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Abstract

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to
transfer disease information from patients to cells. We call such transferrable information “impressions,” which allow
individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using
simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma
multiforme (GBM), Alzheimer’s disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility,
and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified
PHF19high myeloma cells associated with progression. Availability: https://github.com/tsteelejohnson91/DEGAS.
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Background
The emergence of single-cell RNA sequencing (scRNA-
seq) in 2009 has revolutionized the medical research
community with single-cell-level resolution, providing a
much deeper understanding of transcriptomic hetero-
geneity in tissues and diseases. Now that scRNA-seq is a
standard part of the biomedical research toolbox,
increasing numbers of scRNA-seq studies have been
published [1, 2], and databases have quickly accumulated
with scRNA-seq data, such as Hemberg lab [3], scRNA-
SeqDB [4], SCPortalen [5], Allen Institute Cell Types

Database, and the NCBI Gene Expression Omnibus
(GEO) [5]. Many methods have been developed to
analyze scRNA-seq data, the most notable being Seurat,
which includes ways to cluster and normalize cell
expression as well as perform integrative analysis with
other data types (e.g., CITE-seq and ATAC-seq) [6].
These methods are important for understanding many
prognostic and diagnostic disease attributes in scRNA-
seq data. Here we use “disease attributes” as a broad
term inclusive of many types of information and labeling
such as diagnostic information, disease subtypes, disease
status, prognostic information like survival, and re-
sponses to therapy. For Seurat and similar methods,
while cell types/clusters can be identified and associated
with disease attributes [7–10], individual cells are unable
to be associated in the same manner. This may result in
failing to identify subsets of cells associated with disease
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attributes, especially if the disease-associated cells cluster
together with non-disease-associated cells.
Currently, disease-associated cell types can be identi-

fied by transferring molecular heterogeneity information
from cells to patients using single-cell expression decon-
volution [11–13]. However, this approach is limited as it
focuses on the changes in relative abundance of subtypes
of cells instead of transcription changes of these cells.
The resolution of the cell subtyping is constrained by
the clustering experiment. Therefore, novel machine
learning methods that can transfer information from
patients to cells and identify latent links between them
are sorely needed to leverage the relative strengths of
single-cell and patient-level data. For example, in cancer
studies, bulk transcriptomic data is ideal for studying
inter-tumor heterogeneity and scRNA-seq is ideal for
studying intra-tumor heterogeneity. However, such inte-
gration faces numerous challenges since different data
modalities and different data sources can have different
characteristics in terms of quantity, quality, distribution,
and resolution [1]. For instance, it is common to find
studies with a large number of patient samples for bulk
tissue RNA sequencing (RNA-seq), whereas studies with
scRNA-seq data usually contain a small number of pa-
tient samples. Most scRNA-seq experiments generate a
large number of cells per sample, making the scaling of
such data to multiple tissue samples computationally dif-
ficult [1]. On the other hand, a large patient sample size
is often required for statistical studies such as prediction
of disease attributes [14]. If traditional methods were
used, the resulting scRNA-seq data could end up with
cell numbers on the scale of millions making such stud-
ies more difficult.
To address these challenges, previous studies have dir-

ectly established associations of diseases with cell types
derived from scRNA-seq without using deconvolution.
These methods mainly utilize unsupervised methods and
focused primarily on the number of differentially
expressed genes (DEGs) in a given cell type correspond-
ing to DEGs related to some disease attribute [15, 16].
For example, Gawel et al. used enrichment of the cell
cluster-specific DEGs and multicellular disease models
(MCDMs) to visualize the cell types for prioritization
[7]. Muscat identified DEGs between treatment groups
in scRNA-seq samples which were used to identify cell
types related to sample treatment [17]. Alternatively, k
nearest neighbor (kNN) graphs have been used to iden-
tify cell types that undergo transcriptional changes re-
lated to biological perturbations [18]. The cell type
prioritization tool Augur did not primarily rely on DEGs,
but still focused the biological resolution to the cell type
level [19]. They trained classifiers on each cell type with
respect to the disease state of the tissue from which
those cells were sampled. The accuracy of the classifier

in each cell type was used to prioritize its relation to the
disease state of interest [19]. These methods rely on ei-
ther prior knowledge to calculate enrichment of DEGs
or require scRNA-seq data from both disease and nor-
mal samples. Furthermore, all of these existing methods
are reliant on accurately defining the cell types within a
scRNA-seq experiment. In summary, these methods as-
sign disease associations to the previously defined cell
types and not to the individual cells.
To address such challenges as prioritizing individual

cells in relation to disease with considerations on sample
size and computational cost, we established the com-
bined deep learning and transfer learning framework
called DEGAS (Diagnostic Evidence GAuge of Single
cells) to integrate scRNA-seq and bulk tissue transcrip-
tomic data with the goal to transfer clinical information
f r om pa t i e n t s t o c e l l s ( h t t p s : / / g i t h u b . c om/
tsteelejohnson91/DEGAS) [20]. The ability of DEGAS to
assign patient-level disease attributes to single cells,
among other functions, provides a flexible and useful
tool to prioritize cells, cell types, patients, and patient
subtypes in relation to disease attributes. In this paper,
we focus on the most relevant use case of associating
disease attributes from patients to individual cells since
there is no current state-of-the art technique to perform
this task.
We use transcriptomic data as an example where bulk

expression is referred to as patients and scRNA-seq is
referred to as cells. The rationale behind the DEGAS
framework is that scRNA-seq data and patient-level
transcriptomic data (e.g., RNA-seq with clinical informa-
tion) share the same feature space (i.e., common set of
genes). In addition, a natural connection exists between
the two data types that can be leveraged to further iden-
tify the associations between patients and cells. Viewing
this association as a graph (Fig. 1), we can connect the
disease attributes in patients to individual cells, via a
latent representation of the common feature space (se-
lected genes). This latent representation fitting two data-
sets can be learned using a transfer learning technique
called domain adaptation [21–24]. Domain adaptation
applies linear or non-linear transformations on the fea-
tures for both datasets so that their distributions are
similar after the transformations. Our biological intu-
ition is thus: the expression patterns of genes in cells
and tissues should carry a portion of the same biological
patterns such as molecular pathways, signaling cascades,
and/or metabolic processes, making the information
learned from this portion of gene expression patterns
transferable between patients and cells. Our hypothesis
is that the latent representation learned from these
shared gene expression patterns will be simultaneously
predictive of patient disease attributes and cellular sub-
types. Similar hypotheses are already adopted to transfer
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information between different single-cell experiments [6,
25–29] and to transfer information from bulk transcrip-
tomic cell type atlases to single-cell experiments [30].
In our DEGAS framework, we incorporate patient-

level disease attribute information with cell type infor-
mation from disparate datasets to perform cell
prioritization on scRNA-seq data. These disease associa-
tions in cells can be attributed to disease-related bio-
logical perturbations identified in the patients. This
novel deep transfer learning approach simultaneously
trains a model on single-cell data and patient data along
with their labels and learns a representation in which
the cells and patients occupy the same latent space.
Multitask learning, also known as parallel transfer learn-
ing, is precisely designed to achieve these two goals.
Used extensively in computer vision, multitask learning
learns a low-dimensional representation of the input
data to optimally address multiple tasks. Examples of
such application in medical science include predicting

benign versus malignant tumor samples and subclassifi-
cation in breast cancer histology images [31, 32]. In this
paper, we further extend this line of research to include
datasets with patient disease attributes that can be
trained simultaneously so that the disease attributes can
be transferred (or cross-mapped) between single cells
and patients. Specifically, our framework enables know-
ledge learned from patients using deep learning models
to be transferred to single cells and vice versa. The
major advantages of our transfer learning framework are
that the single-cell gene expression data and clinical bulk
gene expression data can come from different patient
cohorts of the same disease without matched data while
the disease associations can still be directly assigned to
individual cells. This flexibility not only presents an in-
genious way to integrate molecular omics data analysis
in different levels, but also virtually merges them into
the same cohort, which makes studying a broad variety
of heterogeneous diseases possible.

Fig. 1 A workflow diagram of the DEGAS framework. A The workflow for a typical experiment with DEGAS. Note that DEGAS is not meant to
replace the abundant packages available to load, preprocess, select features, cluster, and visualize scRNA-seq data. It is rather meant to augment
these packages to assign disease associations to cells. B The scRNA-seq and patient expression data are preprocessed into expression matrices.
Next, Bootstrap aggregated DenseNet DEGAS models are trained using both single-cell and patient disease attributes using a multitask learning
neural network that learns latent representation reducing the differences between patients and single cells at the final hidden layer using
maximum mean discrepancy (MMD). C The output layer of this model can be used to simultaneously infer disease attribute impressions in single
cells and cellular composition impressions in patients
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Various types of workflows can integrate the DEGAS
framework, which can be tailored to user preference
and data availability. These workflows consist of pre-
processing, formatting data, training DEGAS models
using the DEGAS framework, predicting disease associ-
ations in cells using the DEGAS framework, and down-
stream analysis (Fig. 1A). The DEGAS framework in its
simplest form can be broken into three tasks during
model training: (1) correctly labeling cells with a cellu-
lar subtype using multitask learning; (2) correctly
assigning clinical labels to patients using multitask
learning; and (3) generating a latent space in which pa-
tients and cells are comparable using domain adapta-
tion (Fig. 1B). To perform DEGAS analysis, first we
select representative gene features that are predictive of
cell type, predictive of patient disease attributes, and
present at measurable levels in both scRNA-seq and
bulk transcriptomic data. Secondly, we apply deep
learning models to learn the latent representation of
the single-cell and patient-level transcriptomic data,
with the goal to simultaneously minimize cell type clas-
sification error, patient disease attribute prediction
error, and the differences between cells and patients in
their latent representation. Finally, the patient-level dis-
ease attributes such as survival and clinical subtypes is
predicted in the single cells using the patient label out-
put layer and cell types are predicted in patients using
the cell type output layer (Fig. 1C). We call these trans-
ferrable label probabilities “impressions” since informa-
tion from gene expression of disparate data types and
studies can be extracted and the characteristics from
one data type can be mapped to another. These impres-
sions of disease attributes in single cells can be wide-
ranging characteristics of the patient samples but must
be categorical or time to event. The most interesting of
them that can be used in DEGAS are disease status, dis-
ease subtype, survival, and response to therapy. Disease
status, subtype, and survival were used in our current
experiments but there would also be much utility in
identifying cells associated with poor response to treat-
ment as the data become available. Furthermore, we
emphasize the ability to make predictions of patient
disease attributes in individual cells since there is a lack
of such method to perform this task to the best of our
knowledge. DEGAS is developed as a generalizable
model generating deep transfer learning framework that
can be applied to any disease data as long as the data
contain clinical information for a cohort of patients or
a separate clustering analysis result on sets of cells from
single-cell omic experiments of the same disease. Since
there is not an inherent limitation to the use of tran-
scriptomic data, DEGAS can be potentially expanded to
accommodate other modalities of data with proper
normalization steps.

