
Ma et al. Genome Medicine           (2022) 14:16  
https://doi.org/10.1186/s13073-022-01021-1

RESEARCH

Integrating single-cell sequencing data 
with GWAS summary statistics reveals 
CD16+monocytes and memory CD8+T cells 
involved in severe COVID-19
Yunlong Ma1†, Fei Qiu1†, Chunyu Deng1†, Jingjing Li2†, Yukuan Huang1†, Zeyi Wu1, Yijun Zhou1, Yaru Zhang1, 
Yichun Xiong3, Yinghao Yao3, Yigang Zhong4, Jia Qu1 and Jianzhong Su1,3*   

Abstract 

Background:  Understanding the host genetic architecture and viral immunity contributes to the development 
of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in 
peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the 
effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown.

Methods:  We constructed a computational framework to characterize the host genetics that influence immune 
cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four 
independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom 
(N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell 
state score for evaluating the immunological features of individual immune cells.

Results:  We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly 
expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, mega-
karyocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. 
Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. 
CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, 
S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ 
memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemot-
axis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ mem-
ory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced 
interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population 
of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection.
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Background
The coronavirus disease 2019 (COVID-19) outbreak, 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), has widely and severely jeopardized the 
health and economy systems of most countries worldwide. 
As of January 26, 2022, there were more than 359.1 million 
confirmed patients with more than 5.63 million deaths in 
the whole world [1]. COVID-19 has distinct clinical mani-
festations ranging from asymptomatic to severe respiratory 
failure [2]. Mortalities of COVID-19 are largely derived 
from severe patients with interstitial pneumonia in both 
lungs and acute respiratory distress syndrome [3]. Many 
earlier studies [4–6] have shown that the number of severe 
COVID-19 patients who are elders and have comorbidities, 
such as diabetes and hypertension, has increased. In this 
connection, understanding the immunologic mechanism of 
severe COVID-19 and identifying novel vaccine targets to 
control the pandemic are of considerable interest.

Accumulating evidence has suggested that alterations 
of immune responses in peripheral blood mononuclear 
cells (PBMCs) and bronchoalveolar lavage fluid (BALF) 
play a crucial role in the detrimental progression of 
COVID-19 [7, 8]. There has been evidence that cytokine 
storm, usually found in severe COVID-19 patients, causes 
the adverse progression of COVID-19 [7]. Increased cir-
culating levels of proinflammatory cytokine, including 
IL-10, IL-6, and TNF-α, have been reported to be asso-
ciated with severe COVID-19 [7, 9]. Single-cell RNA 
sequencing (scRNA-seq) has been extensively utilized to 
reveal the immune responses of COVID-19 patients in 
both lung and peripheral blood [10–18]. Megakaryocytes 
and monocytes [11, 12], T cell exhaustion [14], lympho-
penia [19], and increased levels of cytokines [20] may 
cause aberrant peripheral immune activities in severe 
COVID-19 patients. Based on large-scale samples, pre-
vious studies identified that dysregulation of the mTOR 
signaling pathway in dendritic cells [21] and aberrant 
myeloid cell subpopulations [16, 17] implicated in severe 
COVID-19. Su et al. [10] revealed an increase in inflam-
mation and a sharp drop in blood nutrients between mild 
and moderate-to-severe COVID-19, and new subsets of 
immune cells emerged in moderate COVID-19 patients.

Genome-wide association study (GWAS) has 
emerged as a powerful approach to identify risk genes 

and genetic variants for complex diseases. By gath-
ering population-based GWAS data worldwide, the 
COVID-19 Host Genetic Consortium has launched 
the “COVID-19 Host Genetics Initiative” project to 
facilitate COVID-19 host genetic research and identify 
genetic determinants of COVID-19 [22]. Subsequently, 
a growing number of GWASs have identified numerous 
significant genetic variants associated with COVID-19 
susceptibility and severity [23–28]. Ellinghaus et al. [27] 
performed a meta-analysis of two independent GWAS 
datasets with 1610 severe COVID-19 patients and 2205 
matched controls at seven hospitals in the Italian and 
Spanish epicenters and identified two susceptibility 
loci of 3p21.31 and 9q34.2 to be significantly associated 
with severe COVID-19 at the genome-wide level. Based 
on a large-scale meta-analysis (N = 680,128), our group 
found that the IFNAR2-IL10RB gene cluster was sig-
nificantly associated with COVID-19 susceptibility, and 
suggested that IFNAR2 and IL10RB might have regu-
latory roles in the pulmonary immune response based 
on scRNA-seq data [25]. Consistently, Pairo-Gastineira 
et  al. [24] conducted a GWAS study based on 2244 
critically ill COVID-19 patients and highlighted that 
several genes including IFNAR2, DPP9, and OAS1 were 
significantly associated with severe COVID-19 at a 
genome-wide significance.

Two primary hypotheses were proposed for the 
involvement of immune genes in severe COVID-19 
susceptibility: whether the severe COVID-19-related 
risk genes associated with defective innate immune 
responses would induce persistent viral replication and 
resultant high viral loads, and whether an exaggerated 
genetically mediated cytokine production contributes 
to the hyper-inflammation and poor outcome among 
severe COVID-19. However, the effects of these genetic 
determinants on the peripheral immune cells for severe 
COVID-19 remain largely unknown. In view of a purely 
genetic study or single-cell sequencing study cannot 
address this critical question, we here leveraged com-
prehensive computational methods to combine a large-
scale GWAS summary dataset with scRNA-seq data 
for identifying host genetics that influence immune 
cell subpopulations involved in the etiology of severe 
COVID-19.

Conclusions:  We uncover a major genetics-modulated immunological shift between mild and severe infection, 
including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional 
immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic deter-
minants that influence peripheral immune cells in severe COVID-19.

