalized using
cyclic loess algorithm. Batch effects were then corrected
using ComBat [28] for known batches and sva for
unknown systematic artifacts (both from sva library
v3.18.0). Given the experiment was performed in three
parts, the batches from each part were combined first
and then combined together. To reduce impact of re-
sidual background, noise, and batch effects on very low
expression values, the fluorescence intensity values were
truncated at 8 and translated down by the same amount.
Duplicated probes were combined, and repeated samples
removed. The truncating threshold was determined
based on the distribution of negative control probes and
detected vs non-detected signals.

Analysis of Illumina chip data from HT-29 screen
Beadarray v2.20.1 and illuminaHuman4.db v1.24.0
packages (R Bioconductor v3.0) [29] were used to load
and annotate (readBeadSummary and add FeatureData)
the fluorescence intensity data into R-3.2.0. After
normalization of the array data (normaliseIllumina,
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method=”neqc”), data was converted and handled using
Limma package v3.26.9 (Bioconductor v3.0). Probes an-
notated as “Bad” or “No match” were removed. Manual
quality control of each array was performed. Arrays with
high background signals, too low, saturated or uneven
fluorescence intensities were removed. Each array was
also aligned to the median of the whole batch and those
showing bad alignment of the positive, negative, or
housekeeping genes controls were removed. Strong
outliers not explained by biology were also removed.
Removed samples were repeated in the next batch. Qual-
ity control was performed within each batch of arrays.
Batch effects were then corrected using ComBat for

known batches and sva v3.18.0 for unknown systematic
artifacts. Given the chips were performed in five batches,
each with at least two processing dates, the dates from
each batch were combined first before merging the
batches. To reduce impact of residual noise or batch
effects on very low expression values, the fluorescence
intensity values were truncated at 23.5, and translated
down by the same amount.

HIT definition
Given that we expect expression of the different ORFs to
have distinct effects on the expression pattern of different
genes in the transcriptome, we leveraged the information
from the complete dataset to generate the baseline distri-
bution of expression for all genes expressed in the HT-29
cell line under the culture conditions used in this project.
After log2 transformation of the expression data, the me-
dian expression measured by each probe over all samples
was used as the baseline, while the median absolute
deviation (MAD) was used to define expected range of
variability. This information was summarized as a Z score

computed as: Z ¼ ðx−bÞ
ffiffiffi

n
p
MAD

, where n is the number of

replicates (n = 3), x is the average from the replicates, and
ðx−bÞ is the difference from the baseline. Probes with |Z|
> 4 were considered outside expected range of variation.
For each expressed ORF, a probe was defined as a HIT if
the deviation ðx−bÞ was larger than 1, which is equivalent
to a fold effect greater than 2 on the original scale, and the
expression was outside the expected range of variation
(|Z| > 4). As expected, empty vectors had no effect on the
expression pattern and no HITs were found for this con-
dition. A given gene was defined as HIT if at least one
probe for this gene passed the threshold for a HIT. Based
on random assignment of empty vector samples to groups
of N = 3 samples, we would expect 0–5 (mean 0.9) false-
positive gene HITS using our criteria.

Gene-level effects and merging of platforms
Many probes are present for each gene on the Agilent
array (one per exon for genes included) and a few on the

Illumina array (one to three), with some of them per-
forming better than the others and targeting different
exons and thus possibly different isoforms. For similarity
analyses, a single value per gene was needed to represent
the effect of ORFs. To compute these, the list of all
probes flagged as HIT in any of the condition was ex-
tracted from the data, and the fold effect of all these
probes for a given gene were averaged (geometric mean).
The result is a matrix of effect sizes for all genes im-
pacted by at least one ORF, computed for the whole list
of ORFs. These values were used in downstream ana-
lyses such as computation of scores and similarity plots,
to compare the effects of ORFs.

Similarity scores
Scores were computed as a projection of the effects of
each ORF on the HITs of other targets ORFs. The score
for ORF1 on ORF0 (the reference) is computed as the
product of the (log) effects from both ORFs on the list
of HITS from ORF0, scaled to set the score of ORF0 on
itself to 1. The higher the score, the more ORF1 captures
the effect of the reference ORF0. A negative score means
an opposite effect. A score of 1 would be expected if
ORF1 entirely captured the effect of ORF0. The scores
are not symmetric, as they are computed using only the
list of hits from the reference ORF. Only ORFs with at
least 20 HITs were considered as reference ORF. This
threshold of 20 was chosen to ensure sufficient power
for interpretation of in silico analyses and correspond to
the (rounded) median of the number of hits, after which
we observe a steep increase in the distribution. At this
threshold, we also expect that 95% of hits are true posi-
tives, thus reducing noise in in silico analyses.

Similarity plots
A two-dimensional projection of the similarity in effects
between the ORFs was generated using the t-SNE method
(t-Distributed Stochastic Neighbor Embedding) as imple-
mented in R (library Rtsne) [30–32]. The method is a
non-linear data reduction algorithm aiming at finding
non-linear structures and clusters in high-dimensional
data. The projection was made from the gene-level effects
matrix on the log scale, including ORFs with a least 20
HIT genes and with perplexity parameter set at 10. Given
the random nature of the method, 30 independent projec-
tions were averaged and then used as the starting point of
a last run of the t-SNE algorithm. The plot was generated
using the igraph package [33], using the positions from
the t-SNE projection of similarity in effects. Arrows were
added to represent the pairwise similarity score.

Bioinformatic annotation of HITS identified in the screen
In terms of cis-regulatory motif analyses of the proximal
promoters of HITS identified in the screen, we used the
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PRIMA method [34] as implemented in the EXPANDER
software (v8.0) [35]. Specifically, we performed enrich-
ment analyses aimed at detecting cis-regulatory DNA
motifs (Jasper database) that were over-represented in
the promoter sequences (Ensembl database v89) of the
HITS for each of the ORFs expressed in HT-29; only
enrichment of greater than 2-fold with a corrected P
value< 0.001 (using the false discovery rate method) were
considered. In order to find biological annotation cat-
egories enriched in HITS identified in the screen, we
performed enrichment analyses using the g:GOSt func-
tional profiling tool (using Ensembl release 96) from the
online g:Profiler service (https://biit.cs.ut.ee/gprofiler/
gost) [36, 37]. Specifically, we evaluated enrichment for
Gene Ontology (GO) terms (Biological process (BP),
molecular function (MF) and cellular compartment
(CC); release 2019-06-01) and biological pathways
(KEGG, release 2019-06-03; Reactome, release 2019-06-
05; and WikiPathways, release 2019-05-10); only enrich-
ment with a corrected P value< 0.05 (using the g:SCS
algorithm intrinsic to gProfiler which takes into account
hierarchically related terms) were considered.

qPCR validation of the effect of IFIH1
For the validation of the effect of IFIH1 in HT-29 cells
and of the impact of the IBD-associated non-
synonymous IFIH1 coding variants (see main text), RNA
samples (n = 3) from the microarray-based transcrip-
tomic evaluation of IFIH1 and its three mutants were
used to synthesize cDNA (as described above). The
cDNA was amplified by qPCR using the PowerUp SYBR
Green Master mix reagent according to the manufac-
turer’s recommendations (ThermoFisher Scientific) and
with the QuantStudio 6 thermal Real time PCR system
using the following cycle program: an incubation of 2
min for uracil-DNA glycosylase (UDG) activation at
55°C, an incubation of 2 min at 95°C for denaturation,
followed by 40 cycles of 15 s at 95°C for denaturation,
30 s at 55 °C for annealing and 60 s at 72 °C for elong-
ation, then a final cycle of 15 s at 95 °C for denaturation,
60 s at 55 °C for annealing and 15 s at 95 °C for dissoci-
ation. The induction of the top 10 HITS from IFIH1
were validated in these samples via qPCR (PCR primer
sequences used are shown in Additional file 1: Table S3;
primers were obtained from Millipore Sigma unless
mentioned otherwise from Integrated DNA Technolo-
gies). Relative expression data were normalized to ex-
pression of the Hypoxanthine Phosphoribosyltransferase
(HPRT) gene.

qPCR validation of the effect DUSP16
For the validation of the effect of DUSP16 and KSR1 in
HT-29 cells, independent transductions were performed
(as described above) in triplicate, and stable cell lines

were established following puromycin selection; from
these, total RNA was extracted, and cDNA synthesized
(as described above). The induction of the top 10 HITS
from DUSP16 and KSR1 were validated in these samples
via qPCR (PCR primer sequences used are shown in
Additional file 1: Table S3; primers were obtained from
Millipore Sigma unless mentioned otherwise from Inte-
grated DNA Technologies). Relative expression data
were normalized to expression of the HPRT gene.