To demonstrate the feasibility and effectiveness of the
DEGAS framework, we first tested it on simulated data
and GBM transcriptomic data [33, 34], which contain
ground truth labels of cell types on single-cell gene ex-
pression data and clinical labels for patient bulk tissue
gene expression data. Then, we applied DEGAS to mul-
tiple Alzheimer’s disease (AD) gene expression datasets
from Mount Sinai/JJ Peters VA Medical Center (MSBB)
[35], Allen Institute for Brain Science (AIBS), Grubmann
et al. [36], and Mathys et al. [15] in which certain cell
type changes (microglia and neuron) are largely known
[37–43]. Finally, as an exploratory tool, we applied DE-
GAS to study multiple myeloma (MM) transcriptomic
data [44–47], where the disease-associated subtypes of
cells are largely unknown.
MM is a late stage of myeloma that stems from the

proliferation of aberrant clonal plasma cells in the bone
marrow that secrete monoclonal immunoglobulins and
is the second most common blood cancer in the USA
[48]. Patient-level transcriptomic data for MM has been
widely available for some time and has been used to
identify subtypes of MM with different prognoses [44].
However, only recently has scRNA-seq become available
for MM [9, 45, 49] and few studies have identified the
most high-risk subtypes of cells [9]. Here we combined
our late-stage myeloma scRNA-seq data from four local
samples [46] and bulk tissue data from the Multiple
Myeloma Research Foundation (MMRF) CoMMpass
study [47], then applied DEGAS to infer clinical impres-
sions for myeloma cell subtypes and successfully identi-
fied a PHF19high myeloma cell subgroup associated with
a high-risk of progression.

Methods
Experimental design and datasets
For a DEGAS cell prioritization experiment (https://
github.com/tsteelejohnson91/DEGAS) [20], one scRNA-
seq dataset, one bulk expression dataset, and patient
sample labels (matched with the bulk data samples) are
required as input. After feature selection and scaling
(Methods: “Feature selection and scaling”) of the raw in-
put expression data, there should be two expression
matrices with rows corresponding to samples/cells and
matching columns corresponding to genes. The bulk pa-
tient sample labels should be one-hot encoded in a
matrix with rows corresponding to each sample and the
columns corresponding to each class of label. For sur-
vival sample labels, the first column should be time and
the second column should be the even indicator (1 event
and 0 censored). If cell labels are also available, they
should also be one-hot encoded with each row corre-
sponding to a cell and each column corresponding to a
class of label. The DEGAS models can be trained
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(Additional file 1: Supplementary methods) and pre-
dicted on these formatted data (Fig. 1A).
In this study, we analyzed simulated data and data

from three different diseases, GBM, AD, and MM, to
test the DEGAS framework and apply it for novel discov-
eries. The simulation, GBM, and AD experiments were
primarily used as validation datasets since the ground
truth is known. The simulated data were generated so
that cell types are directly related to disease status in
patients. For GBM data, we used scRNA-seq data for
five tumors from Patel et al. [33] and microarray data
for the GBM TCGA cohort [34] (Table 1). For AD data,
we used human scRNA-seq from Allen Institute for
Brain Science (AIBS) Cell Types Database (https://
celltypes.brain-map.org/) and AD patient RNA-seq from
the Mount Sinai/JJ Peters VA Medical Center Brain
Bank (MSBB) study [35] (Table 1).
We further expanded our inquiry into MM, which

served as a discovery study. Since the plasma cell sub-
types are less understood in relation to MM clinical
outcomes, we aimed to identify subtypes of plasma
cells associated with worse prognosis. We first utilized
647 CD138+-enriched bone marrow patient samples
(dbGaP accession: phs000748) from the MMRF
CoMMpass study [47]. These data were generated as
part of the MMRF Personalized Medicine Initiatives.

The sequencing and clinical data can be also accessed
from the MMRF Research Gateway (https://research.
themmrf.org) or from the National Cancer Institute
Genomic Data Commons (https://portal.gdc.cancer.
gov/projects/MMRF-COMMPASS). The dataset
consisted of tumor tissue RNA-seq data and corre-
sponding clinical information including progression-
free survival (PFS) time and survival status. PFS was
defined as the time taken for a patient to relapse, pro-
gress, or die after treatment of the initial tumor. The
demographic information of the MMRF patients are
shown in Table 1. The first scRNA-seq data used in
this study were generated by us using samples consist-
ing of CD138+ plasma cells purified from bone mar-
row from four myeloma patients including two MM
patients collected at Indiana University School of
Medicine (IUSM) [46].
There were six total samples collected from myeloma

patients. Of these, four samples passed initial quality
control checks. Samples 1 and 6 were dropped due to
sample degradation and data quality issues. This in turn
left with four usable samples, i.e., samples 2, 3, 4, and 5
for our study. The low number of patients was a good
test case considering most scRNA-seq experiments
frequently have few patients. The single cells were
sequenced using 10× Genomics and Illumina Nova-
Seq6000 sequencer. CellRanger 2.1.0 (http://support.1
0xgenomics.com/) was utilized to process the raw se-
quence data. Briefly, CellRanger used bcl2fastq (https://
support.illumina.com/) to demultiplex raw base se-
quence calls generated from the sequencer into sample-
specific FASTQ files. The FASTQ files were then aligned
to the human reference genome GRCh38 with RNA-seq
aligner STAR [50]. The aligned reads were traced back
to individual cells and the gene expression level of indi-
vidual genes were quantified based on the number of
UMIs (unique molecular indices) detected in each cell.
The filtered gene-cell barcode matrices generated by
CellRanger were used for further analysis. A second pub-
licly available myeloma scRNA-seq dataset was used for
validation, which consisted of NHIP (normal control),
MGUS (monoclonal gammopathy of undetermined sig-
nificance), SMM (smoldering multiple myeloma), and
MM [45]. A second bulk tissue dataset was used for val-
idating the proportional hazards modeling. This dataset
consisted of bulk expression profiling by microarray of
CD138+ plasma cells with overall survival (OS) informa-
tion for 559 MM patients [44]. The detailed information
of the four myeloma datasets is shown in Table 2.

Transfer learning using DEGAS
Several types of labels including Cox proportional haz-
ards, patient classification, and cell type classification,
along with maximum mean discrepancy (MMD), a

Table 1 Summary of the clinical features of patients in each
bulk expression cohort used during model training

Glioblastoma Multiforme TCGA [34]

Feature Details

Sex 74 Male, 37 Female

Age (years) Range: 14–83, Mean: 56, Median: 58

Clinical GBM subtype 34 Classical, 33 Mesenchymal, 9
Neural, 35 Proneural

Alzheimer’s disease MSBB [35]

Feature Details

Sex 90 Male, 131 Female

Age (years) Range: 61–90+, Mean* > 82,
Median = 84

AD diagnosis 135 AD, 86 Control

Multiple Myeloma MMRF [47]

Feature Details

Sex 387 Male, 260 Female

Age (years) Range: 27–93, Mean: 64, Median: 64

Progression-free survival
time (days)

Range: 13–1753, Mean: 665.4,
Median: 629
200 patients progressed

*Final age category is > 90 years. The following are all of the abbreviations:
The Cancer Genome Atlas (TCGA), Glioblastoma Multiforme (GBM), Mount
Sinai/JJ Peters VA Medical Center Brain Bank (MSBB), and Multiple Myeloma
Research Foundation (MMRF)
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technique used to match distributions across different
sets of data [23], were combined to create the deep
multitask transfer learning framework DEGAS.
The first step was to find a set of gene expression

features that were both informative of cell type and
of patient disease attribute (e.g., recurrence). The
intersection of high variance genes found in the
scRNA-seq and bulk expression data of patient sam-
ples are used for further analysis. The definition of
this gene set is up to the user but Seurat-CCA [29],
LASSO selection [51], and even statistical tests such
as t-test and f-test can be used to define the gene set.
Since these features are the same between patients
and single cells, the patients and cells share the same
input layer. This makes it possible to predict propor-
tional hazard and cell type regardless of the input
sample type (patient or single-cell data).
All experiments in this manuscript use a five-bootstrap

aggregated three-layer DenseNet-based implementation of
DEGAS, but the simplest form of the DEGAS framework is
a single layer network. In our description of the overall
architecture below (shown in Fig. 1B,C), we used a single
layer network for the purpose of simplicity. The following
Eq. 1 can nevertheless be extrapolated to multiple layers
and architectures, some of which we have already included
in our open-source software package. First, a hidden

layer was used to transform the genes into a lower
dimension using a sigmoid activation function (Eq. 1).
Where X represents an input expression matrix,
θHidden represents the hidden layer weights, and bHid-

den represents the hidden layer bias.

f Hidden Xð Þ ¼ sigmoid XTθHidden þ bHidden
� � ð1Þ

Next, output layers were added for both the patient
output and for the single-cell output. For the single cells,
there could be classification output or no output. No
output means there are no known labels for the single
cells to match. Similarly, patients could have Cox pro-
portional hazard output, classification output, or no out-
put (implying no known labels for patients).
The Cox proportional hazards estimates consisted of a

linear transformation to a single output followed by a
sigmoid activation function (Eq. 2):

f Cox Xð Þ ¼ sigmoid f Hidden Xð ÞTθCox þ bCox
� �

; ð2Þ

where the variable X represents an input expression
matrix, θCox represents the Cox proportional hazard
layer weights [52], and bCox represents the Cox
proportional hazard layer bias. The classification output
consisted of a transformation to the same number of

Table 2 Overview of all datasets used in the analysis

Study Dataset Sample size Data type Attribute

Simulation Simulated cellsa 5000 cells scRNA-seq Cell type

Simulated patientsa 600 patients RNA-seq Disease status

Glioblastoma Patel et al., 2014 [33] 532 cells
(5 patients)

scRNA-seq
(SMART-seq)

None

TCGA GBM [34] 111 patients Microarray GBM subtype

Alzheimer’s disease AIBS 47,396 cells
(11 patients)

scRNA-seq
(SMART-seq)

Brain cell types

Grubman et al., 2019 [36] 13,214 cells
(12 patients)

snRNA-seq
(10x Genomics)

AD and normal brain cell types

Mathys et al., 2019 [15] 5288 cellsb

(48 patients)
snRNA-seq
(10x Genomics)

AD and normal brain cell types

MSBB [35] 682 samples
(221 patients)

RNA-seq AD diagnosis

Multiple myeloma MMRF [47] 647 patients RNA-seq PFS

IUSM
Chen et al. 2021 [46]

22,968 cells
(4 patients)

scRNA-seq
(10x Genomics)

Subtype cluster
(Subtype 1-5)

Ledergor et al., 2019 [45] 13,440 cells
(35 patients)

scRNA-seq
(MARS-seq)