Keywords:  Single-cell sequencing, GWAS, Immune cells, Inflammatory storm, COVID-19



Page 3 of 21Ma et al. Genome Medicine           (2022) 14:16 	

Methods
Single‑cell RNA‑seq data on severe COVID‑19
In this study, we downloaded four independent scRNA-
seq datasets on COVID-19 in PBMC and BALF from the 
ArrayExpress database (dataset #1, the accession num-
ber is E-MTAB-9357 from Su et  al. study [10]) and the 
Gene Expression Omnibus (GEO) database (dataset #2, 
the accession number is GSE149689 from Lee et al. study 
[18]; dataset #3, the accession number is GSE150861 
from Guo et al. study [11]; and dataset #4, the accession 
number is GSE158055 [12]). The first dataset contained 
270 peripheral blood samples including 254 samples with 
different COVID-19 severity (i.e., mild N = 109, mod-
erate N = 102, and severe N = 50) and 16 healthy con-
trols for scRNA-seq analysis. There were eight patients 
in dataset #2 with COVID-19 of varying clinical sever-
ity, including asymptomatic, mild, and severe, and four 
healthy controls with PBMCs. Dataset #3 included five 
peripheral blood samples collected from two severe 
COVID-19 patients at three different time points during 
tocilizumab treatment, containing two different stages: 
severe stage and remission stage. Within dataset #4, 12 
BALF samples were collected from lung tissues, includ-
ing three moderate and nine severe patients. For all the 
datasets, the sample collection process was reviewed and 
approved by Institutional Review Boards at the institu-
tions where samples were originally collected. As per-
formed in the original studies [10–12, 18], the COVID-19 
severity was evaluated by using the World Health Organ-
ization (WHO) ordinal scale (WOS), the National Early 
Warning Score (NEWS), or the Diagnosis and Treat-
ment of COVID-19 (Trial Version 6). Single-cell tran-
scriptomes for these four datasets were gathered using 
the 10× Genomics scRNA-seq platform [29]. A total of 
606,534 cells with 563,856 PBMC cells and 42,678 BALF 
cells were yielded from 300 samples based on the four 
independent scRNA-seq datasets. To allow comparison 
across samples and datasets, we used a common diction-
ary of gene symbols to annotate genes and these unrec-
ognized symbols were removed.

Single‑cell RNA sequencing data processing
We performed normalization, clustering, and dimen-
sionality reduction; differential expression gene (DEG) 
analysis; and visualization on these four independent 
scRNA-seq datasets with the Seurat R package [30]. 
The SCTransform function was used to scale and trans-
form data, and a linear regression model was applied 
to omit redundant variations caused by cellular com-
plexity (i.e., cells expressed less than 200 genes or more 
than 2500 genes were removed) or cellular quality (i.e., 
cells that had UMIs more than 10,000 and expressed 

reads of mitochondrial genes greater than 10% were 
removed). The CellCycleSoring function was applied 
to remove the effects of confounding factors. Principal 
component analysis (PCA) was carried out to extract 
principal components (PCs) that could explain most of 
the datasets via using high variable genes. Top 20 PCs 
were utilized to conduct uniform manifold approxima-
tion and projection (UMAP) to embed the dataset into 
two dimensions. Subsequently, we constructed a shared 
nearest-neighbor graph (SNN) using the FindNeigh-
bors function based on the top 20 PCs and applied a 
graph-based modularity-optimization algorithm from 
the Louvain method [31] on this SNN for clustering 
the dataset with the cluster resolution set to 0.5. We 
used the RunHarmony function with the PCA reduc-
tion method from harmony R package [32] to integrate 
samples to correct batch effects. The FindConserved-
Markers function in Seurat was implemented to find 
differential expressed genes for determining cellular 
identity. Well-defined markers were used to annotate 
clusters, and uncharacterized clusters in the first round 
of clustering were extracted to run the second round of 
clustering.

GWAS summary data on hospitalized COVID‑19
The meta-GWAS summary data on severe COVID-19 
round 4 (B2_ALL, Susceptibility [Hospitalized COVID-
19 vs. Population]) were downloaded from the official 
website of the COVID-19 Host Genetic Consortium 
[22] (https://​www.​covid​19hg.​org/; analyzed file named: 
“COVID19_HGI_B2_ALL_leave_23andme_20201020.
txt.gz”; released date of October 4, 2020). There were 
7885 hospitalized COVID-19 patients and 961,804 con-
trol participants from 21 independent contributing stud-
ies. There was an overwhelming majority of participants 
in these contributing studies with European ancestry 
(93%). The meta-GWAS summary statistics contained 
P values, Wald statistic, inverse-variance meta-ana-
lyzed log odds ratio (OR), and related standard errors. 
The 1,000 Genomes Project European Phase 3 [33] was 
used as a panel for pruning. Results from 23&Me cohort 
GWAS summary statistics were excluded from our cur-
rent analysis. Genetic variants without RefSNP number 
in the Human Genome reference builds 37 were filtered 
out, giving a total of 9,368,170 genetic variants satisfy-
ing the major allele frequency (MAF) over 0.0001 and 
the imputation score of greater than 0.6. We used the 
qqman R package to figure both Manhattan plot and 
quantile-quantile (QQ) plot, and the Web-based software 
of LocusZoom (http://​locus​zoom.​sph.​umich.​edu/) [34] to 
visualize the regional association plots for significant risk 
loci (see Additional file 1: Supplementary methods).

https://www.covid19hg.org/
http://locuszoom.sph.umich.edu/
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Hierarchical clustering analysis
To examine the similarity of the transcriptome pro-
files between cell types across different COVID-19 
severities, we merged the counts of UMI for each cell 
type according to normal, mild, moderate, and severe 
COVID-19. In order to normalize gene expression, we 
divided the counts of UMI for each gene by the counts 
of total UMI for all genes in each cell type and then 
multiplied by 100,000, as refer to the method in a previ-
ous study [18]. Based on a median expression value of 
greater than 0.5, we calculated the relative changes in 
gene expression divided by the median value for each 
gene. The Pearson correlation coefficient (PPC) of the 
relative change in gene expression was used for the cur-
rent hierarchical clustering analysis.

