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Abstract

Background: N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells and play
critical roles in cancer. While most related studies focus on m6A modifications in linear RNA, transcriptome-wide
profiling and exploration of m6A modification in circular RNAs in cancer is still lacking.

Methods: For the detection of m6A modification in circRNAs, we developed a new bioinformatics tools called Circm6A
and applied it to the m6A-seq data of 77 tissue samples from 58 individuals with pancreatic ductal adenocarcinoma
(PDAC).

Results: Circm6A performs better than the existing circRNA identification tools, which achieved highest F1 score
among these tools in the detection of circRNAs with m6A modifications. By using Circm6A, we identified a total of
8807 m6A-circRNAs from our m6A-seq data. The m6A-circRNAs tend to be hypermethylated in PDAC tumor tissues
compared with normal tissues. The hypermethylated m6A-circRNAs were associated with a significant gain of circRNA-
mRNA coexpression network, leading to the dysregulation of many important cancer-related pathways. Moreover, we
found the cues that hypermethylated m6A-circRNAs may promote the circularization and translation of circRNAs.

Conclusions: These comprehensive findings further bridged the knowledge gaps between m6A modification and
circRNAs fields by depicting the m6A-circRNAs genomic landscape of PDAC patients and revealed the emerging roles
played by m6A-circRNAs in pancreatic cancer. Circm6A is available at https://github.com/canceromics/circm6a.
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Background
m6A is the most abundant posttranscriptional modifica-
tion in eukaryotic RNAs and play critical roles in various
normal bioprocesses [1]. The m6A modification is depos-
ited by the m6A methyltransferase complex (writer)

composed of METTL3, METTL14, and WTAP and can
be removed by m6A demethylases (erasers) such as FTO
and ALKBH5. Distinct proteins (readers) can recognize
m6A-modified mRNAs and decide their fates by affecting
the stability, splicing, nuclear export, and translation of
target RNAs [2, 3]. High-throughput m6A RNA immuno-
precipitation sequencing (MeRIP-seq) studies revealed
that m6A modification mainly occurs in messenger RNAs
(mRNAs) with the consensus motif “RRm6ACH” (R = G
or A; H =A, C or U) and is enriched near stop codons
and in the 3′UTRs of mRNAs [4, 5].
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Circular RNAs (circRNAs) are a special class of RNAs
that are produced by a covalent linkage between the 5′
and 3′ ends of an RNA molecule [6]. In recent years, cir-
cRNAs have been intensively studied in a wide range of
cells and tissues, revealing their critical roles in many
important biological processes and diseases [7–9]. Com-
pared to linear RNAs, circRNAs are highly stable and
are frequently detected in exosomes and cell-free body
fluids; therefore, circRNAs may be potential biomarkers
or therapeutic targets in precise medicine [10, 11]. While
most m6A studies focus on linear RNAs, a few studies
show that m6A modifications also occur in circular
RNAs [12], and m6A modifications affect the translation
efficiency of circRNAs [13]. Moreover, there is evidence
showing that m6A modifications in circRNAs play im-
portant roles in cancer progression [14]. However, to
date, few studies on the transcriptome-wide mapping of
m6A modifications in circRNAs in human cancer tissues
have been reported.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive

tumor that is typically diagnosed at an advanced stage and
will become the second leading cause of cancer mortality
within this decade [15, 16]. To date, there is still no efficient
method for the treatment of PDAC, posing an urgent need
for the development of new therapeutic strategies, which re-
lies on a clearer understanding of cancer biology. Recent
genome-wide association studies (GWAS) and whole-
genome/exome/transcriptome sequencing studies on PDAC
have revealed a complex network consisting of genetic and
genomic/transcriptomic alterations that is closely associated
with PDAC occurrence and development [17, 18]. There is
widespread dysregulation of circRNAs, which has critical
roles in cancer progression [9, 19]. However, little is known
about the transcriptome mapping and functions of m6A
modifications in circRNAs in PDAC.
In this study, we presented a de novo algorithm called

“Circm6A” to detect m6A modification in circular RNAs
from MeRIP-seq data, facilizing further researches on
m6A modification in circRNAs. We then performed
m6A sequencing (m6A-seq) on total RNAs of 53 tumor
and 24 adjacent normal tissue samples from 58 individ-
uals with PDAC and applied Circm6A to the m6A-seq
data to explore the landscape of m6A modification in
circRNAs. We found that approximately 23.1% of cir-
cRNAs in PDAC tissues harbored m6A modifications,
and they tended to be hypermethylated in PDAC tumor
tissues compared to adjacent normal tissues. Intri-
guingly, we found that hypermethylated m6As in cir-
cRNAs caused a gain of circRNA-mRNA coexpression
in many cancer-related pathways. Moreover, our study
also indicated that m6A modifications in circRNAs
might promote the circularization and translation of cir-
cRNAs. Taken together, we provided a state-of-art tool
to detect m6A modification in circRNAs, which will

facilitate the following study of m6A modification in cir-
cRNA. Our findings shed new light on the function and
mechanism of circRNA dysregulation in PDAC at RNA
epigenetics level.

Methods
Construction of Circm6A
Circm6A (https://github.com/canceromics/circm6a) is a
de novo algorithm for the detection of circRNAs and
their m6A modifications from MeRIP-seq data. Circm6A
will scan the sequencing alignment files from both
MeRIP-seq IP (the IP library represents the RNA frag-
ments captured by m6A-antibody pull-down) and IN-
PUT (the paired INPUT library is derived from initial
fragmented RNAs before immunoprecipitation) samples
[4]. For the detection of circRNAs, Circm6A first detects
junction reads with PCC signals (two segments of one
read are aligned to the reference genome in a chiastic
order) that reflect a circRNA candidate. Paired-end map-
ping signals (PEM signal, the paired mate of the BSJ read
is properly aligned within the candidate circRNA region)
are utilized for additional filtering when paired-end se-
quencing was used, as previously described [4], and this
step will be automatically skipped in single-end sequen-
cing data. Furthermore, Circm6A checks whether AG
and GT dinucleotides and exon boundaries flank the
back-splicing junction (BSJ) sites of candidate circRNAs.
The identified circRNAs are annotated according to the
GTF file downloaded from the GENCODE database
(https://www.gencodegenes.org/). If only RNA-seq data
is provided (parameter: -input input_sample.bam),
Circm6A will only detect circRNAs from files.
For the detection of circRNAs with m6A modification

(m6A-circRNAs), Circm6A will examine whether the cir-
cRNAs are significantly enriched in IP samples com-
pared to INPUT samples in the MeRIP-seq data. Firstly,
the whole genome is split into 25-bp bins. The read cov-
erages in the genome bins around the BSJ sites of all
identified circRNAs are calculated in the IP samples and
INPUT samples, respectively. Then, the read coverage
difference for the genome bins around BSJ sites between
IP and INPUT samples are calculated using Fisher’s
exact test. The P values from Fisher’s exact test are ad-
justed using the Benjamini-Hochberg method. A false
discovery rate (FDR) of less than 0.05 is considered sig-
nificant. The genome bins with significant enrichment in
IP samples over INPUT samples are concatenated. If the
concatenated bins are across the BSJ site, the circRNA
with that BSJ site is considered as a candidate m6A-cir-
cRNA. Next, the loose and strict filters are applied to
further filter the candidate m6A-circRNAs. If there is at
least one BSJ read in IP samples (NBSJ, IP ≥ 1), the cir-
cRNA was defined as low confidence m6A-circRNA. If
the fraction of BSJ reads should be higher in IP samples
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than in INPUT samples ( NBSJ ;IP

Ntotal;IP
:
NBSJ ;non−IP

Ntotal;non−IP
≥1:0 Þ and

there is at least one BSJ read in IP samples (NBSJ, IP ≥ 2),
the circRNA was defined as high-confidence m6A-
circRNA.
m6A peaks in linear RNAs are also detected according

to previously published methods [4].