Functional analysis of DUSP16
For the validation of the functional impact of DUSP16 in
HT-29 cells, a DUSP16 shRNA knock-down model and
a doxycycline-inducible model for DUSP16 expression in
HT-29 cells were generated. Briefly, for the Doxycycline-
inducible model, the lentiviral Lenti-X™ Tet-On® 3G In-
ducible Expression System (Takara Bio) was used. The
codon-optimized DUSP16 ORF sequence was cloned
into the lentiviral Lenti-X™ Tet-On® 3G Inducible re-
sponse vector (Takara Bio) using the GATEWAY® clon-
ing system and a lentiviral stock of this inducible
DUSP16 expression plasmid was generated as described
above. Following this, HT-29 cells were transduced with
the pLVX-Tet3G regulator vector (Takara Bio USA) and
a stable Tet-On 3G transactivator-expressing clonal HT-
29 cell line (HT-29-pLVX-Tet3G) was isolated following
selection with 500 μg/ml Geneticin (cat no 10131-027,
ThermoFisher Scientific). Lentiviral stocks for the
pLVX-Tet3G regulator vector were produced as de-
scribed above. The HT-29-pLVX-Tet3G line was then
transduced in triplicate with either the lentiviral Lenti-
X™ Tet-On® 3G Inducible response vector containing the
DUSP16 ORF or the equivalent empty Lenti-X™ Tet-On®
3G Inducible response vector, and stable cell lines were
obtained following selection with 400 μg/ml zeocin (cat
no 46-0509, ThermoFisher). The resulting doxycyclin-
inducible HT-29 cell lines were maintained in culture at
37 °C with 5% atmospheric CO2 in McCoy’s 5A (Modi-
fied) medium (cat no 317-010-CL, Wisent Bioproducts)
supplemented with 10% FBS premium quality, tetracyc-
line free (cat no 081150, Wisent Bioproducts), 1X Gluta-
max (cat no 35050-61, ThermoFisher Scientific), 500 μg/
ml Geneticin (cat no sc-29065A, Santa cruz Biotechnol-
ogy), and 100 μg/ml zeocin (cat no 46-0509, Thermo-
Fisher Scientific). All HT-29 lines were maintained in
the exponential growth phase (50–60% confluence) and
used at 70–90% confluence for specific treatments and
stimulations.
For the HT-29 shRNA knockdown model, five inde-

pendent DUSP16-targetting shRNA lentiviral vectors
from the MISSION® library (Sigma) were transduced in
HT-29 cells. Lentiviral stocks for DUSP16 shRNA-
expression vectors were produced following the same
procedure described above. Stable shRNA DUSP16
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knockdown cell lines were derived in triplicate for each
shRNA vector following selection with 3 μg/ml puro-
mycin and were maintained at 37 °C with 5% atmos-
pheric CO2 in McCoy’s 5A (Modified) medium (cat no
317-010-CL, Wisent Bioproducts) supplemented with
10% FBS (cat F1051-500 mL, Wisent Bioproducts), 3 μg/
ml puromycin (cat no P9620-10 ml, Millipore Sigma),
100 U/ml of penicillin and streptomycin (cat no 450-
201-EL, Wisent Bioproducts), and 1X Glutamax (cat no
35050-61, ThermoFisher Scientific). Total RNA was
extracted, and cDNA synthesized as described above.
DUSP16 levels were evaluated by qPCR and the shRNA
clone with the strongest impact on endogenous DUSP16
expression levels (TRCN0000052017) was selected for
use in further experiments.
Specific conditions used in functional assays to induce

DUSP16 ORF expression, as well as specific treatments
(MAPK inhibitors and TNF-α stimulation) of the shRNA
knockdown and DUSP16 expression models are de-
scribed in the figure legends.

Evaluation of the effect of DUSP16 expression in HCT-15
cells
Proliferative HCT-15 cells at 50% confluency (in 12 well
plate (Corning-Thermo Fisher Scientific)) were trans-
duced in triplicate with viral stock of pLVX-EF1a-IRES-
PURO/eGFP, either empty or containing the DUSP16
ORF (as described above), and stable cell lines were estab-
lished following puromycin selection. Specific conditions
and treatments used in functional assays (MAPK inhibi-
tors and TNF-α stimulation) of this DUSP16 expression
HCT-15 model are described in the figure legends.

Statistical analyses for functional analyses
Expression obtained by qPCR was normalized by the en-
dogenous gene HPRT and log2-transformed. When dif-
ferent plates were used, systematic plate effects were
removed by the mean across all conditions (or median if
there was large variation between conditions). When
many treatments were tested on the same cell lines, sys-
tematic cell line differences were removed by the mean
across all treatment. The mean and standard error of the
mean (SEM) for each condition were computed and
transformed back to the original scale as geometric
mean (estimator of population median) with SEM, with
all data points shown. In the context of increased con-
cerns on the overuse (and misuse) of P values in report-
ing biological data, and given the nature of this project,
we decided to use inference on parameters instead of
reporting P values from statistical testing of the null hy-
pothesis. As an indication, non-overlapping three data-
points from two conditions correspond to the strongest
evidence against the hypothesis of no difference for a
non-parametric test (P value = 0.1). Under hypothesis of

lognormal distribution, the intervals as plotted corres-
pond to 58% confidence interval for the median.

Results
Lentiviral ORF screen in human colonic epithelial cells
To better understand the functional impacts of IBD
genes in disease susceptibility within the intestinal
epithelial cell compartment, we performed an
expression-based screen of genes within known IBD loci
(see overview of study flow in Additional file 2: Fig.S1).
In order to define the gene list to include in this tran-
scriptomic screen, we began with the 167 IBD-associated
loci identified, just prior to the initiation of the current
project, by the International IBD Genetic Consortium’s
genetic analysis of ~ 75,000 IBD cases and controls [1].
The 297 genes found within these loci were evaluated
for their expression profile in a panel of human tissues
and cell lines. With this information, we prioritized a list
of 169 genes from IBD-associated loci with intestinal
expression, including 20 known causal genes, for our
expression-based screen in human colonic epithelial cells
(Additional file 1: Table S1). The next step in the experi-
mental design was to clone an ORF for each of these
genes into a lentiviral expression vector, and then trans-
duce each into HT-29 cells via three independent infec-
tions. Over 85% (147/169) of these ORFs were
successfully cloned, transduced, and generated stable
cultures. Following an average of 8 days in culture to se-
lect successfully transduced cells and obtain confluent
cultures, RNA was extracted, and the transcriptomes of
the different stable cultures were assessed on two differ-
ent microarray expression profiling platforms (Add-
itional file 2: Fig.S1).
After normalization of this transcriptomic data, mer-