Malignancy (NHIP, MGUS, SMM, MM)

Zhan et al., 2006 [44] 559 patients Microarray OS
aThe simulated patients were generated from the simulated cells by combining known proportions of cell types. “None” is used to denote the lack of labels for
the cells/samples in a given dataset. bCells were down-sampled from the total number of cells because some cell types were over-represented. The following are
all of the abbreviations: The Cancer Genome Atlas (TCGA), Glioblastoma Multiforme (GBM), Allen Institute for Brain Science (AIBS), Mount Sinai/JJ Peters VA
Medical Center Brain Bank (MSBB), Multiple Myeloma Research Foundation (MMRF), Indiana University School of Medicine (IUSM), Alzheimer’s disease (AD),
progression-free survival (PFS), overall survival (OS), normal hip (NHIP), monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple
myeloma (SMM), multiple myeloma (MM), RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and single nuclei RNA-seq (snRNA-seq)

Johnson et al. Genome Medicine           (2022) 14:11 Page 6 of 23



outputs as the number of labels, i.e., patient subtypes,
cellular subtypes, using a softmax activation function
(Eq. 3).

f Class Xð Þ ¼ softmax f Hidden Xð ÞTθClass þ bClass
� �

; ð3Þ

θClass represents the classification layer weights and
bClass represents the classification layer bias.
To train the DEGAS model, we need to compute three

types of loss functions for the Cox proportional hazards
output, classification output, and MMD [23] respect-
ively. The Cox proportional hazards loss [52] was calcu-
lated only for the patient expression data (XPat) using
the follow-up period (C), and event status (t) (Eq. 4).
Similarly, the patient classification loss was only calcu-
lated for the patient data (XPat) using the patient labels
(YPat). Alternatively, the cellular classification loss was
only calculated for the single-cell expression data (XCell)
and true subtype label (YCell) (Eq. 5). The MMD loss
was calculated between the patient expression data (XPat)
and the single-cell expression data (XCell) (Eq. 6), which
is the key for mapping the distributions of the data rep-
resentations between the single-cell and patient bulk tis-
sue data.

LOSSCox ¼
X

C ið Þ¼1
f Cox XPatð Þi−

X
t j ≥ ti

exp f Cox XPatð Þ j
� �� �� �

ð4Þ

LOSSClass ¼ 1
n

Xn

i¼1

X
Y type;1− f Class Xtype

� �
i

� �� �

ð5Þ

LOSSMMD ¼ MMD XCell;XPatð Þ ð6Þ
Besides the three losses, we also add a L2-

regularization loss term to constrain for the complexity
of the model. The overall loss function was the weighted
sum of the four types of loss using the hyper-
parameters λ0 (single-cell loss function), λ1 (patient loss
function), λ2 (MMD loss), and λ3 (regularization loss), so
that the importance of each loss term and regularization
term could be adjusted (Eq. 7):

LOSSClassCox ¼ λ0LOSSClass þ λ1LOSSCox
þ λ2LOSSMMD þ λ3 θk k22 ð7Þ

To address more diverse scenarios, we can also adapt
Eq. 7 for two classification outputs (Eq. 8), a single clas-
sification output without patient disease attribute (Eq.
9), a single classification output without cell type label
(Eq. 10), or a single Cox output without cell type label
(Eq. 11):

LOSSClassClass ¼ λ0LOSSClass þ λ1LOSSClass
þ λ2LOSSMMD þ λ3 θk k22 ð8Þ

LOSSClassBlank ¼ λ0LOSSClass þ λ2LOSSMMD þ λ3 θk k22 ð9Þ
LOSSBlankClass ¼ λ1LOSSClass þ λ2LOSSMMD þ λ3 θk k22 ð10Þ
LOSSBlankCox ¼ λ1LOSSCox þ λ2LOSSMMD þ λ3 θk k22 ð11Þ

In summary, a common hidden layer was used to
merge the single cells and patient data. Next, an output
layer was added to predict the proportional hazards or
classes of the patient samples [52]. The loss function for
the proportional hazards prediction or patient classifica-
tion was back-propagated across both layers for each pa-
tient. The single cells also had an output layer consisting
of a softmax output to predict the cellular subtype of
each cell. Error was back-propagated across both layers
from the label output for each cell. Finally, a model was
learned that can model both the single cells and the pa-
tients. To perform this task, we utilized the MMD
method [23] to reduce the differences between patients
and cells in a low-dimensional representation. Both
single-cell and patient bulk tissue data were combined
into a single group such that the MMD loss was mini-
mized between patient bulk tissue data and single-cell
data from multiple patients. Because there are many dif-
ferent combinations of these outputs, i.e., single-cell out-
put followed by patient output, we implemented
ClassCox, ClassClass, ClassBlank, BlankClass, and Blank-
Cox models based on Eqs. (7), (8), (9), (10) and (11) in
the current version but intend to provide more options
in the future.
To keep the analyses consistent, we used the same net-

work architecture and hyper-parameters throughout all
of the experiments. Specifically, we used a three-layer
DenseNet architecture bootstrap aggregated five times
such that Eq. 1 would consist of a DenseNet instead of a
single layer feedforward network and five such models
were trained. The same set of hyper-parameters was
used in all of the experiments in this study, except for
the robustness to hyper-parameter experiment, where
they were intentionally altered to test the influences on
the output results. These are considered the default
hyper-parameters in the DEGAS package but can be
changed. They are training steps 2000, single-cell batch
size 200, patient batch size 50, hidden layer nodes 50,
dropout retention rate 50%, single-cell loss weight (λ0) 2,
patient loss weight (λ1) 3, MMD loss weight (λ2) 3, and
L2-regularization weight (λ3) 3.

Feature selection and scaling
There are already multiple feature selection techniques
available in a wide range of general statistical packages
and scRNA-seq packages. For this reason, DEGAS does
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not focus mainly on feature selection, data cleaning, and
scRNA-seq clustering, but rather on transferring clinical
traits from patient to cells for the purpose of prioritizing
those cells. For these reasons, a wide range of feature se-
lection techniques can be used before the DEGAS frame-
work is applied.
Data from scRNA-seq experiments are generally very

sparse. As a result, there are few genes with viable ex-
pression for any given cell. Due to this, it is necessary to
perform feature selection to remove genes that are lowly
expressed or have very low variance. When we select for
high variance and expressed genes in the bulk expression
data, more genes are filtered out. After the intersection
of these two gene sets of expressed and high variance
genes, we are left with less than 1000 genes. It is worth
noting that such number of gene features is comparable
to Seurat analysis [29], when usually hundreds to a
couple of thousand highly variable genes are selected.
The feature selection steps were tailored to each dataset
because the data sparsity and variance vary greatly from
one another, thus the tailored selection insured that
enough genes with high enough variability were available
to train on. The feature selection steps are described in-
dividually in each of the simulated, GBM, AD, and MM
experiment sections.
For each experiment, the final feature scaling steps

were consistent. The gene expression was converted to
sample-wise z-scores because it allows the genes to be
more comparable between samples and has been
performed in multiple other studies [28, 53–55]. As the
input to our deep learning models, we scaled these z-
scores to a range of [0,1]. This form of z-score scaling
and [0,1] scaling is commonly used in machine learning
and deep learning to help model training [56–58]. We
follow this same convention for our deep learning
models.

Disease association scores
The final DEGAS output is either the output of a sig-
moid or a softmax activation. For these reasons, it can
be useful to convert the [0,1] label output to an associ-
ation score which can be interpreted like a correlation
coefficient. For these reasons, the output probability

matrix from DEGAS can be converted to a [− 1,1] value
using the toCorrCoeff function in the DEGAS package.
This function transforms the [0,1] output value matrix
(P) with k labels to [-1,1] using Eq. 12.

Disease association ¼ 2
P−

1
k

2−
2
k

þ 1
2

0
B@

1
CA−1 ð12Þ

Validating DEGAS using simulated single-cell data
First, we generated 5000 single cells using Splatter [59]
in four cell types where the cell type 4 had two subtypes
(cell type 4 disease and cell type 4 normal). Each of these
five groups described above contains 1000 cells. We split
randomly these cells into 2 parts with 2000 cells used
for patient bulk tissue data generation and 3000 cells to
use directly as single-cell data. The 2000 single cells used
to generate 600 patients across three different experi-
ments (designated as simulation 1, 2, and 3) where in
simulation 1 the cell type 1 is associated with disease, in
simulation 2 only the cell type 4 disease is associated
with disease, and in simulation 3 the entire cell type 4 is
associated with disease. Each patient bulk tissue data
was generated by randomly combining 400 single cells
using the proportions in Table 3.
We then performed 10-fold cross-validation by train-

ing the DEGAS ClassClass models using cell type and
disease attribute. A total of 1000 gene features were used
during training. We evaluated the model capacity for
mapping patient labels on patients and cell type labels
on single cells using PR-AUC and ROC-AUC. We then
recapitulated the known cell type associations in each
simulation by overlaying disease association onto the
simulated cells. As a comparison, we also deconvoluted
the patients using the 4 cell types using least squares.
Deconvolution should be able to correctly identify the
cells of interest in simulation 1 and simulation 3. In con-
trast, cell type prioritization using Augur [19] should be
able to correctly identify the disease-associated cell types
in simulation 2. In the simulation 1 Augur experiment,
cell type 1, cell type 2, cell type 3, and cell type 4 normal
were randomly assigned to the disease or normal groups.

Table 3 Patient cellular makeup for simulation experiments. The abbreviations are Simulation (sim), Normal (N), and Disease (D).
The high-risk cell types are in bold

Cell type 1 Cell type 2 Cell type 3 Cell type 4 N Cell type 4D

Patients sim1D 50.0% 16.6% 16.6% 16.6% 00.0%

Patients sim1N 25.0% 25.0% 25.0% 25.0% 00.0%

Patients sim2D 25.0% 25.0% 25.0% 00.0% 25.0%

Patients sim2N 25.0% 25.0% 25.0% 25.0% 00.0%

Patients sim3D 16.6% 16.6% 16.6% 30.0% 20.0%

Patients sim3N 25.0% 25.0% 25.0% 25.0% 00.0%
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In the simulation 2 Augur experiment, cell type 1, cell
type 2, and cell type 3 were randomly assigned to disease
or normal groups. The cell type 4 disease cells were all
assigned to the disease group and the cell type 4 normal
cells were all assigned to the normal group. In the simu-
lation 3 Augur experiment, cell type 1, cell type 2, and
cell type 3 were randomly assigned to disease and nor-
mal groups. The cell type 4 cells assigned to the disease
group consisted of 60% cell type 4 normal and 40% cell
type 4 disease and cell type 4 cells assigned to the nor-
mal group consisted of 100% cell type 4 normal. These
cell type proportions match those in the simulation 3
patients used by DEGAS. The Augur output for each cell
type is an ROC-AUC score that reflects how much a cell
type changes transcriptionally between disease and nor-
mal samples. To make the comparison fair between our
two methods, we use the output of our algorithm scaled
from [0,1] where 0.5 implies no association, 0 implies a
negative association, and 1 implies a positive association.
ROC-AUC is on the same scale. In this way, we compare
the strength of signal between Augur and our method to
identify that cell type 4 has cell-intrinsic changes related
to disease.