Gene‑based association analysis
To perform a gene-based genetic association analysis of 
the meta-GWAS summary statistics on severe COVID-
19, we leveraged the updated SNP-wise mean model of 
MAGMA [35]. In this model, MAGMA computes a test 
statistic:

where N is the number of SNPs mapped in a gene and 
Zi = ϕ(pi) . Of note, ϕ is the cumulative normal distribu-
tion function and pi is the marginal P value for a given 
SNP i. SNPs belonging to a specific gene were based on 
whether located in the gene body or within the ± 20 kb 
upstream or downstream region of the gene. Further-
more, the model assumes Z~MVN(0, S) , where S is the 
LD matrix of the SNP genotypes. The LD matrix can be 
diagonalized and hence written as S = QAQT, where Q 
is an orthogonal matrix and A = diag(λ1, λ2, …, λN) with 
λj being the jth eigenvalue of S. The 1,000 Genomes 
Project Phase 3 European Panel [33] was used for calcu-
lating the LD information among SNPs extracted from 
GWAS summary data on COVID-19.D~MVN(0, IK) is a 
random variable, where D = A‐0.5QTZ. Then, the sum of 
squared SNP Z-statistics as the following formula:

with Di~N(0, 1) and D2
i ∼ χ2

1  . Namely, T follows a 
mixture distribution of independent χ2

1  random vari-
ables. A total of 19,138 genes were included in the cur-
rent analysis. We used the Benjamini-Hochberg false 
discovery rate (FDR) method, in which a gene with a 
FDR ≤ 0.05 (P ≤ 6.8 × 10−5) was interpreted as signifi-
cant, to adjust for multiple testing.

T =
∑N

i
Z2
i = ZTZ

T = ZTZ =

(
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Pathway enrichment analysis
We applied the built-in functions of MAGMA [35], 
using the results from GWAS summary statistics as its 
input, to examine genome-wide enriched biological 
pathways for severe COVID-19. We calculated competi-
tive P values by examining the results that the combined 
effect of genes within a pathway is significantly greater 
than the combined effect of all other genes, and 10,000 
permutations were used to adjust competitive P val-
ues. Additionally, we leveraged the over-representation 
algorithm of the WebGestalt (http://​www.​webge​stalt.​
org) [36] along with the significant genes as an input 
list to conduct a pathway enrichment analysis using the 
KEGG pathway resource [37]. The number of genes in 
each pathway was set to between 5 and 2000, and the 
Benjamini-Hochberg FDR was used for multiple correc-
tion. To cluster these identified KEGG pathways, we per-
formed a multidimensional scaling (MDS) analysis based 
on the Jaccard distance method [38, 39] and constructed 
a pathway-pathway interaction network for these signifi-
cantly enriched pathways setting the Jaccard distance > 
0.1. For the analyzed codes, please refer to the GitHub 
repository (https://​github.​com/​mayun​long89/​COVID​
19_​scRNA [40]).

Combining GWAS‑based genetic signals with eQTL data
To uncover genetically regulatory expression of genes 
associated with severe COVID-19, we conducted an 
integrative genomics analysis by using the S-PrediXcan 
[41] by combining meta-GWAS summary statistics with 
expression quantitative trait loci (eQTL) data for 49 tis-
sues from the GTEx Project (version 8) [42]. S-PrediX-
can mainly uses two linear regression models to analyze 
the association between predicted gene expression and 
severe COVID-19:

where α1 and α2 are intercepts, ε1 and ε2 are independ-
ent error terms, Y is the n-dimensional vector for n indi-
viduals, Xl is the allelic dosage for SNP l in n individuals, 
βl is the effect size of SNP l, Gg = ∑i ∈ gene(g)ωigXi is the 
predicted expression calculated by ωlg and Xl, in which 
ωlg is derived from the GTEx Project, and γg is the effect 
size of Gg. The Z-score (Wald-statistic) of the association 
between predicted gene expression and severe COVID-
19 can be transformed as:

Y = α1 + X lβl + ε1

Y = α2 + Ggγg + ε2

Zg =
γ̂g

se
(

γ̂g
) ≈

∑

i∈gene(g)
ωig

σ̂i

σ̂g

β̂i

se
(

β̂i

)

http://www.webgestalt.org
http://www.webgestalt.org
https://github.com/mayunlong89/COVID19_scRNA
https://github.com/mayunlong89/COVID19_scRNA
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where 𝜎̂g is the standard deviation of Gg and can be cal-
culated from the 1,000 Genomes Project European Phase 
3 Panel, β̂l is the effect size from GWAS on COVID-19, 
and σ̂l is the standard deviation of β̂l . S-PrediXcan was 
run for each of 49 tissues with 659,158 gene-tissue pairs.

Furthermore, to increase the power to discover sig-
nificant genes whose expression has similar regulations 
across multi-tissues, we utilized the S-MultiXcan [43] to 
meta-analyze these results from the above S-PrediXcan 
analysis. S-MultiXcan fits a linear regression model of 
severe COVID-19 on predicted expression from multiple 
tissue models jointly:

where T̃j =
∑

i∈gene(j)ωiXi is the predicted expression 
of tissue j and Tj is the standardization of T̃j to mean = 0 
and standard deviation = 1. gj is the effect size for the 
predicted gene expression in tissue j, e is an error term 
with variance σ 2

e  , and p is the number of included tissues. 
There were 22,326 genes across 49 GTEx tissues with 
integrated convergent evidence in S-MultiXcan, and a 
gene with a value of FDR ≤ 0.05 (P ≤ 3.8×10−5) is con-
sidered to be significant.