ging data from samples of different experimental batches
and merging of experimental replicates (independently
on each of the microarray platforms), we first assessed
the expression level of each transduced ORF in the cell’s
transcriptome (Additional file 1: Table S4 and
Additional file 2: Fig.S2). We then excluded two ORFs
that did not show detectably increased expression and
set out to determine the impact of the remaining 145
ORFs on the cell’s transcriptome. To do so, we deter-
mined the variance in expression of all detectable genes
in the transcriptome across all samples included in these
analyses, and then determined the set of genes that in-
creased or decreased in response to each ORF—these
“HITS” were defined as genes where the fold effect on
their expression levels (either increased or decreased)
computed from their combined replicates over their me-
dian expression was larger than twofold and their ex-
pression was outside their expected range of variation
(Fig. 1A). Results from the two expression profiling plat-
forms were combined (see the “Methods” section) before
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proceeding to in silico analyses (Additional file 2:
Fig.S1).
Importantly, low variances were observed between the

replicates for any given ORF, highlighting the robustness
of the experimental approach used (median SD between
log2(FC) was 0.12, with an interquartile range of 0.35).
As could be expected, the empty vector had no effect on
the expression pattern and no HITS were found for this
condition. Moreover, the different ORFs showed a wide
range of effects on the cell’s transcriptome (from 0 to
1123 HITS), with ORFs encoding for transcription fac-
tors or for molecules involved in intracellular signaling
(e.g., G protein-coupled receptors, phosphatases and ki-
nases) showing the greatest impact on the transcriptome
(Fig. 1B and Additional file 1: Table S5). ORFs encoding
structural proteins, terminal enzymes in metabolic

pathways or proteins whose function likely requires an
external stimulus, such as for the known causal genes
C1ORF106, FUT2, and IRGM, respectively, had little im-
pact on the transcriptome.
As a first-pass validation of the observed impact on

the transcriptome, a subset of 9 ORFs were repeated,
each with an additional three independent infections
performed later in time (4 to 16months). Results were
highly consistent between dates (Additional file 2:
Fig.S3). Taken together, these analyses suggest that this
approach is robust, and shows reproducible ORF-
dependent impacts on the HT-29 transcriptome.

HNF4a has a major impact on the epithelial transcriptome
As a first step to obtaining a biological interpretation of
the HITS emanating from these analyses, we examined

Fig. 1 Impact of IBD gene candidate ORFs on the HT-29 transcriptome. A Selected examples illustrating the impacts observed on the transcriptome of
HT-29 cells following the expression of different ORFs for IBD gene candidates. HITS are identified as genes with probes from either microarray
platform showing detectable expression in HT-29 (endogenously or following ORF expression) for which the fold effect in response to the expression
of a given ORF is greater than two compared to the baseline and shows expression outside the expected range. As examples, FUT2 (left), a terminal
enzyme in a metabolic pathway, had no impact on the transcriptome (0 HITS); NOD2 (middle), an intracellular PAMP receptor, had only marginal
impact on the transcriptome (28 HITS) in the absence of its ligand, and HNF4A, a transcription factor known to have a central role in intestinal
epithelial cells, had the strongest effect (1123 HITS). Each dot represents a single detectable probe from the genome-wide array tagging a specific
gene in the HT-29 transcriptome. The x-axis shows the log2-transformed median expression across all conditions (baseline). The y-axis represents the
effect of transduction of a given ORF, as the log2-transformed fold-induction compared to baseline. Sky blue dots are probes with expression value
within expected range of variation ( |Z| ≤ 2), orange dots represent probes suggestively outside the range ( |Z| > 2), and red dots represent probes
outside the range ( |Z| > 4). Grey dots are probes with expression value below detection threshold. B Impact of the expression of all IBD gene
candidates on the transcriptome of HT-29 cells. ORFs are ordered along the x-axis by increasing total number of HITs (see Additional file 1: Table S5),
with number of upregulated and downregulated HITs gene shown along the y-axis. Starred ORFs are previously reported IBD candidate causal genes
and ORFs listed in red indicate known transcription factors (as defined by Lambert et al. [38])
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the results of HNF4a as it is the ORF showing the stron-
gest effect in our epithelial model with 1176 HITS (728
genes that increased and 395 genes that decreased in
their expression). HNF4a is a known transcription factor
previously described to have a prominent role in the
differentiation and function of hepatic, pancreatic, and
intestinal epithelial cells [39–41] and is believed to be
the causal gene within its susceptibility locus [42]. In our
experiment, the transduction of the HNF4a ORF led to
an increase of 13-fold of the HNF4a transcript in HT-29
cells. The top five upregulated genes were the ABCB1,
MPP1, SI, SPRR3, and ANPEP genes, which are known
to play important roles in intestinal transport of xenobi-
otics, cell junctions and polarity, digestion of dietary car-
bohydrates, epithelial cell structure, and digestion of
peptides, respectively [43–47]. A global annotation ana-
lysis of the 728 genes that increased following expression
of HNF4a found significant enrichment of multiple an-
notation terms, most of which are known to play essen-
tial roles in intestinal epithelial function such as multiple
metabolic processes, transmembrane absorption and
transport of lipids, alcohols, organic acids, steroids, small
molecules, ions, drugs and xenobiotics, in addition to
the formation of specialized structures of the apical
plasma membrane (microvilli and brush border) and
the regulation/resolution of inflammatory responses
(Additional file 2: Fig.S4A-D).
In addition, an analysis of the proximal promoters of

these 728 genes revealed a significant enrichment for the
HNF4a transcription factor binding site (TFBS)
(Additional file 1: Table S6). We have previously re-
ported a connection between HNF4a and RNF186, an-
other causal IBD gene, specifically hypothesizing that
HNF4a can regulate the expression of HNF1a, which
then regulates the transcription of RNF186 [5]. Indeed,
in the current dataset HNF1a and RNF186 transcripts
are increased by 2.4- and 5.4-fold, respectively, in HT-29
lines expressing the HNF4a ORF. Taken together, these
results support that our experimental approach has the
capacity to identify ORF-related functions relevant to
epithelial biology.

Identifying shared, distinct, and opposing impacts of
ORFS on epithelial transcriptome
In order to systematically screen through our transcrip-
tomic dataset of 145 IBD ORFs and identify genes that
share an impact on similar biological functions or pro-
cesses, we developed a “similarity score” approach to
cluster genes with similar effects on the transcriptome.
We focused our analysis on ORFs that had at least a
total of 20 HITS that were either upregulated or down-
regulated. This threshold of 20 was chosen to ensure
sufficient power for interpretation of in-silico analyses
and corresponds to the (rounded) median of the number

of HITS across all conditions, after which we observe a
steep increase in the distribution. As can be seen in
Fig. 2, this analysis revealed two large distinct gene
clusters: Cluster 1 includes multiple known IBD
causal genes including IFIH1, SBNO2, NFKB1, and
NOD2, with several candidate genes connecting to
them, while Cluster 2 has multiple candidate genes
connecting to the IBD causal gene KSR1.
This analytical approach allows us to identify genes

with shared impact on the transcriptome, as further
illustrated for Cluster 1 genes by pairwise comparisons
of causal IBD genes IFIH1, SBNO2, NFKB1, and NOD2
showing highly correlated effects on the epithelial cell’s
transcriptome (Fig. 3A). Similarly, for Cluster 2, IBD-
causal gene KSR1 shares a comparable impact on the
transcriptome to IBD gene candidate DUSP16 and
known causal gene HNF4A (Fig. 3B).
This graphical representation can also highlight genes

that have very distinct effects, with few to no connec-
tions with others. One example is the IBD-causal gene
SMAD3, whose impact on the transcriptome is without
any noticeable resemblance to others. SMAD3 is a key
molecule in the signaling cascade of the TGF-β receptor.
Interestingly, IBD-candidate gene SMAD7, which is very
distant in the similarity graph from SMAD3, is a direct
inhibitor of SMAD3 signaling and is known to block the
effect of SMAD3 in response to IFN-γ [48]. The oppos-
ite effects of the agonistic SMAD3 and antagonistic
SMAD7 are further illustrated in a direct comparison of
their impact on the HT-29 transcriptome (Fig. 3C).