Validating DEGAS using GBM data
The scRNA-seq data from the Patel et al. study [33]
were downloaded from NCBI Gene Expression Omnibus
[60] (GSE57872). The single-cell expression values were
previously normalized to TPM containing 5948 genes
with mean(log2(TMP)) > 4.5 retained in the data table.
The top 20% variance genes were retained for training.
These values were converted to z-scores then standard-
ized to a range of [0,1] for each sample. The TCGA
GBM [34] microarray expression data was downloaded
from Firebrowse (http://firebrowse.org/). Microarray data
were used since it contains more patient samples for
training with GBM subtype information than RNA-seq
data. Likewise, the top 20% variance genes were retained
for training and these expression values were converted
to z-scores then standardized to a range of [0,1] for each
sample. The GBM subtype labels for the TCGA patients
were downloaded from Verhaak et al. [61]. The intersec-
tion of genes between single cells and patients (199
genes) were used for the final model training. Since sub-
type labels were only available for the GBM patient sam-
ples, we trained a BlankClass DEGAS model (Eq. 10).
This model minimizes the MMD loss between single
cells and patients while minimizing the classification loss
only in GBM patients. We split the dataset into 10
groups and performed 10-fold cross-validation by leav-
ing out a single patient group during training. After
cross-validation, we converted the [0,1] DEGAS output
to an association [− 1,1] using the DEGAS toCorrCoeff
function. These association scores were overlaid on the

GBM single cells and now referred to as GBM subtype
association scores because GBM subtype from patients
is overlaid on single cells. We plotted these association
scores stratified by GBM subtype for each tumor indi-
vidually. We then compared the proportions of these cell
types to the previously defined GBM types from the ori-
ginal publication were marked with red boxes. We also
visualized the GBM subtypes association in single cells
by calculating a low-dimensional representation using
tSNE [62] and overlaying the kNN smoothed GBM sub-
type associations. To make the scatter plots of cells and
patients more informative, kNN smoothing was used by
averaging each point’s GBM subtype association value
with its five nearest neighbors in tSNE. The model per-
formance was shown with the PR-AUC and ROC-AUC
for each of the GBM subtype labels in the TCGA pa-
tients from cross-validation.
In a second analysis on the GBM scRNA-seq and bulk

expression data, using the same input features, we over-
laid risk derived from the overall survival in the TCGA
GBM cohort onto the individual cells from the Patel
et al. study [33]. GBM has an extremely low 5-year sur-
vival rate resulting only three patients being censored.
We introduced more censoring in the data by generating
a uniformly distributed random vector of censoring
times in the range 1 to 1063 days, where 1063 days is the
90th percentile of survival times. If the censor time was
lower than the survival time, the patient was censored at
that time instead of having an event at their true survival
time. We then trained 10 BlankCox DEGAS models
based on the patient survival input during 10-fold cross-
validation. The output from these DEGAS models were
kNN smoothed based on the tSNE coordinates using the
DEGAS knnSmooth function and converted to death as-
sociations using the DEGAS toCorrCoeff function. To
highlight the differences in death association of cells,
these associations were centered to 0 using the DEGAS
centerFunc function. We evaluated the accuracy of the
labels in patients using a rank-sum test based on the cox
output in the GBM patients.

Validating DEGAS and exploration using AD data
For AD datasets, we were primarily interested in identi-
fying known relationships between cell types and AD
diagnosis. For these reasons, we downloaded all of the
adult Human scRNA-seq data from the Allen Institute
for Brain Science (AIBS) from https://portal.brain-map.
org/atlases-and-data/rnaseq/human-m1-10x. Only in-
hibitory neurons, excitatory neurons, oligodendrocytes,
astrocytes, microglia, and oligodendrocyte progenitor
cells (OPCs) were retained in the analysis due to the ex-
tremely low sample sizes for the remaining cell types.
The inhibitory and excitatory neuron groups were
merged into a single neuron group. These data were

Johnson et al. Genome Medicine           (2022) 14:11 Page 9 of 23

http://firebrowse.org/
https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x
https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x


then log2 transformed, converted to sample-wise z-
scores, and then standardized to [0,1] by each sample. In
the primary analysis, only the top 50 upregulated DEGs
for each cell type (calculated by Seurat) were retained in
the single-cell data. In a distinct secondary analysis, fea-
tures were selected with > 25% non-zero samples and
top 20% variance genes. The labels for the single cells
consisted of the major cell types listed above. The AD
brain data was downloaded from Mount Sinai/JJ Peters
VA Medical Center Brain Bank (https://www.synapse.
org/#!Synapse:syn3157743). Each of the RNA-seq sam-
ples were either from an AD patient’s brain sample or a
normal control brain sample. The binary disease attri-
bute of AD case or normal were used as the label for the
model. Like in the previous experiment, the RNA-seq
values were log2 transformed, converted to sample-wise
z-scores, and standardized to [0,1] for each sample. The
top 50% variance genes were retained for training to
keep the feature set larger. The intersection of the pa-
tient genes and single-cell genes (Primary analysis: 169
genes, Secondary analysis: 456 genes) were using to train
the final models. Using the cell type classification for
each AIBS single-cell and the AD/normal classification
for each MSBB patient we were able to train a DEGAS
ClassClass model (Eq. 8). The performance was evalu-
ated using 10-fold cross-validation by leaving out each
group during training once. As in the GBM experiments,
we converted the DEGAS output to an association using
the DEGAS toCorrCoeff function for each single cell so
that each single cell now had an AD association. Correl-
ation analysis was performed on AD association scores
for different cells with each cell type by taking the me-
dian score and calculating the p value by treating it as a
correlation. In addition, single cells were plotted overlaid
with kNN smoothed AD association. Furthermore, to
evaluate DEGAS performance, PR-AUC and ROC-AUC
were computed for the single cells during cross-
validation for each cell type in the single-cell data. Simi-
larly, AD diagnosis PR-AUC and ROC-AUC were com-
puted from the MSBB patient RNA-seq. For both the
primary and secondary AIBS analysis, DEGs were identi-
fied for the high AD association astrocytes and microglia
based on the median AD association then compared to
their respective disease-associated astrocyte (DAA) [63]
(Additional file 2), human Alzheimer’s microglia
(HAM) gene markers [64] (Additional file 3), or
disease-associated microglia (DAM) gene markers [65]
(Additional file 4). A detailed description of these
gene lists can be found in the Additional file 1:
Supplementary methods section.
To further highlight the cellular associations to AD,

we also performed experiments using a scRNA-seq data-
set from Grubman et al. [36]. Since this dataset was
sparser, genes were used with > 25% non-zero samples

then the top 50% variance genes were selected from
these. For the MSBB data, the same initial feature selec-
tion was used (top 50% variance). The same
normalization and standardization procedure as the
AIBS scRNA-seq and MSBB were used again. The inter-
secting genes between Grubman et al. scRNA-seq
constituted the final feature set (61 genes). Tenfold
cross-validation was performed using a ClassClass model
and the AD associations were overlaid onto the
Grubman et al. scRNA-seq in the same fashion as the
previous experiment. In addition, a targeted analysis on
only the microglia cells was performed. A single Blank-
Class model was trained using the same 61 features on
the entire Grubman et al. microglia scRNA-seq and
MSBB RNA-seq. For both analyses, the AD associations
were overlaid onto the cells, AD associations were com-
pared between cells from AD and normal patient sam-
ples, and DEGs were identified for the high AD
association astrocytes and microglia based on the me-
dian AD association then compared to their respective
DAA [63] (Additional file 2), HAM gene markers [64]
(Additional file 3), or DAM gene markers [65] (Add-
itional file 4). For the targeted analysis on only microglia,
correlation tests were performed between AD associa-
tions and HAM gene markers [64] (Additional file 3).
Also, DEGs were identified for the high AD association
microglia based on the median AD association then
compared to the HAM gene markers [64] (Additional
file 3) and DAM gene markers [65] (Additional file 4).
Lastly, DEGAS analysis was performed on the

Mathys et al. scRNA-seq dataset [15]. In this analysis,
the same gene set as the AIBS Primary analysis, i.e.,
all overlapping genes (157 genes) were used as input
features. In total, 1000 cells or all cells if total num-
ber was less than 1000 were sampled from each cell
type since some cell types were over-represented. The
same normalization and standardization procedure
was used as the previous analyses. Tenfold cross-
validation was performed using these cells from
Mathys et al. and the MSBB patient RNA-seq data
using cell type and patient AD status as outcomes re-
spectively. These outcomes represent a ClassClass DE-
GAS model. From the cross-validation results, the
ROC-AUCs and PR-AUCs for each cell type label and
the patient AD status were calculated. AD associa-
tions were calculated in the same fashion as all previ-
ous analyses. The Disease associations were then
compared with AD status of the scRNA-seq donors
and across the cell types. DEGs were identified for
the high AD association astrocytes and microglia
based on the median AD association then compared
to their respective DAA [63] (Additional file 2), HAM
gene markers [64] (Additional file 3), or DAM gene
markers [65] (Additional file 4).
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Preprocessing of MM scRNA-seq
The scRNA-seq data [46] were first combined into a
dataset using Seurat-CCA [29]. This initial dataset inte-
gration allowed conserved subtypes of cells to be identi-
fied across datasets. All four patient dataset counts were
loaded into a Seurat object. Seurat normalized, scaled,
removed poor quality cells, and identified high variance
genes. Using the union of high variance genes, multi-
canonical correlation analysis was run across all four
datasets, the subspaces were aligned across patients, the
aligned single cells were plotted with tSNE [62], and
clusters of cells were identified. The raw expression
values for the high variance genes identified by Seurat
were log2 transformed, converted to z-scores, and then
scaled to [0,1].
Furthermore, each IUSM scRNA-seq patient was indi-

vidually clustered using Seurat to check the replicability
of the clusters and were plotted with UMAP [66]. We
used Rand, Fowlkes and Mallows’s index (FM), and
Jaccard index (JI) to measure the cluster consistency
between single patient clustering experiments and the
merged all-patient clustering results. The four single pa-
tient clustering results, one for each IUSM scRNA-seq
patient, were used as input into BERMUDA [26] to
visualize and evaluate the original Seurat clustering.