In silico permutation analysis
To explore the concordance of results from both 
MAGMA analysis (gene set #1: N = 944, P ≤ 0.05) and 
S-MultiXcan analysis (gene set #2: N =1274, P ≤ 0.05), 
we performed an in silico permutation analysis which 
consisted 100,000 times (NTotal) random selections [44, 
45]. We first calculated the number of overlapped genes 
between gene sets #1 and #2 (NObservation = 302), then 
employed the total number of genes in S-MultiXcan 
analysis as background genes (NBackground = 22,326). By 
randomly selecting the same number of genes as gene set 
#2 (N = 1274) from the background genes, and after 
repeating it 100,000 times, we calculated the number of 
overlapped genes between gene set #1 and the sample we 
selected each time (NRandom). Finally, we calculated the 
empirically permuted P value using the following for-
mula: P = NRandom≥NObservation

NTotal
 , and empirical P value ≤ 0.05 

is considered to be significant.

Drug‑gene interaction analysis
We conducted a drug-gene interaction analysis for 
identified genetics-risk genes by using protein-chem-
ical interactions in the context of STRING-based PPI 
networks [46] and STITCH-based drug annotation 
information (v5.0, http://​stitch.​embl.​de/) [47]. Only 
experimentally validated gene-drug interactions with 

Y =

p
∑

j=1

Tjgj + e = Tg + e

ranked confidence score were selected for construct-
ing a drug-gene interaction network. To examine the 
potential therapeutic effects of highly expressed genes 
in each immune cell, we conducted an enrichment 
analysis of 43 druggable categories based on the DGIdb 
database (https://​www.​dgidb.​org/​drugg​able_​gene_​
categ​ories) [48]. Additionally, we collected 1263 human 
druggable proteins, which are therapeutic targets of 
clinical stage or approved drugs, from a previous study 
[26]. Among them, 704 proteins are targets for poten-
tial COVID-19-relevant drugs based on registers of 
clinical trials for COVID-19, approved immunomodu-
latory/anticoagulant drugs, or have biological functions 
associated with SARS-CoV-2 infection.

Integrated analysis of GWAS summary statistics 
and scRNA‑seq data
To identify genetically regulatory-related peripheral 
immune cells for severe COVID-19, we implemented 
the RolyPoly algorithm [49] to incorporate GWAS sum-
mary statistics with scRNA-seq data. Let g(i) stand for 
the gene associated with SNP i, Sj = {i : g(i) = j} be the 
SNP set with multiple SNPs associated with the gene j, 
and βSj be a GWAS-based effect-size vector of Sj with a 
priori assumption that βSj ∼ MVN

(

0, σ 2
j I |Sj |

)

 . Follow-
ing the prior, RolyPoly gives a polygenic linear model 
for βSj:

where γ0 is an intercept term, αji(i = 1, 2, …, N) are 
annotations such as cell-type-specific gene expres-
sion, and γi are annotation coefficients for αji. To fit the 
observed and expected sum squared SNP effect sizes 
related to each gene by using the method-of-moments 
estimators, RolyPoly estimates γi by the following 
equation:

where RSj is the LD matrix of Sj and Tr represents the 
trace of a matrix. Finally, RolyPoly applies the block 
bootstrap method with 1000 iterations to estimate 
standard errors σ̂γi for calculating a t-statistic and cor-
responding P values. The PLINK (v1.90) [50] was used 
to calculate the LD between SNPs within the 1-Mb 
window based on the 1,000 Genome Project European 
Phase 3 panel [33]. We restricted the analysis to SNPs 
in the autosomes, and any SNPs with MAF ≤ 5% were 

σ 2
j = γ0 +

N
∑

i=1

γiαji

E


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http://stitch.embl.de/
https://www.dgidb.org/druggable_gene_categories
https://www.dgidb.org/druggable_gene_categories
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excluded. The major histocompatibility complex region 
(Chr6: 25–35 Mbp) was also excluded due to the exten-
sive LD in this region.

Defining cell state scores
We leveraged cell state score (CTS) to evaluate the immu-
nological degree of individual immune cells expressed a 
certain predefined expression gene set [12, 14, 51]. The 
CTSs were initially depended on the average expression 
of the genes from the predefined gene set in the respec-
tive cell. For a given cell m and a gene set k (GSk), the cell 
state score CTSk (m) was defined as the average relative 
expression (RE) of the genes in GSk. Nevertheless, such 
initial scores may be confounded by cell complexity, as 
cells with higher complexity have more genes identified 
and consequently would be expected to obtain higher 
cell state scores for any expression gene set. To control 
for this confounding effect by adding a control gene set 
(CGk), we calculate a similar cell state score with the con-
trol gene set and subtract it from the initial cell scores: 
CTSk(m) = average[RE(GSk,m)] − average[RE(CGk, m)]. 
The control gene set was randomly chosen on the basis of 
aggregate expression level bins, which obtain a compara-
ble distribution of expression levels and over size to that 
of the pre-curated gene set The AddModuleScore func-
tion in Seurat [30] was applied to calculate the CTS with 
default parameters.