Simulate MeRIP-seq data for performance evaluation
We developed an in-house simulator called MeRIP-
simulator (https://github.com/canceromics/MeRIP-
simulator) to simulate the MeRIP-seq data. GRCh38 genome
FASTA and GTF annotation files (GENCODE version 25
[20], downloaded from https://www.gencodegenes.org/) were
used as references for simulation.
For the simulation of MeRIP-seq Input sample, the

linear genes were simulated based on the linear tran-
script information extracted from the GENCODE GTF
annotation file and the circRNA genes were simulated
based on the circRNA transcript information extracted
from the five circRNA database (CircAtlas [21], MiOn-
coCirc [22], CSCD [23], TSCD [24], CIRCpedia [25]). A
total of 18,689 circRNAs were simulated. The read
counts of a transcript (C) were simulated using three co-
efficients: C = F · d · l, where F is the expression factor of
the transcript, d is sequencing depth and l is the length
of exons in the transcript. The expression factor of a
transcript is defined as F = eλ and λ is based on a Poisson
distribution P(λ = 1.0). The sequencing depth is given by
user. The read length R follow a binominal distribution
R � Bðd Lr

0:95e; 0:95Þ, where Lr means expected read length
given by Tuser or 150 bp by default. We let the insert
size S follow another binominal distribution S~B(Ls · 2,
0.5), where Ls means expected insert size given by user
or 300 bp by default. The simulated reads will be output-
ted as FASTQ format.
For the simulation of MeRIP-seq IP sample, the m6A sites

were simulated based on m6A peaks obtained from public
MeRIP-seq dataset (GSE120229 [26]: SRR7881528 and
SRR7881532). The m6A peak was called using STAR [27] and
MACS2 [28]. The parameters of STAR were “--twopassMode
Basic --chimSegmentMin 20 --outFilterIntronMotifs Remove-
Noncanonical --outFilterMultimapNmax 20 --alignIntronMin
20 --algigIntronMax 1000000 --alignMatesGapMax 1000000”.
The cutoff of the P value for significant peak for MACS2 was
set at 1.0e−6. Two library construction strategies (fragmenta-
tion of RNA before MeRIP and fragmentation of RNA after
MeRIP) were simulated. For the strategy of fragmentation of
RNA after MeRIP, the read coverages of the linear and circular
transcripts with m6A modifications were simulated 20-fold
higher than the read coverages of those linear and circular
transcripts without m6A modifications. For the strategy of frag-
mentation of RNA before MeRIP, the read coverages of the
m6A regions (200 bp) in linear and circular transcripts were

simulated 20-fold higher than the read coverages of non-m6A
regions. We also simulated background reads to mimic the
nonspecific IP of m6A antibody in IP sample and their abun-
dance was 0.01-fold of that in INPUT sample.

Collection of PDAC samples
A total of 77 (53 cancer and 24 normal) tissues were ob-
tained from pancreatic cancer patients who underwent
pancreatectomy at the Sun Yat-sen University Cancer
Center and Sun Yat-sen Memorial Hospital between
2010 and 2018 (detailed in Additional file 1: Table S1).
The PDAC tumor and non-tumor tissue (≥ 5 cm away
from tumor) samples were collected at surgery from
each patient and immediately placed in liquid nitrogen.
All patients received no chemotherapy or radiotherapy
before surgery. The diagnosis of PDAC was histopatho-
logically confirmed and tumor stage was classified ac-
cording to the 7th edition of AJCC Cancer Staging
System [29]. Tumor samples and distant normal tissues
were embedded in optimal cutting temperature medium,
and histological sections stained with hematoxylin and
eosin were reviewed by at least two pathologists for
quality assurance that tumor specimens contained at
least 60% tumor cell nuclei, whereas normal specimens
contained no tumor cells. Clinical data for PDAC pa-
tients were collected, which included age at diagnosis,
differentiation, lymph node metastasis, vascular invasion,
neural invasion, tumor stage, and treatment. The sur-
vival time of individuals with PDAC was measured from
the date of diagnosis to the date of last follow-up or
death. Whether and when a subject had died were ob-
tained from inpatient and outpatient records, subjects’
families, or through follow-up telephone calls.

Public RNA-seq data
We included two separate independent circRNA-related
studies [7, 30], which included control (only rRNA-
depleted) samples and matched samples additionally
treated with RNase R. The first dataset contains 4 runs of
RiboMinus RNA-Seq libraries of the HeLa cell line down-
loaded from the NCBI Sequence Reads Archive (accession
numbers: SRR1636985, SRR1636986, SRR1637089, and
SRR1637090) [31]. The second public dataset comprises 2
runs of rRNA-depleted RNA-seq data derived from the
Hs68 cell line (accession numbers: SRR445016 and
SRR444975) [7].

Public CLIP-seq data
All reported binding sites for “readers” (YTHDF1-3,
YTHDC1-2, IGF2BP1-3, HNRNPC, and HNRNPA2B1)
and EIFs (EIF3A, EIF3B, EIF3D, EIF3G, EIF3H, EIF4A3,
EIF4G2) were obtained from POSTAR2 [32]. MeRIP-seq
data of hESC cell line were retrieved from Gene Expres-
sion Omnibus (GEO accession number: GSE55572 [33]
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and GSE85324 [12]). ADAR binding sites of hESC cell
line were obtained from a public iCLIP-seq study (GEO
accession number: GSE63709 [34]).

Detection of circRNAs in public and simulated data using
eight known tools
For each public and simulated RNA-seq sample, circRNA
detection was also performed using other eight known
tools (ACFS [35], AutoCirc [12], circRNA_finder [36],
CIRI2 [31, 37], CIRCexplorer2 [38], DCC [39], Find Circ
[8], and MapSplice [40]) according to the suggested pa-
rameters of each tool. RNase R-resistant (enriched) cir-
cRNAs were defined as circRNAs with at least a 5-fold
enrichment of abundance in RNase R-treated samples,
RNase R-sensitive (depleted) circRNAs were defined as
those circRNAs with an abundance reduction in RNase R-
treated samples, and RNase R-unaffected circRNAs were
defined as those with a 1~5-fold change in RNase R-
treated samples, as previously described [41].

Sample processing
Total RNA from tissue samples was extracted with TRI-
zol reagent (Invitrogen). RNA samples were quantified
by measuring the absorption value at 260 nm with a UV
spectrophotometer and then analyzed via the RNA6000
Nano assay (Agilent) for determination of an RNA integ-
rity number (RIN), and only analytes with an RIN ≥ 7.0
were included in this study.

m6A-specific methylated RNA immunoprecipitation and
high-throughput sequencing (MeRIP-seq)
Total RNA from tissue samples was isolated using TRI-
zol (Life Technologies), digested by DNase I (NEB), and
then subjected to two rounds of RiboMinus treatment to
reduce rRNA content (Illumina). For m6A immunopre-
cipitation, the Magna MeRIP m6A Kit (Millipore) was
used according to the manufacturer’s instructions.
Briefly, 20 μg of Ribo-off-treated RNA was sheared to
approximately 100–200 nt in length by metal-ion-
induced fragmentation, purified, and incubated with
10 μg of anti-m6A antibody (Synaptic Systems, 202003)-
conjugated beads in 500 μL 1× immunoprecipitation
buffer supplemented with RNase inhibitors at 4 °C over-
night. The m6A-modified RNA was recovered by treat-
ment with proteinase K, acidic phenol/chloroform
extraction, and ethanol precipitation. Sequencing librar-
ies were prepared using the Illumina protocol, and se-
quencing was performed on an Illumina HiSeq2500.

m6A peak-specific qRT-PCR
Total RNA from tissue samples was isolated according to
the procedure shown above. For RNase R treatment, 20 μg
of total RNA was incubated for 15min at 37 °C with or
without 5 U/μg RNase R (Epicenter Technologies). For

MeRIP-qPCR, the RNA samples were fragmented and
immunoprecipitated by anti-m6A antibody as described
above. The purified m6A-containing RNAs were reverse
transcribed using a RevertAid First Strand cDNA Synthe-
sis Kit (Thermo) with random hexamers. The enrichment
of m6A was quantified via quantitative real-time PCR in
triplicate on a Roche LightCycler 480 using the SYBR
Green method. Gene-specific primers are shown in Add-
itional file 1: Table S2.