Preprocessing of MMRF patient data
MMRF patients with bulk tissue RNA-seq and clinical
data [47] were used in MM analysis. We used PFS as the
disease attribute of interest. TPM values for the MMRF
patient gene expression data and the PFS data were used
as the input for DEGAS, these values were log2 trans-
formed, converted to z-scores, and scaled to [0,1]. The
union of the features (502 genes) identified by Seurat in
the single-cell data and the features selected in the
MMRF patient data were used as the final feature set.
The features retained in the MMRF data were identified
by fitting an elastic-net Cox model [67] to the TPM
values based on the PFS.

Evaluation of DEGAS performance on MM datasets
PR-AUC and AUC were calculated for each of the output
labels for the single cells and for patient labels if a classifi-
cation output was used for the patient data. Cox propor-
tional hazard output was used on patients, and a log-rank
test was calculated for each patient so that the hazard ratio
and p value could be evaluated based on patient stratifica-
tion by median proportional hazard. Additionally, the
same models were used to predict risk in the Zhan et al.
[44] (GSE2658) dataset which had information on OS.
The output for each Zhan et al. sample averaged across all
10 DEGAS models and stratified by median risk to show
the robustness of the Cox output across datasets.

Identification of CD138+ cell types associated with MM
prognosis
The single cells from MM patients can be assigned pro-
portional hazards based on the MMRF Cox output of
the model. Each single cell in the validation set was
assigned progression association by feeding those sam-
ples through the Cox output layer. In this way, we can
infer the association with progression risk of specific cell
types as well as the cell type enrichment contained in
each MMRF sample. Since the Cox output is a propor-
tional hazard, we centered the outputs to zero for each
step of cross-validation to produce a PFS association
using the DEGAS centerFunc. We plotted these rela-
tionships and conducted Student’s t tests on the sub-
type vs. PFS association in IUSM single cells, PFS
association vs. MM malignancy from Ledergor et al.
[45], and subtype 2 enrichment vs. MM malignancy
from Ledergor et al. [45].

Analysis of differential gene expression in prognostic cell
types
T-tests were calculated cell subtype 1 vs all cell subtypes
and cell subtype 2 vs. all cell subtypes using the batch-
corrected gene expression values from Seurat [29].
These values were stored in Additional file 5 and
Additional file 6 respectively. For the marker set of
PHF19, HELLS, EZH2, TYMS, ZWINT, and MKI67, we
performed t-tests for each patient individually.

Evaluation of DEGAS robustness to hyper-parameters in
GBM
Using the GBM datasets [33, 34], we evaluated the ro-
bustness of DEGAS model outputs to hyper-parameters
by repeating 10-fold cross-validation 100 times with ran-
domly generated hyper-parameters following a uniform
distribution. The range of hyper-parameters used in
training consisted of training steps 1000–3000, single-
cell batch size 100–300, patient batch size 20–100, hid-
den features 10–100, dropout retention rate 0.1–0.9, cell
loss weight (λ0) held at constant 2, patient loss weight
(λ1) 0.2–5, MMD loss weight (λ2) 0.2–5, and L2-
regularization weight (λ3) 0.2–5.
Using these outputs, we performed two tests. One was

to evaluate the loss in performance based on changing
the hyper-parameters where performance was measured
with ROC-AUC among the TCGA GBM patients labeled
by patient GBM subtype (Mesenchymal, Classical, Pro-
neural, Neural). In this test, we calculated the Spearman
correlation and plotted the scatter plot between the
AUC of each of the four GBM subtype labels and the
hyper-parameters used.
Next, we evaluated whether or not the correct GBM

subtype labels (Mesenchymal, Classical, Proneural,
Neural) could be recapitulated in the GBM scRNA-seq
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tumors that had known GBM subtypes (MGH26: Pro-
neural, MGH28: Mesenchymal, MGH29: Mesenchymal,
MGH30: Classical). To do this for each tumor (MGH26,
MGH28, MGH29, MGH30), the rank of the correct label
was calculated by calculating the mean of each GBM
subtype association across all of the cells in that tumor.
This resulted in each of the 100 random hyper-
parameters having a rank for each GBM subtype for
each of the GBM scRNA-seq tumors (4 highest ranked,
1 lowest ranked). Ideally all GBM scRNA-seq tumors
would have a rank of 4 indicating the correct GBM sub-
type was ranked the highest regardless of hyper-
parameters. Similarly, we also calculated the Spearman
correlation and plotted the scatter plot between correct
label rank and the hyper-parameters used.

Evaluation of domain adaptation for DEGAS disease
association transfer
We evaluate the necessity for domain adaptation to
transfer disease associations to single cells using 30 total
experiments. These experiments evaluated disease asso-
ciations in cells by training with MMD loss vs. those
without MMD loss for a variety of biases added between
the cells and patients. It is important to highlight the
fact that without bias between different datasets, in this
case cells and patients, there is no need for domain
adaptation. Practically in real transcriptomic data, there
will always be bias between datasets. For these reasons,
we added bias for these 30 experiments. These experi-
ments were conducted for every combination of MMD
loss (with and without MMD), simulation (three simula-
tions), and cellular subtype (five total subtypes since cell
type 4 has two subtypes) totaling 30 combinations. The
experiments were conducted as follows. In each experi-
ment, the counts of 300 cells from a given subtype were
aggregated together and multiplied by 1000 constituting
a large systematic bias associated with a single subtype.
This bias vector was added to all of the patients in the
given simulation, both disease and normal. A single
three-layer DenseNet DEGAS model with fivefold boot-
strap aggregation was trained on all the cells and all the
patients then the disease associations were predicted in
the cells. We evaluated error by subtracting the expected
disease association from the predicted disease associa-
tions, e.g., cell type 1 in simulation 1 should be 1. We
then compared the error rates between the DEGAS
models with and without MMD using a t-test.

Evaluation of regularization in DEGAS performance
Regularization is an important method in machine learn-
ing to prevent model overfitting. Here we utilized three
such techniques to prevent overfitting, namely, L2-
regularization, dropout, and bootstrap aggregation. Since
all of these techniques may work better or worse in

different scenarios, we perform a simple experiment
where all of these regularization techniques are removed
and compared with the regularized results. We per-
formed experiments using each of the simulated data-
sets. To evaluate the robustness of our models, we
performed 10-fold cross-validation in each simulation.
The simulated cells were split into 10 groups and the
simulated patients were split into 10 groups. For each
fold of cross-validation, our default DEGAS three-
layer DenseNet model with L2-regularization, dropout,
and bootstrap aggregated 5 times was trained then a
three-layer DenseNet DEGAS model was trained on
the same data without L2-regularization, dropout, and
bootstrap aggregation. Both models were then used to
predict the patient disease attributes in the holdout
group of patients, the cell types in the holdout group
of cells, and the patient disease attributes in the cells.
We compare the performances using ROC-AUC and
PR-AUC for patient disease status in patients and cell
type in cells. Furthermore, we evaluate the label
transfer of patient labels to cells by calculating the
error based on the expected cell type association for
each cell. We compare between the regularized and
unregularized error in cells with a t-test.

Results
DEGAS clinical impression framework
In this study, we applied DEGAS [20] to integrate and
analyze scRNA-seq, bulk gene expression, and clinical
data (Fig. 1) from simulated data as well as three dif-
ferent diseases: GBM, AD, and MM. The simulated,
GBM, and AD datasets primarily served as validation
to demonstrate the feasibility and universality of the
DEGAS transfer learning approach since the ground
truth of the simulated data was known, the correct
GBM subtypes were known, and neuron loss with
microglia gain in AD brains were also known. We
then further expand our study to MM data, which
serves as the discovery dataset, since the myeloma cell
subtypes and high-risk factors related to MM are not
as well understood at the single-cell level. In the MM
study, we applied DEGAS on patient data from the
MMRF CoMMpass study and scRNA-seq data that
we generated from myeloma patients. Our aim was to
identify the cell subtypes using the impressions of
progression risk on the single cells. We then applied
the results to two separate MM validation datasets,
one of which contained plasma cells from normal
bone marrow (NHIP), two MM precursor condi-
tions—monoclonal gammopathy of undetermined sig-
nificance (MGUS) and smoldering multiple myeloma
(SMM), and MM. We tested if DEGAS assignment of
progression risk to cell subtypes were higher for more
malignant conditions. An additional external
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validation dataset of patient-level expression data with
OS was used to evaluate whether the patient stratifi-
cation learned by DEGAS was robust enough to be
generalized to an external survival dataset.

DEGAS correctly identifies high-risk cell types and
subtypes in simulated data
To evaluate DEGAS in a controlled context, 5000 single
cells were generated with Splatter [59] (Fig. 2A) where
2000 of the cells were held-out to generate simulated pa-
tients. Using this group of held-out cells, 600 simulated
patients were generated by aggregating sets of 400 simu-
lated cells (Fig. 2B–D). We conducted three simulation
experiments, denoted Simulation 1, Simulation 2, and
Simulation 3, where the single cells were aggregated in

known proportions for each patient so that we could
generate a “disease” patient group with different cellular
composition than the “normal” patient group
(“Methods”). To highlight the utility of DEGAS, the ex-
periments were as follows: Simulation 1: cell type 1 is
enriched in disease patients (Fig. 2B); Simulation 2: one
subtype of cell type 4, i.e., cell type 4 disease, is enriched
in disease patients (Fig. 2C); and Simulation 3: both
subtypes of cell type 4 are enriched in disease pa-
tients (Fig. 2D).
Please note that the optimal number of clusters for the

simulated single cells would be determined to be four
based on a standard scRNA-seq workflow (i.e., tSNE
followed by K-Medoids where optimal cluster number is
selected based on average silhouette width) (Fig. 2E).

Fig. 2 Simulation study and baseline comparisons of DEGAS framework. A 5000 simulated cells from Splatter with 4 cell types where one of the
cell types has two subtypes. Cell type 4 is composed of two subtypes that are specific to either disease or normal patients. In total, 2000 of these
cells were used to generate the 600 simulated patients in B–D and 3000 were used as the cell input to our DEGAS models. E Optimal cluster
number (4 clusters) based on average silhouette width for the 3000 cells not used to generate patients. F The same 3000 cells used as the
cellular input colored by their cluster. G DEGAS comparison to Augur in simulation 1. H DEGAS comparison with Augur in simulation 2. I DEGAS
comparison with Augur in simulation 3. J–L DEGAS-calculated disease association from each simulation overlaid onto 3000 cells. The violin plot in
the bottom left corner is deconvolution cell type proportion for cell type 1 in simulation 1 patients (J), cell type 4 proportion in simulation 2
patients (K), and cell type 4 proportion in simulation 3 patients (L)
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This would cluster the cells into the four cell types while
ignoring the two subtypes in the cell type 4 (Fig. 2F). As
a result, deconvolution algorithms will not be able to de-
tect the subtype level risk associations. Fortunately, cell
type prioritization algorithms like Augur can detect these
changes within cell types due to disease. However, for
situations that do not have a new cell type or missing
cell type in the disease (simulation 1), Augur cannot de-
tect the association between cell type 1 and disease since
there is no disease-associated cell type intrinsic change
(Fig. 2G). Augur can detect the disease-associated cell
type 4 in simulation 2 (Fig. 2H). In simulation 3 where
there is a mix of disease and normal subtypes for the cell
type 4 in the disease group, Augur again has difficulty in
identifying the cell type 4 disease association (Fig. 2I). In
contrast to Augur, deconvolution can easily identify the
correct cell type for Simulation 1 (Fig. 2J) and Simula-
tion 3 (Fig. 2L) but not for simulation 2 (Fig. 2K). In
comparison, DEGAS not only identified the correct cell
type and subtypes in each experiment, it also correctly
detected all of the simulated disease associations (Fig.
2G–L). Additionally, DEGAS had high precision-recall
area under the curve (PR-AUC) predicting disease status
of simulated patients (0.96–0.98) (Additional file 1:
Table S1) and almost perfectly predicted the cell type of
simulated cells (~ 1.0) during cross-validation (Add-
itional file 1: Table S2). Since DEGAS directly assigns
disease risk to cells, many of the problems with cell type
level analyses can be avoided and the correct groups of
cells can be identified by overlaying impressions of dis-
ease risk.