We used the inflammatory and cytokine genes (N = 
324 genes), cytokine-cytokine receptor interactions 
(N = 294 genes), chemokine signaling pathway (N = 
189 genes), T cell activation (GO: 0042110), response 
to interferon alpha (GO: 0035455), response to inter-
feron beta (GO: 0035456), leukocyte migration (GO: 
0050900), 5 well-defined proliferating markers (MK167, 
TYMS, NKG7, IL7R, and CCR7), 6 well-defined exhaus-
tion markers (LAG3, TIGIT, PDCD1, CTLA4, HAVCR2, 
and TOX), and 12 cytotoxicity-associated genes (PRF1, 
IFNG, GNLY, NKG7, GZMB, GZMA, GZMH, KLRK1, 
KLRB1, KLRD1, CTSW, and CST7) to define inflam-
matory cytokine, chemokine, T cell activation, IFN-
α/β response, migration, proliferation, exhaustion, and 
cytotoxicity score, respectively. These two gene sets of 
inflammatory and cytokine genes (N = 324 genes) and 
cytokine-cytokine receptor interactions (N = 294 genes) 
were collected to evaluate the level of hyperinflammatory 
response, which is used to reflect the degree of “cytokine 
storm” [52].

Cell‑to‑cell interaction analysis
To identify potential cellular interactions of CCR1+ 
CD16+monocytes and CXCR6+ memory CD8+T 
cells with other immune cells, we utilized the CellChat 
R package [53] for inferring the predicted cell-to-cell 

communications based on two normalized scRNA-seq 
datasets (dataset #1 of PBMC and dataset #4 of BALF). 
CellChat algorithm could examine the significance of 
ligand-receptor interactions between two cell types 
depending on the expression of important factors, 
including stimulatory and inhibitory membrane-bound 
co-receptors, soluble agonists, and antagonists. The 
communication probability of a signaling pathway was 
derived from the sum of probabilities of their ligand-
receptor interactions. We only concentrated on the 
ligand-receptor interactions that were significantly asso-
ciated with severe COVID-19 compared with normal 
control.

Compositional analysis for the proportions of immune cells 
using the scCODA method
To validate our findings concerning the different percent-
age of each cell type in PBMCs, we leveraged a Bayesian 
model of scCODA [54] for re-conducting the composi-
tional single-cell data analysis. The scCODA framework 
modeled cell type counts with a hierarchical Dirichlet-
Multinomial distribution that accounts for the uncer-
tainty in the proportions of immune cell types in PBMCs 
and the negative correlative bias via collectively model-
ling of all measured immune cell type proportions rather 
than individual ones. The Bayesian inference model 
applied a Logit-normal spike-and-slab prior [55] with a 
log-link function to estimate these continuous or binary 
covariates’ effects on immune cell type proportions in 
PBMCs in a parsimonious fashion. In light of composi-
tional analysis need a reference for identifying composi-
tional changes [56], we used the default parameter in the 
scCODA: reference_cell_type = “automatic”.

Statistical analysis
The Wilcoxon sum-rank test was used to assess DEGs 
in mild, moderate, and severe COVID-19 groups com-
pared with normal control [40]. Both the Wilcoxon sum-
rank test and scCODA were used for composition data 
analysis to examine the different proportions of periph-
eral immune cells across different COVID-19 sever-
ity. The Mann-Kendall trend analysis was applied to 
evaluate the significance of cell state cells with elevated 
severities of COVID-19. Pathway- and disease-based 
enrichment analyses used the hypergeometric test to 
identify remarkable biological pathways and disease 
terms [36]. The Pearson correlation analysis was used to 
calculate the correlation coefficient of highly expressed 
genes in CCR1+ CD16+monocytes between moder-
ate and severe patients [40]. The paired Student’s t test 
was used to calculate the significance of ligand/receptor 
interactions of CCR1+ CD16+monocytes and CXCR6+ 
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memory CD8+T cells with other immune cells between 
normal control and severe COVID-19.

Results
The computational framework of the current investigation
As shown in Fig.  1, we devised a computational frame-
work to parse the host genetics-modulated immune 
cell subpopulations implicated in severe COVID-19. It 
included three main parts: (1) integrative analysis that 
combined GWAS summary statistics with scRNA-seq 
data to genetically map single-cell landscape for severe 
COVID-19 (Fig.  1A and Additional file  2: Table  S1); (2) 
identifying genetics-risk genes, pathways, and immune 
cell subpopulations that contributed to cytokine storms 
among severe patients (Fig.  1B); and (3) uncovering the 
cellular interactions of genetics-modulated immune cell 

subsets, as well as their functions with cells in lung tis-
sues (Fig. 1C).

Identification of immune cell types associated with severe 
COVID‑19
To parse the host genetics-influenced immune responses 
at a single cellular level in PBMCs for severe COVID-
19, we subjected three independent scRNA-seq datasets 
with 563,856 cells to UMAP based on highly variable 
genes using the Seurat (see the “Methods” section) [30]. 
There was identification of 13 distinct clusters unbi-
ased by patients with different severities (Additional 
file 2: Table S2 and Additional file 3: Fig. S1). We lever-
aged well-known marker genes to assign these clus-
ters to 13 distinct cell types, including mature B cells, 
megakaryocytes, naïve B cells, CD34+progenitors, den-
dritic cells, natural killer (NK) cells, CD14+monocytes, 

Fig. 1  The workflow for this integrative genomic analysis. A Combination of single-cell RNA sequencing data and GWAS summary statistics on 
severe COVID-19 based on two independent methods. One method is the regression-based polygenic model based on whole scRNA-seq profiles, 
and another is the generalized linear regression model based on the top 10% most specific genes for each cell type. B An increase in genetics-risk 
genes and cytokines for severe COVID-19. C Cellular interaction analysis of genetics-influenced immune cell subsets with epithelial cells
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CD16+monocytes, memory CD4+T cells, naïve CD4+T 
cells, naïve CD8+T cells, memory CD8+T cells, and 
effector CD8+T cells (Additional file 3: Fig. S2-S3).