Multiple IBD genes are involved in the immune response
of epithelial cells to the local microbial environment
As described above, Cluster 1 included four known
causal IBD genes (IFIH1, SBNO2, NFKB1, and NOD2)
with similar effects on the transcriptome. IFIH1 encodes
MDA5, an innate pattern recognition receptor (PRP)
that functions as a cytoplasmic receptor for viral RNA
[49], which upon binding to RNA leads to the activation
of IRF3/7 and the transcription of type I interferon genes
(Additional file 2: Box 1) [50]. The encoded interferon
proteins can then act in an autocrine and/or paracrine
fashion, triggering multiple signaling cascades (e.g., JAK-
STAT, NFkB etc.) that result in the transcriptional
regulation of hundreds of genes, many of which have
interferon-sensitive response elements (ISRE), that bind
the heterodimeric transcription factor (STAT1::STAT2),
or NFkB binding sites in their promoters [51]. Analysis
of the promoters of the genes activated by the expres-
sion of these four IBD genes (Additional file 1: Table S6)
found an enrichment of binding sites for STAT1::STAT2
and for members of the IRF family in three of these
(IFIH1, SBNO2, and NFKB1) and of NFkB sites (REL
and RELA) in two (NFKB1 and NOD2). These TFBS-
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based analyses support a role for IFIH1, SBNO2, and
NFKB1 in the anti-viral and type 1 interferon responses,
and for NFKB1 and NOD2 a role in anti-bacterial re-
sponses (Additional file 2: Box 1). The enrichment of
TFBS increases as a function of the stringency of thresh-
old for defining a HIT from the screen (Additional file 1:
Table S6). These observations are further supported by
enrichment analyses of functional annotations in the
HITS for SBNO2, NFKB1, and IFIH1 (Additional file 3:
Cluster 1 data), which showed a very important shared
enrichment for anti-viral responses as well as responses
to type I interferons (Additional file 1: Table S7), and
significant shared enrichment of chemokine-driven re-
sponses in the HITS of NFKB1 and NOD2 (Additional
file 1: Table S8). These results are entirely consistent
with the known functions of IFIH1, NFKB1, and NOD2
(Additional file 2: Box 1) [49, 52, 53]. While SBNO2 is

considered a causal IBD gene, its function is not well
characterized although first identified as a component of
the IL-10 signaling cascade in monocytes (Additional file
2: Box 1) [54].
As an additional validation of our experimental

approach’s ability to capture biologically relevant effects,
we were interested in examining the impact of IBD-
associated variants in the known IBD causal gene IFIH1
in our HT-29 model. The IFIH1 region was first identi-
fied as an IBD risk locus in a meta-analysis of GWAS,
and subsequent high-density SNP based association
mapping identified a single non-synonymous variant in
this gene (rs35667974, I923V) associated to UC risk with
> 95% certainty, confirming this as the most likely causal
gene in the region [8]. In a previously published targeted
sequencing of the exons of 759 protein-coding genes
from IBD loci, we found two additional previously

Fig. 2 Clustering ORFs based on shared HITs and pairwise similarity of effect on the HT-29 transcriptome. A similarity analysis was applied to the
transcriptomics dataset from our expression screen for IBD gene candidates in HT-29 cells. A two-dimensional projection of the similarity in
effects between the ORFs was generated using the t-SNE method from the gene-level effects matrix on the log scale, including ORFs with a least
20 upregulated or downregulated HIT genes. ORFs with a similar effect on the transcriptome are clustered together on the graph. Size of the
circle for each ORF was made proportional to the number of HITS. Yellow circles represent IBD-causal genes. Arrows were drawn between ORFs
with width proportional to a similarity score (see the “Methods” section). Arrows from ORF1 to ORF0 represent evidence of shared effects on the
subset of the transcriptome defined by the HITS of ORF0. Only arrows for a positive score greater than a specific threshold (0.6) were drawn. Two
clusters can be loosely defined in top right (cluster 1) and bottom left (cluster 2) with little connections between them
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reported coding variants in the IFIH1 gene associated
with increased risk to IBD: rs35337543, at splice donor
site position + 1 in intron 8 leading to a predicted skip-
ping of exon 8 and an in-frame deletion within the first
helicase domain (MAF = 1%, OR = 1.3, P value = 0.003),
and rs35732034 (MAF = 0.8%, OR = 1.3, P value =
0.002), at splice donor site position + 1 in intron 14 lead-
ing to a predicted skipping of exon 14 and a premature
termination resulting in the truncation of the C-terminal

domain (CTD), which recognizes and binds viral RNA
[55, 56]. We therefore cloned the resultant variant ORFs
and expressed these in HT-29. As can be seen in Fig. 3D
and Additional file 2: Fig.S5A, these IBD-associated vari-
ants had an impact on the transcriptome that was quan-
titatively (Additional file 1: Table S9), but not
qualitatively different as compared to the wildtype ORF,
either from a global perspective (Fig. 3D) or when evalu-
ating the top 10 HITS in the cells expressing the IFIH1

Fig. 3 Correlation of effect of different IBD gene candidate ORFs on the HT-29 transcriptome. Correlation plots illustrating the shared effects of
IBD gene candidate ORFs on the transcriptome of HT-29 cells are shown A for cluster 1 IBD causal genes IFIH1 vs NFKB1 and SBNO2, and NOD2
vs NFKB1, B for cluster 2 IBD causal gene KSR1 and its closest candidate ORF cluster neighbor DUSP16, as well as KSR1 causal gene HNF4A, and C
for IBD causal gene SMAD3 and candidate ORF SMAD7. Additional correlation plots for IBD-causal genes with IBD gene candidate ORFs are
shown in Additional file 2: Fig.S6. D Correlation plots comparing the effects of increased wild-type IFIH1 expression against expression of three of
its IBD-associated non-synonymous coding variants: an isoleucine to valine substitution at position 923 (rs35667974) (923 V, left), a splice donor
site variant at position + 1 in intron 8 (SP1, middle) and a splice donor site variant at position + 1 in intron 14 (SP2, right). For the effect of IFIH1
variants on IFIH1 HITs, see Additional file 1: Table S9. For all correlation plots shown, each dot represents a single detectable probe from the
genome-wide array tagging a specific gene in the HT-29 transcriptome (see Fig. 1). The x-axis (inner color of dots) and y-axis (border color of
dots) show the effect of two independent set of replicated ORFs on the transcriptome, as the log2-transformed fold-induction compared to
baseline. Sky blue are probes with expression value within expected variation (|Z| ≤ 2), orange represent probes suggestively outside the range
(|Z| > 2), red represent probes outside expected range of variation (|Z| > 4), and grey are probes with expression value below our detection
threshold; this color code is applied to the inside of dots for x-axis data and the border of dots for y-axis data. No metric of correlation was
included, as most probes are not affected by ORFS and thus only represent noise. See Fig. 2 for similarity illustration
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ORF (Additional file 2: Fig.S5A). The microarray results
for these same top 10 IFIH1 HITS were also further vali-
dated by qPCR (Additional file 2: Fig.S5B).
Extending our analyses to the remaining genes within