DEGAS correctly mapped single cells to corresponding
GBM subtypes
We first demonstrate DEGAS in a straightforward case
to show the performance of our framework using real
data from GBM. We use single-cell data from Patel et al.
[33], in which researchers assigned four major GBM
tumor subtypes (Proneural, Mesenchymal, Classical, and
Neural) to the scRNA-seq data obtained from five GBM
tumors. Of the five tumor samples, four had been la-
beled in the original publication with a single subtype
based on the major proportion of cells assigned to each
GBM subtype. For GBM bulk tumor tissue expression
data, we obtained microarray data for 111 GBM patients
from The Cancer Genome Atlas (TCGA), for which the
same labels of GBM subtypes were also provided. The
OS was also available in a subset of 109 patients. As the
simplest form of validation, we used these two datasets
as input for the DEGAS model to test if it could re-
identify the same GBM subtypes for both single cells
and the TCGA GBM cohort simultaneously. Then we
overlaid OS-derived death associations onto the cells to
visualize their association with OS. The resulting DEGAS

models also proved to be accurate with high PR-AUCs
(0.79–0.97) when predicting each of the GBM subtypes
in the TCGA patients during 10-fold cross-validation
(Additional file 1: Table S3). The OS BlankCox DEGAS
models were able to stratify the patients into high- and
low-risk groups based on median patient risk (log-rank
p value < 0.05). DEGAS correctly re-identified the same
labels for all four tumors by overlaying GBM subtypes
associations on each single cell, as indicated by the
groups of cell subtypes with the highest association score
determined by the median value (indicated with a red
box) (Fig. 3A–D). For the fifth tumor sample, MGH31,
it was labeled as a combination of multiple GBM sub-
types in the original study, so we did not use it in our
evaluation although DEGAS identified mesenchymal as
its most associated GBM subtype (Fig. 3E). Additionally,
these relationships can be visualized by plotting the sin-
gle cells and overlaying the GBM subtype association or
OS-derived death association. It is clear that MGH28
and MGH29 have a high association with the mesenchy-
mal GBM subtype (Additional file 1: Fig. S1A) and con-
tain populations of cells with high death associations
(Fig. 3F).

DEGAS identifies increased microglia, reduced neuron
populations, DAAs, and DAMs
Aside from GBM, AD also has well-documented charac-
teristics that can be used as a test bed for DEGAS. Spe-
cifically, there is a well-documented reduction in
neurons [40–42], increase in microglia [37–39, 43], and
more recently, AD subtypes of astrocytes [63] and
microglia [64, 65]. Brain scRNA-seq data was obtained
from the AIBS and bulk AD RNA-seq were retrieved
from MSBB [35]. During 10-fold cross-validation, DE-
GAS models for both primary and secondary AIBS ana-
lyses achieved high AD diagnosis status PR-AUC (0.82
and 0.76) in MSBB patients (Additional file 1: Table S4)
and high cell type prediction PR-AUCs (> 0.99) for AIBS
single cells (Additional file 1: Table S5).
From the AIBS primary analysis DEGAS results, we

confirmed that at the single-cell level, the AD associa-
tions were negative in neurons as previously described
[68], which is shown by the dark shade of neurons com-
pared to other cell types (Fig. 3G, Table 4). In contrast,
we observed positive AD associations in microglia cells
(Fig. 3G, Table 4). A strength of the DEGAS framework
is that it can detect intra-cell type differences in disease
risk. Within the astrocyte cell type, we identified an
astrocyte subtype that had a positive association with
AD (Fig. 3G) that corresponded to the Astro L1 FGFR3
FOS subtype from the AIBS brain cell atlas (i.e., FOS is a
DAA marker) [69] (Fig. 3H), had upregulated DAA
marker GFAP (Fig. 3I) [63], and was enriched for DAA
markers (OR = 30.93, Fisher’s exact p value < 2.2 ×
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10−16, Additional file 1: Table S6). Furthermore, the high
AD association microglia were enriched for DAM
markers (OR = 17.07, Fisher’s exact p value = 2.11 ×
10−10, Additional file 1: Table S7). In the secondary AIBS
analysis using high variance genes, we again identified
the strong negative AD association for neurons
(Additional file 1: Fig. S2A), positive AD association in

microglia (Additional file 1: Fig. S2A), high AD associ-
ation astrocytes enriched for DAA markers (OR = 5.65,
Fisher’s exact p value < 1.66 × 10−8, Additional file 1:
Fig. S2B,C, Table S8), and high AD association microglia
enriched for DAM markers (OR = 14.34, Fisher’s exact p
value < 4.01 × 10−11, Additional file 1: Table S9). When
we performed DEGAS analysis on a separate dataset

Fig. 3 DEGAS validation in GBM and AD. DEGAS output of the distribution of GBM subtypes in single cells from five GBM tumors. Four of the five
tumors had known GBM subtype information from Patel et al. (MGH26: Proneural, MGH28: Mesenchymal, MGH29: Mesenchymal, and MGH30: Classical,
indicated by red boxes) which were recapitulated by DEGAS. The subtype information for the tumors, MGH26, MGH28, MGH29, and MGH30 were
derived from Patel et al. where MGH31 did not have a clearly defined GBM subtype. The association of cells assigned to each subtype were plotted for
each tumor; A MGH26, B MGH28, C MGH29, D MGH30, and E MGH31. Median values are marked by a diamond in each of the violin plots. F The
death association centered around 0 is overlaid on all of the single cells from the five tumors (indicated by color). G DEGAS output of AD association
for each single cell. The AD association score is indicated by the color and is overlaid onto AIBS single cells. This plot shows the negative AD
association in neuron cells and positive AD association in Microglia. H–I There also appeared to be a subpopulation of astrocytes with positive AD
association. The astrocytes were plotted separately and colored by AIBS Astrocyte subtypes (H) and GFAP expression, a disease-associated astrocyte
marker (I). J Comparison of DEGAS-derived AD associations for single cells from AD and Normal control samples from Grubman et al. K–M Targeted
analysis of microglia from Grubman et al. including the AD associations overlaid onto microglia (K), AD association comparing AD status of patient
sample from which the cells were sampled (L), and PCC between AD association with HAM marker genes comparing up- and downregulated HAM
marker genes (M). Significance values: n.s. (not significant), • (0.1), * (0.05), ** (0.01), *** (0.001)

Table 4 Comparison of AD association scores in single cells between cell types as visualized in Fig. 3G

Cell type Cell type mean association Number of cells p value

Neuron − 0.35 1329 < 2.2 × 10−16

Oligodendrocyte 0.05 1795 3.42 × 10−2

Astrocyte 0.03 809 3.94 × 10−1

OPC − 0.12 738 1.09 × 10−3

Microglia 0.22 741 1.42 × 10−9

The DEGAS models were trained using neuron, oligodendrocyte, astrocyte, OPC, and microglia cell types. The single cells were split into groups based on their cell
type and the mean AD associations of each cell type were evaluated as a correlation. The neuron and microglia groups are bolded to highlight their much higher
mean AD association. P values are calculated by treating the association score as a Pearson correlation coefficient
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from Grubman et al. [36] with single cells from both AD
and normal brains, we found that the major cell types
from AD brains were significantly more associated with
AD than their counterparts in normal brains as judged
by median value (Fig. 3J).
In the Grubman et al. scRNA-seq data, the astrocytes

in AD brains were highly positively associated with AD
(AD association = 0.22, Pearson correlation p value =
7.89 × 10−7) whereas the astrocytes in normal brains
were negatively associated with AD (AD association = −
0.06, Pearson correlation p value = 1.06 × 10−2, Fig. 3J).
Astrocytes from AD brains also expressed GFAP at
greater levels than astrocytes from normal brains (t-test
p value < 2.20 × 10−16) and high AD association astro-
cytes were significantly enriched for DAA markers (OR
= 21.90, Fishers exact p value = 2.21 × 10−12, Additional
file 1: Table S10). Furthermore, the high AD association
microglia were moderately enriched for DAM markers
(OR = 4.15, Fishers exact p value = 4.11 × 10−2,
Additional file 1: Table S11). This provides evidence for
DAA and DAM cells in the Grubman et al. dataset.
DAM and HAM marker enriched high AD association

cells were independently identified in the targeted ana-
lysis of the Grubman et al. microglia cells (Fig. 3K). AD
associations were higher in cells derived from AD pa-
tient samples than normal patient samples (Fig. 3L, t-test
p value = 6.66 × 10−12), and HAM upregulated markers
were more likely to be significantly positively correlated
to AD association than HAM downregulated markers
(Fig. 3M, t-test p value = 2.63 × 10−3). The HAM marker
APOE [64, 65] was positively correlated with AD associ-
ation (Additional file 1: Table S12, PCC = 0.18, p value
= 1.15 × 10−4). High AD association microglia were sig-
nificantly enriched for HAM markers (OR = 21.47, Fish-
ers exact p value = 6.33 × 10−4, Additional file 1: Table
S13) and DAM markers (OR = 11.52, Fishers exact p
value = 1.50 × 10−11, Additional file 1: Table S14). It is
important to note that there was no overlap between the
input feature set used to train the DEGAS model and
HAM marker genes that were identified, which shows
DEGAS is a useful tool to identify disease-associated
cells within a single-cell type even without prior know-
ledge of marker genes.
After applying DEGAS to the Mathys et al. scRNA-seq

dataset, the DEGAS models achieved high AUCs for pa-
tient AD status (0.77), patient AD status PR-AUC (0.81),
cell types (> 0.98), and cell type PR-AUCs (0.82-0.99)
during cross-validation (Additional file 1: Table S15-16).
The positive AD association of microglia and negative
AD association of neurons were recapitulated (Add-
itional file 1: Fig. S3A, Table S17). Within the astrocyte
cluster, there existed a subset of astrocytes with higher
AD association (Additional file 1: Fig. S3B). High AD as-
sociation astrocytes were significantly enriched for DAA

markers (OR = 14.75, Fishers exact p value = 3.16 ×
10−15, Additional file 1: Table S18). A closer comparison
of the scRNA-seq revealed that the top 10% AD associ-
ation astrocytes had 2.5 times higher GFAP expression
than the other astrocytes (t-test p value = 6.36 × 10−8,
Additional file 1: Fig. S3C). In fact, like the Grubman
et al. analysis, the AD association scores were higher in
cells coming from AD patients than normal patients for
every cell type in the Mathys et al. analysis (Additional
file 1: Table S17). Notably, we see increased AD associ-
ation in AD-derived astrocytes and microglia likely
representing DAAs and DAMs respectively (Additional
file 1: Table S17). Furthermore, high AD association
microglia were highly enriched for DAM markers (OR =
19.35, Fishers exact p value < 2.2 × 10−16, Additional file
1: Table S19) and high AD association in astrocytes cor-
related well with neuritic plaque count, a marker for dis-
ease severity in AD patients (PCC = 0.22, p value = 6.36
× 10−12, Additional file 1: Table S17). Again, the Mathys
et al. analysis provides another example to demonstrate
that DEGAS recapitulates the findings from the AIBS
and Grubman et al. analyses and shows that DEGAS
models can capture cell type level as well as intra-cell
type differences in disease association.