Quantitative real-time PCR (qRT-PCR) analysis
Total RNA from tissue samples was isolated and sub-
jected to RNase R treatment according to the procedure
shown above. Reverse transcription for mRNA and cir-
cRNAs was performed with a RevertAid First Strand
cDNA Synthesis Kit (Thermo) using random hexamers.
Relative RNA levels were determined by qRT-PCR in
triplicate on a Roche LightCycler 480 using the SYBR
Green method. β-Actin was employed as an internal
control for quantification of the level of each gene. The
primer sequences for the analyzed genes are summarized
in Additional file 1: Table S2. The relative expression
levels were calculated according to the 2−ΔCT method.

Cell lines and cell culture
Human PDAC cell line PANC-1 was purchased from
the Cell Bank of Type Culture Collection of the Chinese
Academy of Sciences Shanghai Institute of Biochemistry
and Cell Biology. PANC-1 was maintained in DMEM
medium supplemented with 10% fetal bovine serum in
an atmosphere of 5% CO2 and 99% relative humidity at
37 °C. Cells passaged for < 6 months were authenticated
by DNA fingerprinting analysis using short-tandem re-
peat (STR) markers.

RNA interference
PDAC cells were pre-seeded in 6 cm dish with 50–60%
confluency before night. Small interfering RNA (siRNA)
targeting METTL3 and scramble control ((Additional file
1: Table S2) were purchased from GenePharma. Transfec-
tion of siRNA (75 nM) or scramble control was performed
using lipofectamine 3000 (Life Technologies) according to
the manufacturer’s instructions. The transfected cells were
harvested 48 or 72 h after transfection and followed by
downstream application. Efficiency of RNA interfering
was validated by qRT-PCR as described above.

Metabolic labeling of nascent RNAs with 4sU and nascent
RNA purification
Metabolic labeling of newly transcribed RNAs was per-
formed as described previously [42, 43]. PANC-1 cells
were incubated with 100 μM 5, 6-dichloro-1-β-D-ribo-
furanosylbenzimidazole (DRB) for 3 h to block Pol II
transcription. Transcription recovered after DRB release
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and newly transcribed RNAs were labeled with 200 μM
4sU. After terminating transcription with TRIzol treat-
ment, 200 μg total RNAs were used for biotinylation and
purification of 4sU-labeled nascent RNA. After incubat-
ing with 0.2 mg/mL EZ-link biotin-HPDP (Pierce, 21341,
dissolved in dimethylformamide (DMF, Sigma, D4551)
at a concentration of 1 mg/mL) in biotinylation buffer
(10 mM Tris PH 7.4, 1 mM EDTA) at room temperature
(RT) for 1.5 h with rotation, bound biotin-HPDP were
purified with chloroform and precipitated using equal
volume of isopropanol and 1:10 volume of 5M NaCl. Bi-
otinylated 4sU-labeled RNAs were isolated using 150 μL
streptavidin-coated magnetic beads (Invitrogen) for 30
min at RT. After substantially washed on beads, nascent
RNAs were eluted twice with 100 μL 0.1M dithiotheitol
(DTT) and precipitated with 40 μL of 4M LiCl, 2 μL
glycogen, and 600 μL ice-cold ethanol.

RNA immunoprecipitation assays
RNA immunoprecipitation (RIP) assays were performed
using the Magna RIP RNA-Binding Protein Immunopre-
cipitation kit (Millipore). 2 × 106 Cells were rinsed twice
with ice-cold phosphate buffered saline (PBS), harvested
and then centrifuged at 1000 rpm for 5min at 4 °C. Cell
lysates were centrifuged at 12,000 rpm for 15min at 4 °C
and the supernatants were precleared with 15 μL Dyna-
beads Protein G (Invitrogen) to get rid of nonspecific
binding. Then, the precleared lysates were used for IP by
incubating with anti-EIF3A (ab86146) or anti-EIF3B
(ab133601) antibodies from Abcam or anti-EIF3H (#PA5-
87290) antibody from Invitrogen at 4 °C overnight with
rotation. Protein-RNA mixture were substantially washed
on beads, followed by extraction with phenol/chloroform/
isoamyl alcohol and subjected to qRT-PCR using the
primers listed in Additional file 1: Table S2.

Polysome profile analysis
PANC-1 cells (1 × 107) were treated with 100 mg/mL cy-
cloheximide (Sigma-Aldrich) at 37 °C for 5 min, washed
twice with ice-cold PBS containing 100 mg/mL cyclohex-
imide, and lysed with 500 μL polysome lysis buffer (15
mM Tris-HCl, 5 mM MgCl2, 100 mM KCl, 2 mM DTT,
1% Triton X-100, 100 μg/mL cycloheximide, 1 mg/mL
heparin sodium). Cell lysates were incubated on ice for
10 min and centrifuged at 16,000×g at 4 °C for 7 min.
The supernatant was loaded onto top of a 5–50% su-
crose gradient followed by centrifuging at 222,228×g at
4 °C for 120 min (Beckman). The gradient was divided
and collected into 15 fractions by monitoring RNA ab-
sorbance at 254 nm with an ISCO fractionator (Brandel).
RNA from each fraction was extracted using TRIzol re-
agent (Invitrogen) and analyzed by qRT-PCR. RNA dis-
tributions across the polysome profile are presented as
percentages.

Identification and quantification of circRNAs in PDAC and
normal tissue samples
Reads were first mapped to the human reference gen-
ome (GRCh38) by BWA (v0.7.15) [44] and the anno-
tation file obtained from the GENCODE database
(https://www.gencodegenes.org/). Circm6A was ap-
plied to detect the circRNAs and their m6A modifica-
tions from all our PDAC tissue and normal tissue
samples. Only circRNAs that had read counts ≥ 2
and were detected in at least 2 samples were retained.
The circRNA expression level was calculated by the
spliced reads per billion mapped reads (SRPBM)
method, as previously mentioned [7]. Differential cir-
cRNA abundance analysis was carried out with edgeR
[45] based on the quantification results from Cir-
cm6A. The thresholds for differential expression were
a P ≤ 0.05 and a fold change ≥ 1.5 between PDAC
and normal tissue samples.

Construction of a random forest model for prediction of
m6A modifications in circRNA
m6A-circRNAs identified by Circm6A were defined as
the positive set. Non-m6A-circRNAs identified by Cir-
cm6A were defined as the negative set. We included
some significant differential features of circRNA charac-
teristics, the relative position between a circRNA and
the m6A peak region of colinear transcripts, and related
features of host genes as previously reported [46]. Fi-
nally, the top 14 features were selected for the construc-
tion of the random forest model (detailed in Additional
file 1: Table S3).