Cluster 1 also identified highly significant enrichments
of IRF1, IRF7, and STAT1::STAT2 sites within the pro-
moters of the HITS from ZFP36L1, IRF1, GIGYF1,
OTUD3, and AIRE expressing lines, and of NFkB sites
within the promoters of the HITS from PITX1 express-
ing lines, but no detectable enrichment of such sites for
FOS or FOXO1 HITS (Additional file 1: Table S6). This
pattern was also seen in the enrichment of functional
annotations (Additional file 3: Cluster 1 data). Specific-
ally, the HITS of ZFP36L1, IRF1, GIGYF1, OTUD3, and
AIRE were enriched for shared functional annotations
related to anti-viral responses and Type-1 interferon re-
sponse (Additional file 1: Table S7), the PITX1 HITS be-
ing enriched for shared cytokine- and chemokine-driven
responses (Additional file 1: Table S8), and the HITS of
FOS and FOXO1 being more modestly enriched for a
broad range of functional annotations. These shared
functions are in part due to shared HITS, as illustrated
by correlation plots between the different cluster 1 IBD-
causal genes and IBD gene candidate ORFs (Additional
file 2: Fig.S6A), for example over a third of NFKB1’s
HITS (67 of 185) are in common with PITX1.
We therefore propose that multiple IBD genes play an

important role within the intestinal epithelium in terms
of transcriptional regulation of the type I interferon re-
sponse to viral pathogens (SBNO2, NFKB1, IFIH1,
ZFP36L1, IRF1, GIGYF1, OTUD3, and AIRE) and others
in the transcriptional regulation of the anti-bacterial re-
sponse (NFKB1, NOD2, and PITX1). While for many of
these genes (e.g., IFIH1, NFKB1, IRF1, NOD2, and FOS)
the association with anti-microbial functions has been
well established, for the others, this association is novel
(Additional file 2: Box 1).

KSR1 and DUSP16 play a role in intestinal homeostasis
Cluster 2 contains ten genes from ten different IBD loci,
with only KSR1 having previously been established as
causal (Additional file 1: Box 2). KSR1 encodes for a
protein that has active kinase activity and that acts as a
scaffold for the Ras/Raf/MAPK signaling pathway [57].
While KSR1 is most often studied within the context of
oncogenesis, GWAS studies of IBD and subsequent
high-density SNP based association mapping implicated
KSR1 as a causal IBD gene [1, 8]. Moreover, multiple
studies have linked KSR1 to inflammation (Additional
file 2: Box 2). In the current screen, KSR1 had 340 HITS
and consistent with its broad role in signaling, functional
annotation of these HITS found enrichment for a large
number of biological processes and functions such as
“metabolism of fatty acids,” “biosynthesis of specialized

pro-resolving mediators,” “regulation of gene expression
in endocrine-committed (NEUROG3+) progenitor cells,”
and “drug metabolism,” all known functions of intestinal
epithelial cells (Additional file 5: Cluster 2 data). In fact,
50% of the annotation terms enriched in KSR1’s HITS
are shared with HNF4A, including metabolism of fatty
acids, biosynthesis of specialized pro-resolving media-
tors, formation of brush border membrane and micro-
villi, and drug metabolism, which is further supported by
the fact that KSR1 shares 102 (30%) of its 340 HITS with
the well-characterized HNF4A (Fig. 3B). This suggests
that KSR1 plays an important role in regulating intes-
tinal epithelial function.
Of the 10 genes contained in cluster 2, CDC37,

DUSP16, TAGAP, SMAD7, and SATB1 share respect-
ively 65%, 44%, 40%, 27%, and 21% of their HITS with
KSR1 (Additional file 2: Fig.S6B) suggesting that these
all share some role in intestinal epithelial function.
DUSP16, which was the closest to KSR1 in the similarity
network (Fig. 2) and in a pairwise comparison (Fig. 3B),
had 119 of its 268 HITS in common with KSR1 and
shared many functional annotations terms such as “or-
ganic acid metabolism,” “brush border cellular compart-
ment,” and “regulation of gene expression in endocrine-
committed (NEUROG3+) progenitor cells (Additional
file 1: Table S10). It is important to note that while
genes may share functional annotations, the actual HITS
may be different. For example, while DUSP16 and KSR1
both show enrichment for the GO annotation term for
proteins involved in the “brush border” cellular compart-
ment, and the HITS for KSR1 and DUSP16 both include
eight genes tagging this GO annotation term, only four
of these are in common (SI, CDHR5, CYBRD1, PDZK1).
Interestingly, this annotation term is also highly enriched
in the HITS from HNF4A expressing lines, suggesting
that KSR1 and DUSP16 share a role with HNF4A in
regulating some key homeostatic functions of intestinal
epithelial cells, although not always impacting on the
same list of genes.
The observation that KSR1 and DUSP16 have shared

functions is further supported by the overlap of six of
the top ten HITS of KSR1 (in order CHP2, C15orf48,
FCGBP, ENPP2, SI, AKR1C2, CYP1A1, HEPACAM2,
NR1H4, RETREG1) and of DUSP16 (in order CHP2,
C15orf48, ENPP2, SI, CASP1, PIGR, FCGBP, SST,
HEPACAM2, MS4A8). Moreover, even for the top 10
genes that are not shared between KSR1 and DUSP16,
most can be found within the broader set of HITS for
these genes. Importantly, these top 10 HITS alone high-
light some important intestinal epithelial functions such
as dietary metabolism (SI, NR1H4), inflammatory pro-
cesses (CASP1, SST), as well as homeostasis and defense
(CHP2, PIGR, FCGBP, HEPACAM2); see Additional file
1: Table S11 for details. As outlined in Additional file 1:
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Table S11, several of these genes are also found within
the HITS of other Cluster 2 genes.
In order to validate these observations, we independ-

ently repeated the transduction of KSR1 and DUSP16 in
HT-29 cells and validated the impact of these ORFs on
their top HITS (Additional file 1: Table S12). Given that
DUSP16 functions as a dual specificity protein phosphat-
ase involved in the inactivation of MAPK [58, 59], it is
reasonable to think that DUSP16 is impacting the
transcriptome of epithelial cells via regulation of MAPK
activity. To test this hypothesis, we chose to focus on the
potential link between DUSP16 and the PIGR gene that is
suggested by our transcriptomic data, as it encodes the
pIgR receptor that is known to have a role in the protec-
tion of the mucosa from intestinal microbiota and is im-
pacted by several other IBD gene candidates (KSR1,
SATB1, IRF1, and GIGYF1)(Additional file 1: Table S11).