While performing the hierarchical clustering analy-
sis on the scRNA-seq profiles, we discovered that cell 
types were the primary determinants of their clustering, 
followed by disease severities, indicating both COVID-
19 pathology and immune cell types might have cru-
cial roles in altered patterns of immune transcriptome 
instead of technical artifacts (Additional file  3: Fig. S4). 
As a vital feature for reflecting the alterations of immune 
responses, we examined the relative proportions of 
peripheral immune cells across different COVID-19 
groups in comparison with the normal group. The pro-
portions of CD14+monocytes, megakaryocytes, and 
CD34+progenitors were significantly elevated in mod-
erate and severe patients, whereas the proportions of 
effector CD8+ T cells, memory CD8+T cells, memory 
CD4+T cells, naïve CD4+T cells, and NK cells were sig-
nificantly decreased with the increased severities (Addi-
tional file  3: Fig. S5). To provide additional validated 
evidence, we used an independent method of scCODA to 
re-perform the compositional data analysis and found the 
results from scCODA [54] are highly consistent with the 
above findings from the Wilcoxon sum-rank test (Addi-
tional file 3: Fig. S6).

Identification of genetic risk loci associated with severe 
COVID‑19
Through performing a meta-analysis of 21 independ-
ent GWAS studies from the COVID-19 Host Genetic 
Consortium, eight genomic loci were identified to be 
associated with hospitalization in COVID-19 patients 
at a genome-wide significant level, including 1p22.2 
(rs2166172, P = 2.74×10−8), 3p21.31 (rs35081325, P = 
3.32×10−58, and rs33998492, P = 3.59×10−14), 6p21.33 
(rs143334143, P = 1.28×10−10), 7p11.2 (rs622568, P = 
2.57×10−8), 9q34.2 (rs505922, P = 2.24×10−9), 12q24.13 
(rs2269899, P = 3.24×10−8), 19p13.3 (rs2109069, P = 
6.4×10−13), and 21q22.11 (rs13050728, P =1.91×10−11) 
(Fig. 2A, Additional file 2: Table S3 and Additional file 3: 
Fig. S7). Among these eight loci, three loci, 1p22.2, 
6p21.33, and 7p11.2, were newly identified. Consistently, 
these eight loci were replicated by using a GWAS with 
critically ill cases of COVID-19 who needed respiratory 
support in hospital or who died due to the disease (Addi-
tional file 2: Table S4). It should be noted that there were 
two independent genetic association signals (index SNPs: 
rs35081325 and rs33998492) in the 3p21.31 locus for 
severe COVID-19 (Fig. 2B and Additional file 3: Fig. S8). 
Using the Variant2Gene (V2G) algorithm [57], we prior-
itized CXCR6 as a candidate causal gene for rs35081325 

and causal gene CCR1 for rs33998492 (see Additional 
file 1: Supplementary methods).

Furthermore, the index SNP of rs505922 (P = 
2.24×10−9) in the 9q34.2 locus is highly LD with 
the reported SNP of rs657152 (R2 = 0.874) [27] and 
rs8176719 (R2 = 0.876) [25]. Based on the top-ranked 
V2G score for rs505922, we prioritized ABO as a poten-
tial causal gene contributing susceptibility to severe 
COVID-19. By performing a MAGMA gene-level asso-
ciation analysis, we observed that 25 genes including 
CXCR6, CCR1, IFNAR2, IL10RB, and OAS1 were sig-
nificantly associated with severe COVID-19 (FDR < 0.05, 
Additional file 2: Table S5 and Additional file 3: Fig. S9). 
GWAS-based pathway enrichment analysis revealed 
that 19 biological pathways, including cytokine-cytokine 
receptor interaction, influenza A, and TNF signaling, 
were significantly associated with hospitalization in 
COVID-19 patients (Additional file 2: Table S6 and Addi-
tional file 3: Fig. S10).

Integrative analysis of GWAS on severe COVID‑19 
with GTEx eQTL data
To obtain combined signals from multiple tissues [58], we 
leveraged S-MultiXcan to meta-analyze the tissue-spe-
cific associations from 49 tissues in GTEx, which showed 
that the genetically predicted expressions of 16 genes 
were significantly associated with severe COVID-19 
(FDR < 0.05, Fig. 2C and Additional file 2: Table S7). Of 
note, 14 of 16 genes (87.5%) were identified to be signifi-
cant in MAGMA analysis (Additional file 3: Fig. S11A-B). 
Through conducting S-PrediXcan analysis of blood and 
lung tissues that were linked with SARS-CoV-2 infection, 
we found eight genes whose genetically regulated expres-
sion were significantly associated with severe COVID-19 
(FDR < 0.05, Additional file 2: Table S8). Using in silico 
permutation analysis, we further observed that there 
existed a high consistence among results from MAGMA, 
S-PrediXcan, and S-MultiXcan analyses (P < 1.0×10−5, 
Additional file  3: Fig. S12A-C). The aforementioned 
multiple genomic analyses identified 34 risk genes that 
showed supportive evidence of involvement in the etiol-
ogy of COVID-19 (Additional file 3: Fig. S13A-B).