Relative m6A level quantification and differential
methylation analysis
The relative m6A level for each peak of m6A-circRNA was
quantified according to the approach described by Schwartz
et al. [33]. Briefly, the read coverage for each peak in IP and
INPUT (control) samples was calculated during the peak-
calling module of Circm6A. The spliced reads per billion
mapped reads (SRPBM) method was then used to normalize
the read coverage. The relative m6A level was obtained by
calculating the ratio between the IP SRPBM value and the
INPUT SRPBM value for each m6A-circRNA. To obtain the
dysregulated m6A modifications of circRNAs between PDAC
and normal tissue samples (DM circRNAs), we utilized the
Wilcoxon rank sum test on common peaks between PDAC
and normal tissue samples (FDR ≤ 0.05; absolute fold change
≥ 1.5). CircRNAs that were specifically m6A modified in
PDAC samples were also included in the hypermethylated-
m6A-circRNAs; in the same way, those specifically m6A
modified in normal samples were included in the hypo-m6A-
circRNAs.
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Survival analysis with the Cox proportional hazards
model
To independently investigate the prognostic role of each
hyper-/hypomethylated m6A-circRNA, the relative m6A
level of the dysregulated m6A-circRNAs, survival data in
terms of OS/PFS and other clinical features, such as sex,
age, were subjected to multivariate analysis using the
Cox proportional hazards model. Hyper-/hypomethy-
lated m6A-circRNAs with an FDR ≤ 0.25 were identified
as significantly correlated with PFS/OS.

mRNA quantification and differential expression analysis
mRNA levels were quantified using RSEM [47] (parame-
ters: “-paired-end, -star”) on RiboMinus-treated (control/
input) RNA-seq data. mRNA expression was measured in
fragments per kilobase per million (FPKM). The “DESeq2”
R package [48] was applied for differentially expressed
mRNAs (DE mRNAs). mRNAs with an expression abso-
lute fold change ≥ 1.5 and an FDR ≤ 0.05 were identified
as DE mRNAs.

Construction of the circRNA-mRNA coexpression network
Similarities between circRNA and mRNA expression
patterns were determined by computing a Pearson cor-
relation coefficient matrix for each circRNA-mRNA pair,
and pairs with a correlation (r) ≥ 0.5 were defined as
coexpression pairs. To avoid false positives in the coex-
pression network analysis, the nodes on the network
were restricted to mRNAs or circRNAs expressed in at
least 3 tissues, as previously described [21]. TargetScan
miRNA site predictions were used to find RNAs (cir-
cRNAs and mRNAs) with MREs [49], and miRTarBase
[50] was used as a further experimentally validated
source. Coexpression pairs sharing the same MERs were
ceRNAs [21].

Pathway enrichment analysis
All pathway enrichment analyses of KEGG and GO
terms were performed with clusterProfiler [51]. KEGG
pathways or GO terms with an FDR ≤ 0.05 were consid-
ered significantly enriched.

Permutation test
The Bioconductor package regioneR [52] was employed
to test the significance of the overlap between two sets
of regions. Peak sets were shuffled 10,000 times for each
of the permutation tests. The widths of the peaks and
total number of peaks from the tested sets were used for
the widths of the random peaks. The following options
were used for all three permutation tests: permTest
(ntimes = 10,000, randomize.function = randomizeRe-
gions, evaluate.function = numOverlaps, count.once =
TRUE).

Results
De novo algorithm to identify m6A modification in
circRNAs from m6A-seq data
We developed a de novo algorithm called Circm6A to
detect circRNAs and their m6A modifications from
m6A-seq data. The workflow of Circm6A is illustrated in
Fig. 1. First, Circm6A identifies circRNAs by searching
back-splicing junction (BSJ) reads with paired chiastic
clipping signals (PCC signals) from both MeRIP-seq IP
and INPUT read alignments. If paired-end data are dealt
with, paired-end mapping signals (PEM signals) will be
automatically utilized to check that mapping of mates
properly matches within the relevant circRNAs, as previ-
ously described [31]. To further remove potential false
positives, the candidate circRNAs are filtered with add-
itional features such as splicing signals (such as “GT-
AG”) and exon boundaries. Next, we identify the cir-
cRNAs with m6A modification (m6A-circRNAs) by
examining whether the circRNAs are significantly
enriched in IP samples compared to INPUT samples. To
do this, we count the reads coverage in the up- and
downstream 100-bp regions around the BSJ sites of all
circRNAs in the IP samples and INPUT samples, re-
spectively. We split the 200-bp BSJ region into 25-bp
bins and concatenate the bins with significant enrich-
ment in IP samples over INPUT samples (Fisher’s exact
test). If the concatenated bins are across the BSJ site and
there is at least one BSJ read in IP samples, the circRNA
with that BSJ site is considered as a m6A-circRNA. To
obtain high-confidence m6A-circRNAs, we apply add-
itional filters: first, there should be more than one BSJ
reads in IP samples; second, the fraction of BSJ reads
should be higher in IP samples than in INPUT samples.
In addition, m6A peaks in linear RNAs are also detected
according to previously published methods [4]. The full
method and implementation details are given in the
“Methods” section.
To evaluate the performance of Circm6A in the identi-

fication of circRNAs, we compared Circm6A with eight
known circRNA detection tools including ACFS [35],
AutoCirc [12], circRNA_finder [36], CIRI2 [31, 37], CIR-
Cexplorer2 [38], DCC [39], Find Circ [8], and MapSplice
[40], which apply different strategies to detect circRNAs.
The fraction of RNase R-depleted circRNAs is usually
used to represent the false positives [41]. By utilizing
two public datasets (HeLa and Hs68 cell lines) that con-
sist of RNase R-treated or untreated samples, we calcu-
lated the fraction of RNase R-depleted circRNAs by
comparing the circRNA level in the RNase R-treated
samples with that in untreated samples. As a result, Cir-
cm6A detected 32836 circRNAs in the two public data-
sets and 15.4% of circRNAs were RNase R-depleted,
which was comparable to the performance of the other
eight tools (Fig. 2A). Moreover, we evaluated the
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performance with simulated RNA-seq datasets gener-
ated with our in-house simulator. Among the simu-
lated datasets, Circm6A achieved the highest F1 score
(0.99) compared to other eight tools (average F1
score: 0.91, F1 score: 0.62 ~ 0.94) (Fig. 2B and Add-
itional file 1: Table S4).
To further evaluate the performance of Circm6A in the

identification of m6A-circRNAs, we developed an in-
house simulator (MeRIP-simulator, see “Methods” sec-
tion) to simulate MeRIP-seq data. There are two MeRIP-
seq library construction strategies, one which conducts
fragmentation of RNA before m6A antibody IP (MeRIP)
and the other conducts fragmentation of RNA after
MeRIP, which theoretically have great impact on the iden-
tification of m6A-circRNAs (Additional file 1: Fig. S1A).
Therefore, we evaluated the performance of Circm6A by
simulating both of the two MeRIP-seq library construc-
tion strategies. For the strategy of RNA fragmentation
after MeRIP, we simulated three MeRIP-seq datasets with
sequencing depth range from 60 to 80 million reads. Pre-
vious study on genome-wide detection of m6A-circRNAs
treated those circRNAs detected in IP sample as m6A-cir-
cRNAs [12]. Due to the nonspecific binding of m6A

antibody, we hypothesized that some circRNAs without
m6A modification will be randomly pulled down in IP
samples. Therefore, taking all the circRNAs detected in IP
samples as m6A-circRNAs might cause false discoveries.
To avoid false discoveries, Circm6A utilizes Fisher’s exact
test to examine whether the circRNAs are enriched in IP
sample compared to INPUT sample (Additional file 1: Fig.
S1B). We compared Circm6A with eight known circRNA
detection tools using the simulated MeRIP-seq datasets.
As expected, Circm6A has highest F1 score (0.99) com-
pared to the approach of detecting circRNAs in IP sample
using the eight known circRNA detection tools (average
F1 score 0.76, F1 score 0.62 ~ 0.94) (Fig. 2C and
Additional file 1: Table S5). Even if low confidence m6A-
circRNAs from Circm6A were included, Circm6A still
achieve high F1 score (0.89) on detection of m6A-cir-
cRNAs (Fig. 2C and Additional file 1: Table S5).
For the strategy of RNA fragmentation before MeRIP,

we also simulated three MeRIP-seq datasets with se-
quencing depth range from 60 to 80 million reads. This
strategy is a frequently used approach in the m6A profil-
ing studies. Compared to the strategy of RNA fragmen-
tation after MeRIP, fragmentation of RNA before MeRIP