The novel IBD gene DUSP16 functions as a regulator of
MAPK activity and is linked to epithelial protection
We first generated stable DUSP16 shRNA knock-down
HT-29 cell lines (with 80% KD efficiency on RNA)
(Additional file 2: Fig.S7A) and confirmed that reduction
of DUSP16 levels leads to a 60% reduction of basal pIgR
expression levels (Additional file 2: Fig.S7D). In order to
examine the kinetics of the effect of DUSP16 on PIGR
expression in a dose- and time-controlled manner, we
generated a tetracycline-inducible model for DUSP16 ex-
pression in HT-29 cells co-expressing the Tet-On 3G
transactivator. Using this model, we were able to obtain
controlled DUSP16 expression levels (from 2- to 300-
fold increase in expression over endogenous levels) over
a wide range of doxycycline (DOX) concentrations (1–
1000 ng/ml) following a 24-h treatment (Additional file
2: Fig.S7B). Interestingly, using the same samples we ob-
served that PIGR expression levels were not linearly cor-
related to DUSP16 expression levels within the range of
DOX concentration tested but rather seemed to sharply
increase fourfold to fivefold when DUSP16 increased 60-
fold (at a DOX dose of 10 ng/ml) and remained stable
even at higher doses of DUSP16, indicating that the ef-
fect of DUSP16 on PIGR expression rapidly becomes
saturated in these cells (Additional file 2: Fig.S7E). Using
the lowest dose tested that induced maximal PIGR in-
crease in our model (DOX dose of 10 ng/ml), we were
able to show that DUSP16 achieved a steady state
expression level within 24 h of DOX stimulation
(Additional file 2: Fig.S7C) while PIGR continuously
increased over time (from 1 to 12 days), reaching induc-
tion levels close to 300-fold (Additional file 2: Fig.S7F).
The timing of PIGR induction closely mirrors the in-
crease in levels of DUSP16, suggesting that the impact of
DUSP16 on PIGR expression likely does not involve the
induction of multiple of intermediary factors.

Based on these results and on the role of DUSP16 in
MAPK regulation, we then tested the effect of DUSP16
expression on MAPK activity in our cell model. More
specifically, we evaluated phosphorylation levels of
ERK, p38 and JNK following induction of DUSP16 for
24 h (Fig. 4A). Previous reports have shown that
DUSP16 can impact on MAPK with a higher specificity
for JNK and p38 over ERK. As expected, expression of
DUSP16 in proliferative cells strongly reduced steady-
state phosphorylation levels of p38 and JNK but had a
more marginal effect on ERK. In addition, we tested the
impact of DUSP16 in a serum deprivation model
followed by a stimulation of MAPK activity with TNF-
alpha (Fig. 4B). In this model, not only do we observe
that DUSP16 can further reduce phosphorylation of all
three MAPKs following serum deprivation, it can also
inhibit activation of all three MAPKs following TNF-
alpha stimulation. These results indicate that under the
right conditions DUSP16 can not only impact on p38
and JNK activity, but on ERK activity as well.
In order to further characterize the mechanism by

which DUSP16 impacts on PIGR regulation, we evalu-
ated the effect of chemically inhibiting each MAPK kin-
ase independently (Fig. 5A). Using this model, we first
observed that a short term (24 h) chemical inhibition of
ERK causes a marginal but detectable induction of PIGR
similar to the one obtained via expression of the
DUSP16 ORF (Fig. 5B) with a similar effect also seen for
chemical inhibition of p38 but not JNK. Moreover, a
long-term chemical inhibition of ERK and p38, but not
JNK, showed a very strong induction of PIGR expression
(25- and 15-fold respectively). The effects observed from
the chemical inhibition of MAPKs were similar to the ef-
fects seen following expression of the DUSP16 ORF for
an equivalent period of time. Taken together, our results
show that DUSP16 can repress p38 and JNK activity,
while showing a marginal impact on ERK, and also show
that inhibiting ERK and p38 can strongly induce PIGR
expression, suggesting that DUSP16 leads to increased
PIGR expression most likely predominantly through its
inhibition of p38 but also more mildly through the
modulation of ERK activity.
A previously published report had shown that in a

HT-29 subclonal line, selected for increased basal
levels of PIGR [60], chemically inhibiting ERK and
p38 had minimal impact on basal levels of PIGR;
however, combining these inhibitions with a TNF-α
stimulation caused a synergistic induction of PIGR
expression [61, 62] that was not seen under inhibition
of JNK. Based on this, we set out to confirm these
observations in our model and evaluate whether
DUSP16 can have a similar effect to chemical MAPK
inhibitors in our model. We confirm that in our
model, combining TNF-α stimulation to ERK or p38
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chemical inhibition leads to a synergistic induction of
PIGR gene expression (Additional file 2: Fig.S8A); fur-
thermore, we demonstrate that pIgR expression is also
further increased in HT-29 cells expressing the
DUSP16 ORF as compared to parental HT-29 cells in
response to TNF-α stimulation, in the absence of
chemical MAPK inhibitors (Additional file 2: Fig.S8B).
Moreover, we show that PIGR induction by TNF-α is
also abrogated when tested in our shRNA knock-
down model where the endogenous levels of DUSP16
were reduced by 80% (Additional file 2: Fig.S8C).
Taken together, our data suggests that DUSP16,
through its regulation of MAPK activity, not only
plays a role in regulating PIGR in the context of pro-
inflammatory signaling but is central to the regulation
of constitutive (basal) PIGR expression.

Independent validation of the role of DUSP16 on the
control of PIGR expression in epithelial cells
Although HT-29 cells are a widely used model for func-
tional studies of intestinal epithelial cells, it is important
to confirm that our observations are not limited to this
cell line rather than being more broadly applicable to
epithelial cells. We have therefore replicated our major
findings related to the function of DUSP16 in the HCT-
15 colonic epithelial cell line. Specifically, we increased
the expression of DUSP16 in HCT-15 cells by lentiviral
transduction of its ORF, in three independent infections
as we had done in HT-29 cells. This transduction of the
DUSP16 ORF not only led to the increased expression of
DUSP16 in the HCT-15 cells, but also an important in-
crease in the expression of PIGR, which was potentiated
by treatment with TNF-alpha (Additional file 2: Fig.S9).

Fig. 4 Impact of increased DUSP16 expression on MAPKs phosphorylation levels. The impact of DUSP16 expression on ERK, p38 and JNK
phosphorylation levels was evaluated using a doxycycline inducible HT-29 cell model. A The impact of DUSP16 on steady-state MAPKs
phosphorylation levels was measured. Exponentially growing HT-29-pLVX-Tet3G cells stably transduced with a TET3G-inducible expression plasmid
(empty vector (EV) or containing the DUSP16 ORF (DUSP16) were stimulated with doxycycline (1 μg/ml) for 24 h, and cell lysates were harvested for
the evaluation of the native and phosphorylated states of MAPKs. Cropped western blots showing bands of interest are shown (left) and the level of
phosphorylation of each MAPK is summarized in a graphical representation (right). A single representative gel is shown for EEF2 loading control; full
blots along with their respective EEF2 are shown in Additional file 2, Fig.S11, panel A. B The impact of DUSP16 on the induction of MAPKs
phosphorylation following serum starvation was measured. Using the same models as above, exponentially growing cells were first serum-starved for
24 h (0% FBS) in the presence of the doxycycline inducer (1 μg/ml). The cells were then stimulated with 10 ng/ml TNF-α for different times to induce
MAPK phosphorylation and whole cell lysates harvested for the evaluation of the native and phosphorylated states of MAPKs. The level of
phosphorylation of each MAPK is summarized in a graphical representation; the y-axis shows phosphorylation levels relative to the control condition
(EV in A and EV 0’ in B). All phosphorylation level data is expressed as the ratio of phosphorylated over total MAPK (both corrected for EEF2 loading
control) combining the replicates (n = 3). All results are shown as geometric means with SEM. The values for independent replicates are shown (grey
lozenges). As an indication, three non-overlapping datapoints from two conditions correspond to the strongest evidence against the hypothesis of no
difference for a non-parametric test (P value = 0.1). Under hypothesis of lognormal distribution, the intervals as plotted correspond to 58% confidence
interval for the median. Full blots for each replicate and all timepoints, along with EEF2 results are shown in Additional file 2, Fig.S11, panels B-C
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In addition, the increased expression of DUSP16 led to a
decrease in the steady-state phosphorylation levels of
ERK, JNK, and p38 (Additional file 2: Fig.S10A). Finally,
the expression of DUSP16 had a dramatic effect on JNK,
and p38 phosphorylation levels in cells responding to
TNF-alpha treatment (Additional file 2: Fig.S10B). These
results are entirely concordant with those obtained in
HT-29 cells.