Functional characterization of 34 risk genes for severe 
COVID‑19
The result of a network-based enrichment analysis sug-
gested that 22 of 34 risk genes were significantly enriched 
in a PPI subnetwork (P = 2.85×10−13, Fig. 2D), which is 
consistent with the consensus that disease-related genes 
are more densely connected [59, 60]. To functionally 
characterize the drug targets of these genes, we con-
ducted a drug-gene interaction analysis and identified 
11 genes including CCR1, IFNAR2, IL10RB, and OAS1 
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Fig. 2  Risk genes and pathways associated with hospitalized COVID-19 from meta-GWAS summary data. A Manhattan plot and quantile-quantile 
(QQ) plot of meta-GWAS analysis highlighting eight risk genetic loci for hospitalized COVID-19. The red horizontal line represents the genome-wide 
significance threshold of P < 5×10−8. The genomic inflation factor λ = 1.02. B Nine index SNPs within eight genomic loci associated with 
hospitalized COVID-19. The left panel shows the P value of each index SNP, and the right panel shows the odds ratio with 95% confidence interval. 
C Circus plot showing the results of the S-MultiXcan-based analysis. The inner ring demonstrates the 22 autosomal chromosomes (Chr1-22). In 
the outer ring, a circular symbol represents a specific gene and color marks the statistical significance of the gene for hospitalized COVID-19 (red 
marks FDR < 0.05, orange indicates 6.96×10−5 ≤ P < 0.001, light blue marks 0.001 ≤ P ≤ 0.05, and dark blue indicates P > 0.0). D PPI network of 
these 34 identified risk genes based on the STRING database (v11.0, https://​string-​db.​org/). The orange ring represents druggable genes targeted 
by at least one known drug. E Network module constructed by using the Jaccard distance showing the connectivity of 10 significant pathways 
enriched by 34 risk genes. F Heatmap showing the results of hierarchical clustering analysis of 27 risk genes on COVID-19 severity. Seven risk genes 
did not express in dataset #1, and the expression level of each gene was scaled. G The proportion of highly expressed genes among 27 risk genes in 
normal controls and in the three phases of COVID-19 (mild, moderate, and severe patients). Using 10,000 times of permutation analysis to calculate 
the significance of the observation (permuted P = 0.023). H Plot showing an increase of the significantly enriched pathways in the network 
module with elevated COVID-19 severities. Orange color represents a significantly enriched pathway (FDR ≤ 0.05) and gray color represents a 
non-significantly enriched pathway (FDR > 0.05)

https://string-db.org/
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were targeted by at least one known drug (Fig.  2D and 
Additional file 3: Fig. S14), of which some genes includ-
ing CCR1, IFNAR2, and IL10RB have been reported to 
be drug targets for treating severe COVID-19 patients 
[25, 26]. Furthermore, these 34 genes were significantly 
enriched in a functional module consisting of 10 bio-
logical pathways (Fig. 2E, Additional file 2: Table S9 and 
Additional file 3: Fig. S15), among which two top-ranked 
ones being cytokine-cytokine receptor interaction and 
chemokine signaling pathway (FDR < 0.05). Most of these 
enriched pathways have been reported to be implicated 
in COVID-19 [25, 61, 62].

Based on the expression profile of dataset #1, we con-
ducted a hierarchical clustering analysis of these identi-
fied risk genes on COVID-19 severity and found that 
these risk genes predisposed to be highly expressed in 
severe patients compared to the normal group (permuted 
P = 0.023, Fig.  2F, G). Consistently, the number of sig-
nificantly enriched pathways was elevated with increased 
severities (Fig.  2H). Genes in both cytokine-cytokine 
receptor interaction and chemokine signaling pathways 
showed significantly high expressions in the early phase 
of SARS-CoV-2 infection (Fig. 2H), suggesting that these 
two pathways could play critical roles in the initiation of 
COVID-19.

Genetics‑influenced peripheral immune cell types 
for severe COVID‑19
To identify genome-wide host genetic components 
that have effects on peripheral immune cells for severe 
COVID-19, we first leveraged a regression-based poly-
genic model [49] to integrate GWAS summary data 
on severe COVID-19 with single-cell transcriptomic 
profiles (dataset #1) according to different COVID-
19 severities (see the “Methods” section). We found 
that CD16+monocytes were significantly associated 
with three phases of COVID-19, mature B cells showed 
remarkable associations with mild COVID-19, mega-
karyocytes were significantly associated with moder-
ate and severe COVID-19, and memory CD8+T cells 
showed significant associations with severe COVID-19 
(permuted P < 0.05, Fig.  3A). Furthermore, we used a 
generalized linear regression model [63] to validate these 
severe COVID-19-associated cell types by conditioning 
on the 10% most specific genes for each type and consist-
ently found that CD16+monocytes and megakaryocytes 
showed notable associations with severe COVID-19 (P < 
0.05, see Additional file 1: Supplementary methods). We 
found that CD16+ monocytes tended to be associated 
with severe COVID-19 among patients with younger 
age, female, and low BMI, whereas memory CD8+ T 
cells predisposed to be associated with severe COVID-
19 among patients with elder age, male, and high BMI. 

Smoking behaviors contribute a higher risk to the asso-
ciation of both CD16+ monocytes and memory CD8+ 
T cells with severe COVID-19 (Additional file  3: Fig. 
S16-S19). Additionally, using the Cell-ID method [64], we 
found that 34 GWAS-identified genes score of individual 
cells were higher detected in CD16+ monocytes and 
memory CD8+T cells (Additional file 3: Fig. S20). These 
results indicated that CD16+monocytes, megakaryo-
cytes, and memory CD8+T cells were more vulnerable 
to the influence of genetic components on severe-stage 
patients.