Fig. 1 The framework of Circm6A. The pipeline of Circm6A consists of two steps: first, identification of circRNAs from MeRIP-seq IP and INPUT samples according
to PCC and PEM signals; second, identification of circRNAs and linear transcripts with m6A modifications by examining whether the circRNAs or regions in linear
transcripts are significantly enriched in IP samples compared to INPUT samples in the MeRIP-seq data. PCC, paired chiastic clipping signals; PEM, paired-end
mapping signals
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will obtain higher resolution m6A sites. However, this
strategy is not able to identify m6A-circRNAs with m6As
distal to BSJ sites, since the sequenced fragments of
these BSJ-distal m6A-circRNAs pulled down by m6A
antibody do not contain BSJ site, which is the critical
signal for detecting m6A-circRNAs needed by both Cir-
cm6A and other circRNA detection tools (Additional file
1: Fig. S1A). By applying Circm6A and other known
tools to our simulated MeRIP-seq dataset, we indeed
found that Circm6A and other known tools performed
poorly in identifying m6As distal to BSJ sites (called
“BSJ-distal m6A-circRNAs”) (F1 score < 0.01). However,
Circm6A had much better performance in detecting
m6As near BSJ (called “BSJ-proximal m6A-circRNAs”)

than other tools (Circm6A: F1 score > 0.9; other tools:
F1 score 0.28 ~ 0.74) (Fig. 2D).
To evaluate the depth of sequencing required for the

identification of m6A-circRNAs, we simulated the
MeRIP-seq data with sequencing depth from 1M to 100
M and applied Circm6A to these simulated MeRIP-seq
datasets. We found at sequencing depth of 40–50M,
Circm6A achieved satisfactory performance in the iden-
tification of both circRNA and m6A-circRNA (Fig. 2E).
In addition, the time consumption of Circm6A was low
(Additional file 1: Fig. S1C), and the Memory usage of
Circm6A was approximately 32 GB (which can be set
freely) (Additional file 1: Fig. S1D). Circm6A was imple-
mented in JAVA and user-friendly.

Fig. 2 Performance evaluation of Circm6A. A Bar plot showing the performance of Circm6A and other eight known circRNA detection tools in the identification
of circRNAs using public RNA-seq dataset consist of RNase R-treated or untreated samples. RNase R-depleted represents circRNAs that were depleted after RNase
R treatment. Unaffected represents circRNAs that were enriched 1–5-fold after RNase R treatment. RNase R resistant represents circRNAs that were enriched ≥ 5-
fold after RNase R treatment. B Bar plot showing the performance of Circm6A and other eight known circRNA detection tools in the identification of circRNAs
using simulated datasets. C Bar plot showing the performance of Circm6A and other eight known circRNA detection tools in the identification of m6A-circRNAs
using simulated MeRIP-seq datasets with fragmentation of RNA after MeRIP. D Bar plot showing the performance of Circm6A and other eight known circRNA
detection tools in the identification of m6A-circRNAs using simulated MeRIP-seq datasets with fragmentation of RNA before MeRIP. BSJ-proximal, distance of m6A
in circRNAs to BSJ within fragment length; BSJ-distal, m6As of circRNAs distal to BSJ (distance to BSJ over fragment length). E Saturation curve to access the
impact of sequencing depth on the identification of circRNAs and m6A-circRNAs, respectively. M, million
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Taken together, these results showed that Circm6A
could accurately detect both BSJ-proximal and BSJ-distal
m6A-circRNAs from MeRIP-seq data using the strategy
of fragmentation of RNA after MeRIP, while could only
accurately detect BSJ-proximal m6A-circRNAs from
MeRIP-seq data using the strategy of fragmentation of
RNA before MeRIP.

The identification, validation, and characterization of
m6A-circRNAs in PDAC tissue samples
We performed MeRIP-seq using fragmentation before
MeRIP on the total RNAs from 77 samples from 58
PDAC patients, including 53 tumor and 24 normal tis-
sue samples (Additional file 1: Table S1), and then ap-
plied Circm6A to these MeRIP-seq data (Fig. 3A). We
detected a total of 38,164 circRNAs in all these samples
(Additional file 2: Table S6), and among these circRNAs,
13,935 (36.5%), 12,634 (33.1%), and 5564 (14.6%) were
recorded in the MiOncoCirc (PAAD cohort) [22], cir-
cBase [53], and CircRic [54] databases, respectively
(Additional file 1: Fig. S2A). Moreover, the distribution
of host gene features was similar to that of the circRNAs
in the two public databases (Additional file 1: Fig. S2B,
C), and the majority of circRNAs were flanked by the ca-
nonical splicing motif AG-GT, as were those from the
two public databases (Additional file 1: Fig. S2D). We se-
lected 9 circRNAs for further experimental validation,
and 100% of circRNAs were validated by qRT-PCR in
the PDAC samples (Additional file 1: Fig. S3A and Add-
itional File 4). The back spliced exon-exon junctions of
six circRNA candidates were also validated by Sanger se-
quencing (Additional file 1: Fig. S3B). These results sug-
gested the reliability of Circm6A in the identification of
circRNAs.
Among all these circRNAs identified from Circm6A in

our PDAC MeRIP-seq data, Circm6A detected 6369
m6A-circRNAs. We selected 9 m6A-circRNAs and 1
non-m6A-circRNA for experimental validation using
MeRIP-qPCR of the PDAC samples after RNase R treat-
ment. All 9 m6A-circRNAs were found m6A-modified,
and the non-m6A-circRNA did not harbor m6A modifi-
cation (Fig. 3B and Additional File 4), further suggesting
high accuracy of Circm6A. However, the 6369 m6A-cir-
RNAs detected from Circm6A were mainly BSJ-
proximal m6A-circRNAs, due to the limitation of Cir-
cm6A in detecting m6A-circRNAs using the classic
MeRIP-seq technology. During the library building of
classic MeRIP-seq, the m6A modifications and their BSJ
sites are likely to be separated during RNA fragmenta-
tion (Additional file 1: Fig. S1A), which will result in the
miss of the BSJ-distal m6A-circRNAs. To retrieve those
missed BSJ-distal m6A-circRNAs, we next built a ma-
chine learning model to predict them. “Potential BSJ-
distal m6A-circRNA” are defined as non-m6A-circRNA

whose genomic region exists a m6A modification in the
region distal to its BSJ sites. Accordingly, we found 3356
“potential BSJ-distal m6A-circRNAs” that have linear
m6A peaks located in their BSJ-distal region in our
PDAC MeRIP-seq data. The machine learning model
was then constructed using the well-defined m6A-cir-
cRNAs and non-m6A-circRNAs as the training set. We
found that 14 features, such as exon count, exon length,
circRNA level, circRNA length, m6A motif, and GC con-
tent, were significantly different between the m6A-cir-
cRNAs and non-m6A-circRNAs (Fig. 3C) and these 14
features showed ability of distinguishing m6A-circRNAs
from non-m6A-circRNAs (Fig. 3D). Based on these 14
significant features, we constructed a model using ran-
dom forest algorithm to predict the m6A modification of
circRNA. Ten-fold cross-validation of the prediction
model achieved a high AUC (0.87) (Fig. 3E). Among the
14 features, circRNA level and GC content were the two
most important factors contributing to accuracy (Fig. 3F).
We then applied our random forest model to predict the
m6A modification of “potential BSJ-distal m6A-cir-
cRNAs”. Among 3356 “potential BSJ-distal m6A-cir-
cRNAs,” the majority (2438, 72.6%) were predicted as
m6A-circRNAs (Fig. 3G). We considered the 2438 m6A-
circRNAs predicted by random forest model as BSJ-
distal m6A-circRNAs. We next integrated the 8807 BSJ-
distal and BSJ-proximal m6A-circRNAs for the further
analysis.