Discussion
Genetic studies of IBD have met with significant success,
with international collaborative studies identifying and
validating over 200 genomic loci associated with CD
and/or UC, with most loci being shared by both [1, 2,
13]. For a limited number of these loci (e.g., IL23R,
ATG16L1), the original GWAS studies identified the
likely causal genetic variants [3, 4]. Targeted sequencing
identified novel variants in these same genes as well as
identified IBD-associated coding variants in a handful of
genes from loci containing multiple genes, thus prioritiz-
ing their corresponding genes as causal [5, 6, 55]. High-
density association mapping of GWAS loci pinpointed
additional putative causal genes and their variants [7, 8].
Despite these significant efforts, the causal gene(s) for
the majority of GWAS loci remain to be identified. This
highlights the need for developing novel approaches that
are complementary to the genetic association studies, for
example integration of eQTL datasets from relevant cell

types, in order to identify causal genes within GWAS
loci [63]. Functional studies have provided confirmatory
evidence as well as mechanistic insights for many of
these genes (and variants) [4, 6, 9, 10, 17, 64]. While the
majority of functional studies have focused on immune
cells, there is little doubt that the epithelial cell compart-
ment has an important role to play in IBD, given its cen-
tral position at the interface of the gut microflora and
host immune system. Indeed, there is emerging evidence
that genes involved in intestinal barrier function are im-
plicated in common forms of IBD [12, 42, 65, 66] as well
as in very early onset IBD [67, 68]. Given this, we were
interested in developing an approach to examine vali-
dated IBD loci for putative causal genes exerting their
effect within epithelial cells. As opposed to RNAi-based
screens that typically focus on the identification of genes
that impact on a targeted set of known functions, we
opted for an approach that involved increasing the
expression of genes that already had a least a basal ex-
pression within epithelial tissues and cell lines and deter-
mining the impact of the gene expression modulation on
the cell’s transcriptome, with the goal of identifying
genes that impact on shared IBD-relevant epithelial
functions. Just as for other functional genomic screens,
this approach is not meant to mimic disease pathophysi-
ology but rather to place genes in biological pathways in
order to guide subsequent functional studies. We se-
lected to perform this screen in the HT-29 cell line as it

Fig. 5 Impact of short- and long-term inhibitions of MAPKs on PIGR expression. The impact of short-term (24 h) and long-term (6 days) inhibitions of
MAPKs on PIGR mRNA levels was evaluated by qPCR. A Exponentially growing HT-29-pLVX-Tet3G cell lines (n = 3) were either left untreated (no
inhibitors; N.I.) or treated with chemical inhibitors specific for the different MAPKs (PD98059, ERKi; SB203580, p38i; SP600125, JNKi) at a concentration of
10 μM, and total RNA was isolated at two different timepoints (24 h and 6 days). Expression levels of PIGR were evaluated via qPCR; the qPCR results
from the replicates were combined and mean expression values relative to samples without inhibitors (N.I.) are shown. B Exponentially growing HT-29-
pLVX-Tet3G cell lines stably transduced with the TET3G-inducible expression plasmid for DUSP16 ORF (n = 3) were either left untreated (No
doxycycline induction; No.Ind.) or stimulated with doxycycline at a concentration of 10 ng/ml to induce DUSP16. Cells were harvested at two different
timepoints (24 h and 6 days) for total RNA isolation. Expression levels of PIGR were evaluated via qPCR; the qPCR results from the replicates were
combined and mean expression values relative to samples without treatment with doxycycline (No.Ind.) are shown. All results are shown as geometric
means with SEM. The values for independent replicates are shown (grey lozenges). As an indication, non-overlapping 3 datapoints from two
conditions correspond to the strongest evidence against the hypothesis of no difference for a non-parametric test (P value = 0.1). Under hypothesis of
lognormal distribution, the intervals as plotted correspond to 58% confidence interval for the median
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is a human intestinal epithelial cell line that is very fre-
quently used for functional studies. We observed that
the results from this approach were robust, and most in-
formative for genes encoding transcription factors and
proteins involved in signaling cascades, as opposed to
structural proteins where there was much less of an im-
pact on the transcriptome as could be expected.
Using a “similarity score” approach to cluster genes

with shared effects on the transcriptome, we identified
two large clusters of genes. Both of these clusters con-
tained proven IBD causal genes, as well as genes from
IBD loci where a causal gene has yet to be identified.
Specifically, Cluster 1 contained the known IBD causal
genes IFIH1, SBNO2, NFKB1, and NOD2, as well as
genes from other IBD loci (ZFP36L1, IRF1, GIGYF1,
OTUD3, AIRE and PITX1), whereas Cluster 2 contained
the known causal gene KSR1 and implicated DUSP16
from another IBD locus. Analyses of the functional an-
notations of the transcripts most affected by the modula-
tion of expression of these IBD genes suggested that
Cluster 1 genes appear to be related to each other with
respect to their involvement in the type I interferon re-
sponse to viral components of the microbiome and/or
the pro-inflammatory response to bacterial components
of the microbiome. On the other hand, Cluster 2 genes
appear to be implicated in epithelial structure and func-
tion, as well as mucosal defense, with the latter acting in
part via the control of transcytosis of secretory immuno-
globulins across enterocytes.
We therefore propose that multiple IBD genes play an

important role within the intestinal epithelium in terms
of regulation of the type I interferon response to viral
pathogens and others in the transcriptional regulation of
the anti-bacterial response. While for many of these
genes (e.g., IFIH1, NFKB1, IRF1, NOD2, FOS) the
association with anti-microbial functions has been well
established, for others, this association is novel. For ex-
ample, OTUD3 is a known deubiquitylase of the tumor
suppressor PTEN that has recently been shown to play a
critical role in the antiviral response of innate immune
cells and thus may play a similar role in intestinal epi-
thelial cells [69, 70]. ZFP36L1, on the other hand, is part
of a family of RNA binding proteins (RBP) that bind A/
U rich elements (ARE) in the 3′ untranslated region (3′
UTR) of mRNAs and promotes of RNA decay. Most re-
ports studying the role of this gene family have focused
on immune cells and have proposed a role for ZFP36 in
regulating pro-inflammatory responses (through the
regulation of RNA levels of inflammatory cytokines) and
a role for ZFP36L1/L2 in T and B lymphocyte develop-
ment [71]. Of relevance to the current study, a recent
report using a non-immune model (Hela cells) has pro-
posed that ZFP36 could regulate gene targets at the
transcriptional level, rather than RNA stability, and has

shown that ZFP36 expression leads to an increased ex-
pression of genes involved in Type I interferon signaling
and antiviral response, similar to what we have observed
for ZFP36L1 [72]. GIGYF1, a GYF domain-containing
scaffold protein, can promote translational repression of
specific targets through its interaction with mRNA-
binding proteins including ZFP36 family member TTP.
In terms of type I IFN response, it is clear that practic-