Identification of plasma cell subtypes in CD138+ scRNA-
seq of MM
In the MM study, unlike the previous two datasets, there
were no predefined cell type labels, but DEGAS was still
capable of analyzing such data and give clinical perspec-
tive to the clusters of cells in the MM scRNA-seq data.
In order to cluster cells into groups, we first used Seurat
[29], a commonly used scRNA-seq data analysis tool, to
merge and cluster all the CD138+ bone marrow cells
from four patients (two SMM and two MM) whose sam-
ples were collected at the IUSM. Using Seurat, five
major clusters of cells were identified (Fig. 4A). Cluster
1 consisted of the majority of the cells in each sample
and was most likely the main clone in each of the pa-
tients. Cluster 2 was present in many of the patients and
is described in detail after the DEGAS analysis. Cluster 3
and 5 were only present in patient 2 representing pos-
sible subclones in patient 2. Cluster 4 was shared be-
tween multiple patients. These five clusters were used as
the subtype labels in the DEGAS framework. We verified
these cell clusters by clustering cells from each patient
individually with Seurat and another scRNA-seq
normalization tool BERMUDA (Batch Effect ReMoval
Using Deep Autoencoders) [26] for all four patients.
We found that the individual clustering results closely
mirrored the Seurat-CCA clusters (Additional file 1:
Fig. S4A-D, Table S20) and that the subtype 2 was
consistent across all MM patients using BERMUDA
(Additional file 1: Fig. S4E). For bulk tissue data from
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MMRF, the clinical outcomes of PFS for 647 patients
were used as the patient-level input to DEGAS and
overlaid onto the CD138+ single cells from the four
IUSM patients (Fig. 4B).

DEGAS patient stratification and cell type classification on
MM
A DEGAS model was trained on IUSM patient scRNA-
seq data with subtype labels defined above and MMRF
patients with bulk tissue data and PFS information. The
performance metrics were calculated via 10-fold cross-
validation. It is worth noting that for PR-AUC, random
no skill classifiers will achieve a performance equal to
the percentage of the class of interest and in the case of
uncommon classes like subtype 4, the random classifier
performance will be close to zero (0.02). When predict-
ing cellular subtype label in single cells, DEGAS was able
to achieve a PR-AUC between 0.44 and 0.98 for all of
the five CD138+ cellular subtypes identified in the above
scRNA-seq data while the PR-AUC for subtype 2
reached 0.91 (Additional file 1: Table S21). The receiver
operating curve AUCs (ROC-AUCs) were between 0.90

and 0.98 for these five subtypes (Additional file 1: Table
S21). Due to class imbalance, some of the subtypes did
not perform as well as others based on PR-AUC but all
of the PR-AUCs were substantially greater than a purely
random model. Aside from correctly classifying the sin-
gle cells, DEGAS was able to stratify the MMRF patients
into high- and low-risk groups based on median pro-
gression risk (log-rank p value = 4.72 × 10−10, Fig. 4C).
We then applied the trained model on an external patient
transcriptomic dataset from Zhan et al. [44] for validation.
We demonstrated that the Cox proportional hazards por-
tion for patient OS time of the DEGAS model was robust
across datasets, and the impressions extracted from the
DEGAS framework were capable of stratifying patients
into low- and high-risk groups in the validation dataset
(log-rank p value = 1.12 × 10−3, Fig. 4D).

DEGAS identifies CD138+ cellular subtypes with high
progression association
The MM scRNA-seq data provided an example of an ex-
ploratory analysis with DEGAS which can be used to
generate hypotheses for future studies. The DEGAS

Fig. 4 Association between subtypes and progression risk in MM. IUSM CD138+ scRNA-seq subtype clusters generated from Seurat
colored by A cluster, i.e., subtype and B progression association. C Kaplan-Meier curves of PFS from cross-validation for the MMRF
patients stratified by median proportional hazard. D Kaplan-Meier curves of OS from Zhan et al. external dataset stratified by median
proportional hazard. E Progression association for IUSM CD138+ subtypes. F Progression association for NHIP, MGUS, SMM, and MM in
the external dataset Ledergor et al. G Subtype 2 enrichment for NHIP, MGUS, SMM, and MM in the external dataset Ledergor et al. NHIP:
normal hip bone marrow, MGUS: monoclonal gammopathy of undetermined significance, SMM: smoldering multiple myeloma, MM:
multiple myeloma. Significance values: • (0.1), * (0.05), ** (0.01), *** (0.001). All plots were generated using the default parameters for the
DEGAS package described in the section of Methods: “Transfer learning using DEGAS”
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model for the MM study transfers clinical impressions
to single cells (i.e., single cells were directly assigned a pro-
gression association score), as well as transfers cellular/
molecular impressions to patients (i.e., patients are
assigned subtype enrichment score). We found that the
subtype 2 cells were the most associated with prognosis
(Fig. 4B) based on the DEGAS results. Specifically, the
subtype 2 cells were associated with a shorter time to pro-
gression (Fig. 4E, t-test p value < 2.2 × 10−16). On an exter-
nal validation scRNA-seq dataset from Ledergor et al.
[45], the progression association increased from NHIP (no
disease) to SMM (Fig. 4F, t-test p value = 1.50 × 10−2) and
MM (Fig. 4F, t-test p value = 1.70 × 10−2), which is con-
sistent with the order of precursor conditions for MM
(NHIP → MGUS → SMM → MM). In addition, the en-
richment of the subtype 2 cells increased from NHIP to
near-MM stage SMM (Fig. 4G, t-test p value = 3.10 ×
10−2) and MM (Fig. 4G, t-test p value = 3.40 × 10−2).

MM prognostic subtypes have distinct gene signatures
Differential gene expression analysis was performed be-
tween subtype 2 and all other subtypes (Additional file
6), and we found that subtype 2 had significantly upreg-
ulated PHF19 expression in all four of the patients (Fig.
4H). PHF19 is a known marker for malignant disease in
MM [70]. Besides PHF19, its associated markers such as
HELLS, EZH2, TYMS, ZWINT, and MKI67 were also
significantly upregulated in subtype 2. These results sug-
gested the possible existence of a more malignant
CD138+/PHF19high subpopulation of plasma cells repre-
sented by the subtype 2 cluster. It is important to notice
that the gene feature set that was used as input into DE-
GAS only contained the HELLS gene, which further
highlights the ability of DEGAS to predict without prior
knowledge of marker gene sets high-risk cellular sub-
types that can be further studied.

DEGAS is robust to hyper-parameter choice
To assess the robustness of DEGAS, we also analyzed
how the hyper-parameter choices influence its results
using a set of 100 randomly generated hyper-parameters
with 10-fold cross-validation on each set of those 100
sets of hyper-parameters on the GBM datasets. The
hyper-parameters that we evaluated include the number
of training steps, batch size for single cells, batch size for
patients, number of hidden layer nodes, dropout reten-
tion rate (the percentage of nodes randomly retained at
the hidden layer), patient loss weight, MMD loss weight,
and L2-regularization weight. The detailed information
about the range of hyper-parameters that were randomly
sampled can be found in Methods: “Evaluation of DE-
GAS robustness to hyper-parameters in GBM” while the
default parameters used for all previous experiments can
be found in Methods: “Transfer learning using DEGAS”.

We discovered that among the eight hyper-parameters,
the majority of them did not significantly affect the
ROC-AUC for predicting GBM subtypes in TCGA GBM
patients with the exception of three hyper-parameters—
namely the dropout retention rate, number of hidden
layer nodes, and L2-regularization weight with Spearman
correlation p value < 0.1 (Additional file 1: Fig. S5, Table
S22). Similarly, the majority of hyper-parameters did not
significantly affect the correct assignment of subtype to
GBM scRNA-seq tumor, except for a few exceptions in
training steps, patient loss weight, and MMD loss weight
with Spearman correlation p value < 0.1 (Additional file
1: Fig. S6, Table S22). We therefore suggest users to
keep default settings for at least patient loss weight,
MMD loss weight, and L2-regularization weight. The
percentage of GBM subtype labels ranking in the top
two predicted labels improves from 74 to 82% if the de-
fault parameters or greater values are used for patient
loss weight, MMD loss weight, and L2-regularization
weight (Additional file 1: Fig. S7).

Domain adaptation improves DEGAS disease association
transfer
Without any bias, MMD and no MMD performances
were not different from one another. After bias was
added, MMD did improve the ability of DEGAS to
transfer disease associations onto cells (Additional file
1: Fig. S8). MMD is important for our algorithm be-
cause the bias added to the patients represents the
types of systematic bias that are present between bulk
and single-cell transcriptomic data. In the example of
simulation 2 with cell type 2 bias added, it is clear
that all of the patients tended to cluster adjacent to
the cell type 2 cluster (Additional file 1: Fig. S8A).
We defined high-risk cells in this example as cells
with a disease association > 0.2 on a [-1,1] scale. Once
the DEGAS model had been trained and the disease
associations overlaid onto the cells, the DEGAS model
trained without MMD predicted many cells in cell
types other than cell type 1 as being high-risk (Add-
itional file 1: Fig. S8B). In contrast, the DEGAS model
trained with MMD only identified cell type 1 cells
opposed to other cell types as high risk (Additional
File 1: Fig. S8C). Over all 30 experiments, we found
that the disease association error was lower in the
DEGAS models with MMD than in the DEGAS
models without MMD (t-test, p value < 2.2 × 10−16,
Additional File 1: Fig. S8D). When the cells were or-
dered by their error, there was no experiment where
the DEGAS model without MMD consistently outper-
formed the DEGAS model with MMD (Kolmogorov-
Smirnov p value < 2.2 × 10−16, Additional file 1: Fig.
S8E).
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Regularization improves the robustness of DEGAS models
Regularization is an important part of the DEGAS model
which prevents the data from being overfit. Without
regularization, DEGAS models perform worse during
cross-validation (Additional file 1: Table. S24-25, Fig.
S9). There is no case where an unregularized model
performed better than a regularized model in predicting
patient labels during cross-validation. Specifically, in
simulation 3, the unregularized models performed 5%
worse in PR-AUC when predicting patient labels in pa-
tients (Additional file 1: Table. S24). Similarly, the unre-
gularized DEGAS models performed 9% worse in PR-
AUC when predicting cell type labels in cells (t-test p
value = 4.34 × 10−3, Additional file 1: Table. S25). The
regularization also improved the transfer of disease asso-
ciations to the cells in 2/3 simulations (Additional file 1:
Fig. S9).