Dysregulation of m6As in circRNAs and their functional
significance in PDAC
We found that among the 8807 m6A-circRNAs, 1142
were hypermethylated while only 181 m6A-circRNAs
were hypomethylated in tumor tissues compared with
normal tissues (Fig. 4A and Additional file 2: Table S7).
Eight out of 9 selected hyper/hypomethylated m6A-cir-
cRNAs could be validated by MeRIP qRT-PCR, further
suggesting the reliability of the results (Fig. 4B). We
found some hyper/hypomethylated m6A-circRNAs have
clinical significance. After multiple hypothesis correc-
tion, 8 dysregulated m6A-circRNAs showed a negative
correlation (FDR ≤ 0.25) with progression-free survival
(PFS) (Fig. 4C, D) and 22 dysregulated m6A-circRNAs
showed a negative correlation (FDR ≤ 0.25) with overall
survival (OS) (Additional file 1: Fig. S4A, B).
It has been reported that circRNAs could regulate

mRNAs by competing RNA-binding proteins or acting
as scaffolds for RNA-binding proteins [55, 56]. We
therefore suspected that m6A-circRNAs will regulate the
expression of mRNAs by recruiting the m6A writers/
readers/erasers through their m6A sites. To explore this,
we firstly constructed a circRNA/mRNA coexpression
network (detail in “Methods” section) by using all cir-
cRNAs and differentially expressed mRNAs between
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PDAC tumor and normal tissues (1206 upregulated and
1117 downregulated mRNAs were detected in PDAC
tumor tissues, as shown in Additional file 1, Fig. S4C).
Intriguingly, m6A-circRNA/mRNA pairs showed a sig-
nificantly higher correlation than non-m6A-circRNA/
mRNA pairs after eliminating the interference of micro-
RNA (Wilcoxon rank sum test, P = 3.14e−13), suggesting
that m6A can affect the coexpression between the

circRNAs and the mRNAs in PDAC. Moreover, hyper-
methylated m6A-circRNAs were widely associated with a
gain of coexpression network in PDAC tumor tissues,
while nondifferentially methylated m6A-circRNAs were
not (16.2- versus 5.2-fold gain, Pearson’s chi-squared test
P < 2.2e−16, permutation test P < 1e−4) (Fig. 4E). In
total, 671 hypermethylated m6A-circRNAs resulted in a
gain of mRNA-circRNA coexpression in PDAC tumor

Fig. 3 Identification and characterization of m6A-circRNAs in PDAC. AWorkflow for the identification and characterization of m6A-circRNAs from MeRIP-seq of 77
tissue samples from 53 PDAC patients using Circm6A. B Validate the m6A modification of 9 m6A-circRNAs using MeRIP-qPCR after RNase R treatment. C Differential
analysis results for 14 features for predicting m6A-circRNAs. Bars show FDR-corrected P values (q value). P values for quantitative features were calculated with the
Wilcoxon rank sum test, and P values for qualitative variables were calculated with Pearson’s chi-squared test. D The power of prediction of m6A-circRNAs for the 14
features. E Receiver operating characteristic (ROC) curve for the random forest model in ten-fold cross-validation. FMean decrease accuracy (MDA) for each feature in
the random forest model. G The predicted result for the m6A status of “ambiguous circRNAs” by the random forest model. m6A, “ambiguous circRNAs” predicted as
m6A-circRNAs; non-m6A, “ambiguous circRNAs” predicted as non-m6A circRNAs
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Fig. 4 Differential m6A methylation of m6A-circRNAs between PDAC tumor and normal tissues. A The circos plot shows the genome-wide hypermethylated (red
bar) and hypomethylated (blue bar) circRNAs in PDAC tumor tissues. The height of the bar represents the frequency of m6A modification in all samples. B
Validation of differentially methylated m6A-circRNAs using MeRIP-qPCR. *, P <0.05; **, P <0.01; ***, P <0.001; n.s. P > 0.05 of Student’s t test. C, D The correlation
between PFS and m6A level of differentially methylated m6A-circRNAs in PDAC. Volcano plot depicting log2 hazard ratios (HRs) and − log10 (FDR) values of
differentially methylated m6A-circRNAs in the Cox proportional hazards model of PFS. The horizontal dashed line in C and vertical dashed line in D correspond to
“FDR=0.25”. All 8 differentially methylated m6A-circRNAs significantly associated with PFS are showed in D. E The number of coexpressed pairs for
hypermethylated m6A-circRNAs and non-differentially methylated m6A-circRNAs (non-DM m6A-circRNAs) in PDAC tumor and normal tissue samples, respectively
(upper panel). The number in parentheses is normalized to the number of coexpressed pairs shared between the tumor and normal samples. The permutation
test shows significant contribution of hypermethylated m6A-circRNAs to the gain of coexpression network in tumor tissue samples compared with randomly
selected non-DM m6A-circRNAs (lower panel). Vertical red lines indicate the gain fold of hypermethylated m6A-circRNAs, the histogram indicates the fold gain of
randomly selected non-DM m6A-circRNAs. F Scatter plots showing the coexpression of circEEFSEC-MACC1 pair (upper panel) and circUBXN7-KDR pair (lower
panel) in PDAC tumor and normal tissue samples, respectively. r represents Pearson correlation coefficients; P represents P value. G, H Top enriched KEGG
pathways for upregulated mRNAs (red, G) and downregulated mRNAs (blue, H) in the coexpression network that hypermethylated m6A-circRNAs were
involved in
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tissues (Additional file 3: Table S8). For example, the
hypermethylated m6A in circEEFSEC and circUBXN7 re-
sulted in the gain of coexpression of circEEFSEC-
MACC1 (r = 0.74, P = 4.2e−5) and circUBXN7-KDR (r =
0.71, P = 0.0095) in tumor samples and while there was
no correlation between circEEFSEC and MACC1 (r =
0.3, P = 0.34) and between circUBXN7 and KDR (r =
0.25, P = 0.53) in normal samples. Moreover, the gains of
coexpression in PDAC tumor were also observed in cir-
cITGB6-MECOM and circPTK2-ETV1 (Fig. 4F and Add-
itional file 1: Fig. S4D). The 1029 upregulated mRNAs
that were involved in the aberrantly methylated m6A-cir-
cRNA/mRNA coexpression network were mainly
enriched in cancer-related pathways, such as the ECM-
receptor interaction, mucin type O-glycan biosynthesis,
and p53 signaling pathway, while the 925 downregulated
mRNAs that were involved in this network were mainly
enriched in pathways related to PPAR signaling pathway
and Th1 and Th2 cell differentiation (Fig. 4G, H). These
results suggested that the dysregulation of m6As in cir-
cRNAs might have critical functional significance in
PDAC.
We speculated that m6A-dependent crosstalk between

circRNAs and mRNAs in the coexpression network was
probably mediated by m6A readers, as m6A functions
through recruiting readers. Indeed, we found that all re-
ported m6A readers significantly preferred to bind the
comethylated pairs (both the circRNA and mRNA were
m6A methylated in the coexpression network) (Add-
itional file 1: Fig. S4E), and YTHDF1 and YTHDF2 were
correlated with a significant proportion of differentially
expressed mRNAs involved in the coexpression network
(Additional file 1: Fig. S4F), indicating that these two
“readers” may play a role in m6A-dependent crosstalk.