ally all cells within the body can mount an anti-viral re-
sponse. Viruses are detected in a virus- and cell-specific
manner through different sets of PAMPs, such as Toll-
like receptors (TLRs), RIG-I-like receptors (RLRs), and
NOD-like receptors (NLRs), inducing the expression of
Type I IFNs. Type I IFNs can then activate, in an auto-
crine and paracrine fashion, the transcription of inter-
feron response genes (IRGs), including several different
anti-viral defense factors, and induce a refractory anti-
viral state. Intestinal epithelial cells (IECs) play a crucial
role in intestinal barrier functions, contributing multiple
protective mechanisms to avoid the penetration of path-
ogens from the outside environment into the body in-
cluding Type I IFN and Type III responses. Type I IFNs
mainly include IFN-α and IFN-β and interact with the
heterodimeric receptor IFNAR [73, 74]. Type III IFNs
include four IFNλ molecules whose receptor is com-
posed of the IL-28Rα/IL-10R2 complex, which is specif-
ically expressed on epithelial cells [75]. While the role of
Type I IFN response in protecting IECs against different
types of enteric viruses (rotavirus, reovirus, and noro-
virus) has been well described, their role in controlling
intestinal homeostasis and inflammation is not as well
characterized, with contradictory results in the context
of DSS-induced colitis [76, 77]. While the results pre-
sented herein make a strong case for multiple IBD genes
being involved in the Type I IFN response, it is possible
that they may also act on Type III signaling as the HITS
for these genes were also enriched for gene annotations
“Type III interferon signaling” and/or “response to
interferon-gamma,” although to a lesser extent (Add-
itional file 3: Cluster 1 data). While dysregulated Type I
interferon signaling has typically been associated with
autoimmune diseases such as systemic lupus erythema-
tosus in the context of circulating immune cells [78, 79],
given the unique position of IEC at the interface with
enteric viruses, it is conceivable that dysregulated inter-
feron signaling within IEC may not only impact the epi-
thelium but the immune cells that are in close
proximity. In this context, it is interesting to note that
while most of the genes in Custer 1 are fairly ubiqui-
tously expressed, OTUD3 and PITX1 are primarily
expressed in intestinal cells among the tissues and cell
lines tested.
Cluster 2 was centered around the known IBD gene

KSR1 that acts as a scaffold for the Ras/Raf/MAPK

Ntunzwenimana et al. Genome Medicine          (2021) 13:181 Page 17 of 21



signaling pathway [57]. The data presented herein sug-
gests that KSR1 is involved in regulating a broad set of
intestinal functions and cell differentiation pathways.
DUSP16 was the closest gene to KSR1 in the similarity
score and shared multiple functions and top HITS,
highlighting potential roles in dietary metabolism,
homeostasis, and defense. Our follow-up studies were
aimed at obtaining better understanding the function of
DUSP16 in intestinal epithelial cells, with a particular
focus on the transcriptional control of PIGR as the lat-
ter’s expression is enriched in gastrointestinal mucosa
and has a known role in the protection of the mucosa
from intestinal microbiota [80]. Specifically, pIgR is
expressed at the basolateral surface of epithelial cells
where it binds polymeric immunoglobulin molecules
(IgA and IgM). The complex is then internalized and
transported across the cell, via transcytosis, to the apical
surface where Ig molecules are secreted as sIg (IgA/M
bound to SC) following the cleavage of part of the pIgR.
sIg can then modulate microbial communities and
pathogenic microbes via several mechanisms: agglutin-
ation and exclusion from the epithelial surface,
neutralization, or via host immunity and complement
activation [80, 81]. In addition, it has also been sug-
gested that pIgR-bound Ig molecules can also play a role
in shuttling foreign antigens from the basolateral to the
luminal compartment via transcytosis, thus protecting
the integrity of the epithelial barrier [80, 82, 83].
It has previously been shown in fibroblastic cell lines

(COS-7 and NIH3T3) that DUSP16 has dual specificity
protein phosphatase activity and functions to regulate
MAP kinases [58, 59]. We were able to demonstrate that
this was also the case in human epithelial cells, as well
as demonstrate its specificity for JNK and p38, but to a
much lesser extent ERK, which is consistent with pub-
lished studies [58, 59]. Moreover, we were able to dem-
onstrate that inhibition of p38 and ERK also increased
the basal expression of PIGR. As it had been previously
reported that TNF-α can regulate the expression of
PIGR [61, 62], we examined the impact of DUSP16 and
found that it potentiated the effect of TNF. While a
functional link between DUSP16 and PIGR regulation
can clearly be defined via its role in inhibiting MAPK ac-
tivity, such a link to KSR1 may not be as direct. As
stated above, KSR1 acts as a scaffold for the cytoplasmic
Ras/Raf/MAPK (ERK) signaling pathway in response to
EGF and has been suggested to carry a kinase activity.
As a scaffold protein, KSR1 has the capacity to redirect
ERK from the cytosol to cytoplasmic membrane; expres-
sion of KSR1 may therefore act to sequester a larger pro-
portion of the cell’s ERK pool to the cytoplasmic
membrane, in effect leading to an overall reduction of
nuclear ERK activity. In that regard, expression of KSR1
would lead to a similar effect to DUSP16 on ERK activity

but through an unrelated mechanism. While this mech-
anism of action of KSR1 in our model is purely specula-
tive, it may warrant further investigation.
We therefore propose a model by which lower levels/

activity of KSR1 or DUSP16 would lead to increased nu-
clear MAPK activity (ERK and p38) which could con-
tribute to disease susceptibility, in part, by interfering
with PIGR expression and thus limiting the transport of
IgA antibodies across IECs and diminishing the ability of
the mucosal barrier to protect against intestinal micro-
biota. Interestingly, PIGR resides within one of the 163
IBD-associated regions identified by GWAS, although
outside the boundaries defined by the current project; in
fact, this region contains many interesting functional
candidate genes for IBD, including the candidate causal
gene IL10. Moreover, two recent studies of inflamed in-
testinal tissue from patients with UC observed that the
extensive remodeling of inflamed tissue is associated
with somatic mutations that converge on a handful of
genes, including PIGR, implicated in the downregula-
tion of IL-17 signaling and other pro-inflammatory
signals [84, 85].
As with all large-scale genomic screens, it was import-

ant to validate the results of our transcriptomic screen
in HT-29 cells in order to ensure that our observations
were not simply a result of the experimental design or
limited to the cell line used. In the current study, this
was achieved by (1) analysis of independent datasets to
provide bioinformatic support for the HNF4-alpha,
SMAD3/SMAD7, and IFIH1 genes; (2) studying the im-
pact of disease-associated coding variants in IFIH1; (3)
using complementary genetic modulation approaches for
DUSP16 (stable, inducible, and knockdown); (4) using
pharmacologic perturbations to validate DUSP16’s bio-
logical pathway; and (5) validation of key findings in the
independent intestinal epithelial cell line HCT-15. None-
theless, future studies will be required to deepen our
functional understanding of how these various genes
play a role in IBD pathophysiology, as well as follow-up
on the observations reported herein for the genes that
we have yet to perform validation experiments.

Conclusions
In conclusion, employing an analysis strategy that is analo-
gous to the “guilt by association” approach whereby genes
that have correlated patterns of expression within an ex-
pression network display increased likelihood of having
shared functions [86], the current transcriptomic-based
screen in the HT-29 human colonic epithelial cell line has
highlighted how specific IBD genes are potentially func-
tionally related to each other, based on their shared
impacts on the cell’s transcriptome following a lentiviral-
mediated expression of the relevant ORFs. This has
enabled the prioritization of likely causal genes within
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multi-gene loci without a previously identified causal gene.
Taken together, the results highlight that multiple IBD
genes are involved in a variety of host defense mechanisms
operating within epithelial cells. Moreover, these patho-
physiologic mechanisms extend beyond the classical phys-
ical barrier that epithelium provides and beyond the cells
specialized in host defense, such as Paneth cells, that have
previously been implicated by previous genetic studies of
IBD [1, 12, 17, 42, 65, 66, 87]. Moreover, this adds to the
growing evidence in support of epithelial cells playing key
roles in the local inflammatory processes [88–90].
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