Discussion
In this work, we developed the deep transfer learning
framework DEGAS [20] to integrate scRNA-seq and
patient-level transcriptomic data in order to infer the
transferrable “impressions” between patient characteris-
tics in single cells and cellular characteristics in patients.
Using transfer learning, we trained a model with both
scRNA-seq and patient bulk tissue gene expression data,
then reduced the differences between the distributions
of the representations for the two data types in the final
hidden layer of our model via domain adaptation. This
process allows information about patient disease attri-
butes as well as cell types to be transferred between the
two data types. We focus on the transfer of patient
disease attributes to cells because there are far fewer
available methods addressing this task than deconvolu-
tion. We tested and validated the DEGAS framework on
datasets from one simulation and two diseases: GBM
[33, 34], which contained ground truth tumor subtype
labels, and AD [15, 35, 36], which contained ground
truth cell type-disease associations.
These experiments on validation datasets demonstrate

the necessity for DEGAS especially as it relates to the
current methods that rely on accurate clustering, cell
type annotation, or case-control scRNA-seq. For datasets
that contain case and control scRNA-seq data, tools like
Augur [19] are very effective to prioritize cell types.
When no patient-level transcriptomic data is available
but case-control scRNA-seq is available, tools like Augur
should be used since DEGAS requires patient-level tran-
scriptomic data. If patient-level transcriptomic data and
single-cell transcriptomic data are available and there is
a necessity to overlay disease associations onto individ-
ual cells, then only DEGAS can be used. Furthermore, if
the scRNA-seq dataset does not contain case and con-
trol samples then DEGAS needs to be used instead of

Augur since Augur requires case and control samples.
The DEGAS framework in this sense can be used in a
wide variety of study designs as long as there is scRNA-
seq and patient bulk transcriptomic data.
Another challenging issue in scRNA-seq analysis is

that it is difficult to determine the best clustering op-
tions. In our simulation examples, we can determine that
the correct number of clusters based on average silhou-
ette width would be four clusters. However, if the num-
ber of clusters was increased in the clustering algorithm
there would be a stronger correlation between some
clusters and disease. Therein lies the challenge—should
the clustering results be optimized to reflect the relative
transcriptomic signals or should they be optimized to
create the greatest correlations with disease state? Fur-
thermore, the different resolutions of clusters may cap-
ture different correlations with disease. For these
reasons, assigning disease associations directly to cells al-
leviates some of these problems with cluster resolution
decisions. Assigning disease associations directly to cells
not only solves the cluster resolution problem but also
allows simultaneous identification of cell-intrinsic and
cell proportional changes.
The DEGAS algorithm can identify both cell-intrinsic

changes and cell proportional changes as demonstrated
in the simulation examples and the AD study. In simula-
tion 1, the disease is associated with proportional
changes in cell type 1. In simulation 2, the disease is as-
sociated with a cell-intrinsic change of cell type 4. In
simulation 3, there are both cell-intrinsic changes and
cell proportional changes in cell type 4. In the AD ex-
periments, two of the single-cell datasets did include
data from both AD and normal brains [15, 36]. The cells
that came from the AD patients tended to have a higher
association with AD, which indicates the detection of
cell-intrinsic changes. The importance of cell
prioritization at the individual cell level is highlighted in
simulation and AD examples. Simulation 2 shows an ex-
ample where cell level associations are necessary due to
clustering results that do not capture the disease associa-
tions. Specifically, there are cases where cells will cluster
together but have dissimilar associations to disease. If
the cells of cell type 4 are not evaluated individually, the
association of the cell type 4 disease subtype with disease
could be lost. In the AD example, the astrocyte cell type
is overall not associated with AD. However, a subset of
astrocytes expressing markers for DAAs [63] were found
to have a positive disease association while still cluster-
ing with the astrocytes that were not associated with dis-
ease. Similarly, microglia cells are broadly positively
associated with AD but the highest AD association
microglia were enriched for DAM markers [65]. When a
targeted analysis was performed on only microglia from
AD and normal brains, highest AD association microglia
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were enriched for both HAM [64] and DAM [65]
markers. These examples show how DEGAS can identify
disease-associated cells that cluster within a larger cell
type.
In short, the DEGAS analysis on AD data further vali-

dated our model by correctly identifying the decreased
neuron and increased microglia proportions in AD pa-
tients. Aside from these known characteristics of AD
pathology, we also identified a GFAP+ astrocyte subtype
taken from normal human brain tissue that is associated
with AD and is supported from AD mouse models [63].
We further validated this by finding that GFAP expres-
sion in astrocytes was significantly increased in astro-
cytes taken from AD patients and concluded that there
may be an expansion of this astrocyte subtype in AD.
This is also a convincing example of the utility of DE-
GAS as it assigned disease association at the single-cell
level, allowing us to identify intra-cell type differences in
disease risk that constitute disease-associated cells.
For the GBM single-cell patient cohort, each GBM

tumor, from which scRNA-seq data was generated, had
a GBM subtype label [33]. The DEGAS results showed
that the majority of cells in each tumor were labeled
with the same GBM subtype as previously defined in
Patel et al. [33]. Specifically, DEGAS correctly mapped
Proneural, Mesenchymal, Classical, and Neural GBM
subtypes to single cells in four GBM tumor samples.
This experiment also shows the broad applicability of
the model since the single cells had no labels and the pa-
tient samples had multiclass labels. DEGAS is highly
flexible and allows for different categories of output la-
bels to be combined, which may include but are not lim-
ited to classification labels, Cox proportional hazard, and
even no labels. This allows for a wide variety of applica-
tions to adopt the DEGAS framework so that impres-
sions are not limited to only one type of disease
attribute.
To explore disease with less understood cellular

subtypes, we applied DEGAS to multiple MM datasets
[44–47]. The models were able to assign PFS metrics to
individual cells and subtype populations of CD138+ cells
identified by cell type clustering methods Seurat [29]
and BERMUDA [26]. Among the identified subtypes of
cells, subtype 2 was the most consistent between
patients visualized by BERMUDA (Additional file 1: Fig.
S4E). Furthermore, we found that the subtype 2 cell
population appeared to have a gradient of cells moving
away from the main subtype 1 group, possibly associated
with a certain degree of differentiation (Additional file 1:
Fig. S4A-D). We did experience a lower PR-AUC for
subtype 4 than the other subtypes used during model
training. However, this subtype was extremely uncom-
mon in the samples and as a result the random PR-AUC
would be close to zero making the PR-AUC of 0.44 well

above random. Considering that subtype 4 was not
found to be highly associated with progression, the lower
PR-AUC did not greatly affect our interpretation of the
data, which mainly focused on subtype 1 and subtype 2.
We believe that DEGAS could be improved for highly
imbalanced data.
Upon further examination, we found evidence that the

subtype 2 cells may represent a population of malignant
plasma cells expressing high levels of PHF19. PHF19 is
known to play a role in hematopoietic stem cell state
and differentiation [71–73] and is a marker for aggres-
sive disease in MM [70]. Furthermore, knockdown of
PHF19 has been shown to shift myeloma cells into a less
proliferative state [70]. The subtype 2 cells express SDC1
(also known as CD138) and showed significantly in-
creased PHF19 expression in comparison to the other
subtypes. Since all of the IUSM MM cells in our study
had already been FACS sorted for CD138+, it is possible
we have identified a subpopulation of CD138+/
PHF19high cells in MM tumors. This could prove a use-
ful finding since currently the association between
PHF19 and tumor aggressiveness is at the patient level
whereas our results imply that only a fraction of malig-
nant plasma cells in a MM tumor actually overexpress
PHF19.
This subtype could be targeted using precision im-

munotherapies that are not restricted to a single patient
since the CD138+/PHF19high cells (i.e., subtype 2) were
found to be present in multiple (3/4) patients. Of the
three patients with detectable levels of subtype 2 in the
CD138+ fraction, two patients (patient 2 and patient 4)
had relapsed MM at time of biopsy and the other patient
(patient 5) was SMM at biopsy and later progressed to
MM. The other patient (patient 3) had little to no de-
tectable subtype 2 cells in the CD138+ fraction and was
SMM at time of biopsy and has not progressed to MM.
These signs again seem to indicate a common cellular
phenotype associated with progression in MM that we
plan to investigate further.

Conclusions
DEGAS [20] is a powerful transfer learning tool for inte-
grating different levels of omic data and identifying the
latent molecular relationships between populations of
cells and disease attributes, which we refer to as impres-
sions. We validated the DEGAS framework on simulated
data, GBM and AD, by showing DEGAS models were
capable of accurately predicting patient characteristics at
a single-cell level. We then leveraged this transfer learn-
ing approach on MM data and identified a CD138+/
PHF19high subtype population in MM that was signifi-
cantly associated with disease progression. This subtype
contains unique RNA profiles and gene correlations that
could be both leveraged as a prognostic biomarker and
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possibly targeted directly to reduce the risk of progres-
sion. We believe that DEGAS can be a powerful solution
to overcome the challenge of integrating patient single-
cell data with bulk tissue data so that researchers can
identify populations of cells associated with a disease at-
tribute of interest. Furthermore, DEGAS can accommo-
date flexible data types. This makes it a highly general
framework that can be applied in multiple diseases and
data types to identify cellular populations that are associ-
ated with prognosis or treatment response, or to identify
specific patient groups with certain cell subtypes for per-
sonalized treatment.
Based on the validated results in a variety of disease

data analyses, we find that DEGAS has broad applica-
tions in virtually all diseases with available patient-level
and single-cell level omic data. The TensorFlow [74] ma-
chine learning code is integrated with a simple R pack-
age interface (https://github.com/tsteelejohnson91/
DEGAS) [20] which will facilitate researchers to manipu-
late scRNA-seq and bulk expression data on their own.
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