m6A modification is associated with the circularization of
circRNAs
We next examined whether there is any effect of m6A
modification on circRNA abundance. Interestingly, we
found 85.5% (767/897) of circRNAs show the same direc-
tion of change between tumor and normal tissue samples
at m6A and circRNA expression level, meaning hyper-
methylated m6A-circRNAs tended to upregulate circRNA
expression in PDAC (hypermethylated/upregulated cir-
cRNAs, 767), and hypomethylated m6A-circRNAs tended
to downregulate circRNA expression (hypomethylated/
downregulated, 119) (Fig. 5A). We experimentally vali-
dated the differential expression of 9 selected candidates
(Additional file 1: Fig. S5A). Further integrated analysis re-
vealed positive correlations between the m6A level and the
circRNA level (Fig. 5B). As previously reported, m6A can
regulate the stability of transcripts by recruiting “readers,”
such as YTHDF and IGF2BP proteins [3, 57, 58]. We first
examined the correlation between the expression level of

m6A readers and circRNAs. However, we found that there
were few hypermethylated-upregulated circRNAs signifi-
cantly correlated with these reported “readers,” indicating
that m6A modification in circRNAs might not enhance
expression level of circRNAs via recruiting “readers” in
pancreatic cancer (Additional file 1: Fig. S5B). Since the
circRNA level may also be regulated by circularization, we
further investigated the relationship between m6As and
the circular ratio of circRNAs. Interestingly, we found that
BSJ-proximal m6A-circRNAs displayed a significantly
higher circular ratio than BSJ-distal m6A-circRNAs and
non-m6A-circRNAs (Fig. 5C), suggesting m6As locating
near BSJ sites play critical role in the formation of cir-
cRNAs. The circularization process is regulated by mul-
tiple factors [6], such as ADAR (double-stranded RNA-
specific adenosine deaminase) [59]. Closer inspection re-
vealed that flanking regions of m6A peak centers were less
occupied by ADAR1 compared to background (Additional
file 1: Fig. S5C), further suggesting that m6As are related
to the formation of circRNAs. To further validate our re-
sult, 4sU pulse labeling and nascent RNA collection were
then performed after METTL3 knockdown (Additional
file 1: Fig. S5D) to measure circularization index of cir-
cRNAs (CI, the relative abundance of circRNA [C] versus
spliced linear mRNA [L]) of circRNA-generating genes. In
agreement with the sequencing results, the decreased m6A
level of examined circRNAs significantly reduced their
circularization efficiency (Fig. 5D, E). These observations
suggested that m6A modifications contribute to the bio-
genesis of circRNAs.

Hyper-m6A-circRNAs possess potential for translation
The m6A modification is reported to regulate the transla-
tion of circRNAs [13]. We next dedicated to explore the
relationship between m6A modification and circRNA
translation in the identified m6A-circRNAs in PDAC sam-
ples. To this end, we firstly predicted coding potential
using Coding potential assessing tool (CPAT) [60] and
found that both BSJ-distal and BSJ-proximal m6A-cir-
cRNAs displayed significantly higher coding probability
scores than non-m6A-circRNAs (P < 2.2e−16; Wilcox rank
sum test). Interestingly, BSJ-distal m6A-circRNAs had sig-
nificant higher coding probability scores than BSJ-
proximal m6A-circRNAs (Fig. 6A). Moreover, we found
BSJ-distal m6A-circRNAs had longer open reading frames
(ORFs) compared with BSJ-proximal m6A-circRNAs and
non-m6A-circRNAs (Additional file 1: Fig. S6A). To fur-
ther investigate the effects of m6A on the translation of
circRNAs, we systematically analyzed the binding sites
within circRNAs for translation-related m6A “readers”
(such as YTHDF1, YTHDF3) and eukaryotic initiation fac-
tors (EIFs) that were previously reported to promote
translation [13, 61]. We found that the ratio of binding
sites for EIFs (EIF3A, EIF3B, EIF3D, EIF3G, EIF3H,
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Fig. 5 m6A modification is associated with the circularization of circRNAs. A Distribution of m6A-circRNAs with a significant change in both the m6A level and
circRNA expression level. B The distribution of correlation coefficients (Pearson correlation coefficient) between the m6A level and circRNA expression level. C
Cumulative fraction of the circular ratio for m6A-circRNAs and non-m6A-circRNAs, respectively. The P value was calculated with the Wilcoxon rank sum test. D
MeRIP-qPCR analysis of m6A levels of 7 indicated circRNAs in PDAC cell line with METTL3 knockdown and control. E Circulation index of 7 indicated circRNAs in
PDAC cell line with METTL3 knockdown and control (bottom panel). Circulation index represent the relative abundance of each circRNA to its pre-mRNA. The
abundance of circRNA and its pre-mRNA were determined using qRT-PCR. Top panel showed the scheme of primer design for circRNA and linear RNA to
calculate circularization index. “C” and “L” primer sets are used to quantify circRNAs and linear RNAs. Data in D and E were means ± S.E.M. (n =3). *, P < 0.05; **,
P <0.01; ***, P <0.001 of Student’s t test
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EIF4A3, EIF4G2) and YTHDF1-3 were more enriched in
BSJ-distal m6A-circRNAs than that in BSJ-proximal m6A-
circRNAs and non-m6A-circRNAs (Fig. 6B), which was
further confirmed by permutation tests (Additional file 1:
Fig. S6B). These results suggested that m6A-circRNAs are
more likely to have translational capacity than non-m6A-
circRNAs, and among these m6A-circRNAs, BSJ-distal
m6A-circRNAs showed stronger translational capacity
than BSJ-proximal m6A-circRNAs.

Interestingly, we found that the percentage of cir-
cRNAs harboring binding sites for EIFs (EIF3A, EIF3B,
EIF3D, EIF3G, EIF3H, EIF4A3, EIF4G2) in nondifferen-
tially expressed (non-DE) hyper-m6A-circRNAs was sig-
nificantly higher compared to all hyper-m6A-circRNAs
(Fisher’s exact test, P = 0.00015) (Fig. 6C), indicating that
m6A modifications of some hyper-m6A-circRNAs might
not be functional through affecting circRNA formation,
but through affecting translation. To elucidate the

Fig. 6 The hypermethylated m6A-circRNAs possess potential for translation. A The cumulative fraction of coding probability scores predicted by
CPAT for BSJ-distal m6A-circRNAs, BSJ-near m6A-circRNAs and non-m6A-circRNAs. The P value was calculated with the Wilcoxon rank sum test. B
Significant higher ratio of binding sites of EIFs and YTHDFs in BSJ-distal m6A-circRNAs than BSJ-near m6A-circRNAs and non-m6A-circRNAs. For
each clustered bar, from left to right were binding sites ratios of BSJ-distal m6A-circRNAs, BSJ-near m6A-circRNAs, and non-m6A-circRNAs. P
values were calculated by chi-squared test; *, P < 0.05; **, P < 0.01; ***, P < 0.001. C Venn diagram showing the number of m6A-circRNAs with
coding potential (circRNAs with ORFs and EIFs binding sites) for non-DE hypermethylated-m6A-circRNA and all hypermethylated-m6A-circRNA.
The outer layer indicated total number of corresponding m6A-circRNAs; the inner layer indicated the number of corresponding m6A-circRNAs
with coding potential. Fisher’s exact test was used to derive the P value. D GO molecular function (MF) terms enrichment analysis for host genes
of hypermethylated m6A-circRNAs with coding potential. E Relative fractions of unbound (free) RNAs, monosome- and polysome-bound RNAs for
circZFHX3, circTSHZ1, and circLMTK2 in PDAC cell lines with METTL3 siRNA and control. The HPRT mRNA was used as control. F RIP-qPCR analysis
showed EIF3A-, EIF3B-, and EIF3H-bound RNA abundance for circZFHX3, circTSHZ1, and circLMTK2 in PDAC cells with or without METTL3
knockdown. Data in E and F were means ± S.E.M. (n = 3). *, P < 0.05; **, P < 0.01; ***, and P < 0.001 of Student’s t test comparing with
each control
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biological modules those hyper-m6A-circRNAs poten-
tially affecting translation (hyper-m6A-circRNAs with
ORFs and EIFs/YTHDFs binding), we carried out GO
enrichment analysis on their host gene. We found that
hyper-m6A-circRNAs enrich in GO molecular function
(MF) terms on transcription process such as core pro-
moter binding and transcription core repressor activity
(Fig. 6D). We selected several circRNAs involved in
these GO term for further experiment validation. After
knockdown of METTL3, the m6A level and translation
activity of circZFHX, circTSHZ1 and circLMTK2 were
significantly reduced (Fig. 6E and Additional file 1: Fig.
S6C, D). We further observed that knockdown of
METTL3 attenuated the binding of EIFs (EIF3A, EIF3B
and EIF3H) to these hyper-m6A-circRNAs (Fig. 6F).
These findings indicated that the hypermethylation of
some m6A-circRNAs might cause the dysregulation of
circRNA translation.

Discussion
In recent years, both circRNAs and m6A modifications
have attracted increasing attention in cancer studies due
to their important roles in cancer progression in various
types of cancer [9, 11, 22, 62–64]. However, few studies
have brought together the two rapidly expanding fields in
cancer studies. In particular, transcriptome-wide mapping
of m6A modifications in circRNAs in cancer patients is
still lacking. In this study, we developed a de novo algo-
rithm for the transcriptome-wide mapping of m6A modifi-
cations in circRNAs from m6A-seq data and applied this
algorithm to the m6A-seq data from a large sample of in-
dividuals with PDAC with the goal of exploring the func-
tion and regulation of m6A-circRNA in cancer.
Our de novo algorithm has several advantages com-

pared to the existing methods for transcriptome-wide
mapping of m6A modifications in circRNAs [12, 13].
Zhou et al. considered that all the circRNAs detected
from m6A IP samples have potential m6A modifica-
tions [12]. However, antibodies recognizing m6A will
also capture RNAs without m6A modifications in a
nonspecific manner [65, 66]; therefore, the detection
of circRNA signals only in IP samples without consid-
ering the background noise as presented in INPUT
samples will probably introduce false positives of
m6A-circRNAs. Yang et al. employed m6A IP for
RNA samples treated with exoribonuclease RNase R
(circRNA-m6A-seq) to specifically identify m6A modi-
fications in circRNAs [13]. Similar to the methods of
Zhou et al., circRNA-m6A-seq also does not consider
the nonspecific precipitation of RNAs by antibodies
targeting m6A. Moreover, circRNA-m6A-seq does not
detect the linear transcripts and their m6A modifica-
tion; thus, crosstalk between circRNAs and mRNAs
cannot be well explored. To address these issues, we

developed a de novo algorithm called “Circm6A” to
detect m6A modification in circular RNAs and linear
transcripts from m6A-seq data. We performed Fisher’s
exact test on the circRNA signal difference between
IP and INPUT samples to determine the probability
of observing a circRNA signal in IP samples caused
by nonspecific capture.
However, Circm6A still has limitations when being

applied to the MeRIP-seq data that was generated
using the strategy of fragmentation before m6A-IP,
which is the more frequently used library construc-
tion strategy since it could detect higher resolution
m6A sites compared to the strategy of fragmentation
after m6A-IP. For the strategy of fragmentation before
m6A-IP, if the m6As are located in the circRNAs but
distal to BSJs, the circRNA fragments pulled down by
m6A-IP will not have BSJ signal thus the m6A enrich-
ment signal will not be connected with the circRNAs.
Therefore, the m6A-circRNAs with m6As distal to
BSJs will not be detected by Circm6As and other cir-
cRNA detection tools. The analysis on our simulated
data validated this assumption. To address this limita-
tion, we developed a random forest model for the
prediction of m6A modification status from the
MeRIP-seq data. The random forest model will com-
plement the Circm6A results.
We described a comprehensive landscape of m6A

modification in circRNA in PDAC by using Circm6A.
The m6A modifications in many circRNAs were dys-
regulated in PDAC tumor tissues compared to adja-
cent normal tissues, suggesting their functional roles
in cancer progression. The identification of dysregu-
lated m6A-circRNAs expanded our understanding of
the biological role of m6A modification in cancer.
Previous studies have reported that circRNAs function
by regulating the metabolism of linear mRNA [8, 21,
67, 68]. We therefore explored the function of cir-
cRNAs and their m6A modifications in a circRNA-
mRNA coexpression network. Intriguingly, we found
that m6A modifications had a positive effect on
circRNA-mRNA coexpression, and hypermethylated
circRNAs significantly amplified the circRNA-mRNA
coexpression network in PDAC tumor tissues com-
pared to normal tissues. CircRNAs are intensively re-
ported to function as miRNA sponges to regulate
linear mRNA expression [8, 69, 70]. A few studies
have reported that circRNAs could also modulate lin-
ear mRNAs by competing with RNA-binding proteins
or acting as scaffolds for RNA-binding proteins [55,
56]. We propose several potential mechanism models
for m6A-dependent crosstalk. One possible explan-
ation is that m6A-circRNAs perhaps serve as sponges
to sequester m6A readers from linear mRNAs with
m6As, thereby reducing the effect of m6A readers on
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linear mRNAs. The other possible mechanism might
be that m6A-circRNAs might function as scaffolds
that promote the binding of readers to linear mRNAs.
Indeed, Chen et al. have reported that circNSUN2, an
m6A-circRNA, can enhance the stability of HMGA2
mRNA by forming a circNSUN2/IGF2BP2/HMGA2
RNA-protein ternary complex [14].
m6A modifications have critical roles in many aspects

of RNA regulation, including RNA stability, splicing, and
translation [2, 3, 71–74]. In this study, we found that the
hypermethylation of circRNAs tended to elevate cir-
cRNA levels in PDAC tumor tissues compared to nor-
mal tissues, and m6A levels were significantly positively
correlated with circRNA abundance, whereas we ob-
served that few circRNA were significantly coexpressed
with well-known m6A readers that regulates RNA stabil-
ity, suggesting that m6As might not regulate expression
of circRNAs by recruiting “reader” to stabilize circRNAs.
Apart from stability, the biogenesis of circRNA is an-
other factor influencing circRNA levels. Interestingly, we
found that m6A-circRNAs have a higher circular ratio
than non-m6A-circRNAs, suggesting that m6As might
play a potential role in the biogenesis of circRNAs.
ADAR1, an RNA-editing enzyme, has been reported to
suppress the biogenesis of circRNAs because A-to-I edit-
ing can diminish RNA pairing and thus prevent back-
splicing for circRNA biogenesis [75]. Xiang et al. re-
ported that ADAR1 is unfavorably associated with m6A-
modified transcripts for further A-to-I editing and that
m6A modification suppresses A-to-I editing on the same
transcripts [76]. Consistently, we observed that the
flanking region of m6A-circRNAs has fewer binding sites
for ADAR1 than that of non-m6A-circRNAs, indicating
a potential role of m6A in the regulation of circRNA bio-
genesis in which m6A modification suppresses A-to-I
editing of pre-mRNAs and hence results in recovery of
RNA pairing, eventually promoting the biogenesis of cir-
cRNAs; however, this mechanism requires further inves-
tigation. Previous researches have reported that some
circRNAs have translational abilities [77–81]. Moreover,
m6A is reported to promote the translation efficiency of
circRNAs [13].

Conclusions
In conclusion, we firstly developed a computational tool,
Circm6A, to detect m6A modification in circRNAs from
m6A-seq data specially, which would facilitate following
researches on m6A-circRNAs. With application of Cir-
cm6A to our PDAC m6A-seq data, we showed the gen-
omic landscape of m6A-circRNAs in PDAC patients for
the first time. Further analysis showed that m6A-cir-
cRNAs tended to be hypermethylated in PDAC tumor
tissues compared to adjacent normal tissues. Surpris-
ingly, we found that hypermethylated m6As-circRNAs

were related with the expansion of circRNA-mRNA
coexpression network involved in many cancer-related
pathways. Further, our bioinformatic analysis and experi-
ment results also indicated that m6A modifications in
circRNAs might promote the circularization and transla-
tion of circRNAs. These comprehensive findings shed
new light on the regulatory perspective of m6A modifi-
cation in circRNAs and the function importance of
m6A-circRNAs in PDAC.
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