Based on the specificity algorithm used in MAGMA 
[63], we noticed that the top specific cell type of CCR1 
was CD16+monocytes, CXCR6 was most specifically 
expressed in memory CD8+T cells, and ABO was spe-
cific to megakaryocytes (Additional file  3: Fig. S21A), 
recalling that CXCR6, CCR1, and ABO were prioritized 
to be candidate causal genes for severe COVID-19 
based on the V2G score in above genetics-based analy-
sis. Compared with other cell types, CCR1 was primar-
ily expressed in CD16+monocytes (24.77%), CXCR6 was 
mainly expressed in memory CD8+T cells (40.29%), and 
the ABO-expressed cells were highly specific to megakar-
yocytes (54.63%) (Additional file 2: Table S10 and Addi-
tional file  3: Fig. S21B). To gather additional empirical 
support, we analyzed the combined dataset of both data-
sets #2 and #3 as a validation and found CCR1, CXCR6, 
and ABO showed a consistent specificity in the three cell 
types (Additional file 3: Fig. S22).

Given that the primary goal of the current study was 
to characterize genetic factors that exert an effect on 
peripheral immune cell types for severe COVID-19, 
the majority of our subsequent detailed analyses would 
be concentrated on three immune cell subpopulations: 
CCR1+ CD16+monocytes, ABO+ megakaryocytes, and 
CXCR6+ memory CD8+T cells (Fig. 3B).

CCR1+ CD16+monocytes and ABO+ megakaryocytes 
exacerbating inflammation in severe COVID‑19
The accumulating lines of evidence [12, 65] have sug-
gested that subsets of monocytes and megakaryocytes 
might be the major resources of aggressive hyper-inflam-
matory response (named as cytokine storm) [52]. We 
sought to examine whether CCR1+ CD16+monocytes 
and ABO+ megakaryocytes play more important 
roles in cytokine storm among severe patients. As for 
CCR1+ CD16+monocytes, we found that the inflam-
matory cytokine score was significantly higher than 
that of CCR1− CD16+monocytes (P = 2.5×10−7, 
Fig. 4A, Additional file 2: Table S11 and Additional file 3: 
Fig. S24A). Consistently, the combined score of both 
cytokine-cytokine receptor interaction and chemokine 
signaling pathway was prominently higher in CCR1+ 
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CD16+monocytes (P < 2.2×10−16, Additional file  3: 
Fig. 23A and S24B). These results were validated by using 
the independent method of Cell-ID [64] (Additional 
file 1: Supplementary methods and Additional file 3: Fig. 
S29). Compared with CCR1− CD16+monocytes, there 
were 351 significantly highly expressed genes in CCR1+ 
CD16+monocytes, such as inflammatory and cytokine 
genes of IL1B, IL27, CXCL10, CXCL8, CD14, and OSM 
(FDR < 0.05, Fig.  4B and Additional file  2: Table  S12), 
which have been documented to be associated with 

the inflammatory response and chemotaxis of immune 
cells among COVID-19 patients [10, 15, 66, 67]. Func-
tionally, 19 KEGG pathways were significantly over-
represented by the 351 highly expressed genes (FDR < 
0.05, Fig. 4C and Additional file 2: Table S13), including 
cytokine-cytokine receptor interaction and chemokine 
signaling pathway, reminiscing that most of them were 
identified in above genetics-based pathway analy-
sis. Additionally, these highly expressed genes among 
CCR1+ CD16+monocytes have a remarkably higher 

Fig. 3  Integrative analysis identifies genetic associations between peripheral immune cells and severe COVID-19. A Bar graph showing the 
results of the combination of scRNA-seq data and GWAS summary statistics on severe COVID-19 based on the RolyPoly among normal controls 
and patients with different severities (i.e., mild, moderate, and severe). The y-axis shows the 13 cell types, and the x-axis shows the mean negative 
log-transformation P value (-Log2(P)). Orange color indicates a cell type showing a significant association, and light blue represents there is 
no significant association. B UMAP projections of peripheral immune cells colored by annotated cell types. The plot showing the region of 
CD16+monocytes, megakaryocytes, and memory CD8+T cells. The red dot represents positive gene expressions of CCR1+, ABO+, and CXCR6+, and 
gray stands for negative cells
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Fig. 4  CCR1+ CD16+momocytes contribute higher risk to cytokine storms among severe COVID-19 patients. A Boxplot showing the difference in 
inflammatory cytokine score between CCR1+ and CCR1− CD16+ monocytes. A two-side Wilcoxon sum-rank test was used. B Volcano plot showing 
differentially expressed genes between CCR1+ and CCR1− CD16+ monocytes. C Significantly enriched pathways by 351 highly expressed genes 
among CCR1+ CD16+ monocytes. Color legend represents the log-transformed FDR value (-Log10(FDR)). D Bar graph showing the proportion 
of CCR1+ CD16+ monocytes among normal, mild, moderate, and severe groups. E Boxplot showing the inflammatory cytokine score of CCR1+ 
CD16+ monocytes among normal, mild, moderate, and severe groups. The Mann-Kendall trend analysis was used. F Bar graph showing the 
differentially up-DEGs among different COVID-19 patients compared with normal controls. Namely, mild COVID-19 vs. normal, moderate COVID-19 
vs. normal, and severe COVID-19 vs. normal. Venn plot on top of bar showing the overlapped up-DEGs between moderate and severe patients. G 
The correlation of up-DEGs between moderate and severe patients. Pearson correlation analysis was used to calculate the correlation coefficient 
and P value. H–J Representative up-DEGs among CCR1+ CD16+ monocytes showing significantly elevated expressions with increased COVID-19 
severities. HS100A8, IS100A9, and JIFITM1. K Disease-term enrichment analysis on 190 up-DEGs based on the GLAD4U database. The y-axis shows 
-Log10(FDR), and the x-axis shows the enrichment ratio
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proportion of druggable genes and COVID-19-asso-
ciated druggable genes (P ≤ 0.01, Additional file  2: 
Table S14 and Additional file 3: Fig. S23B).

The cell percentage of CCR1+ CD16+monocytes 
showed a notable elevation among moderate and severe 
patients compared with normal controls (P < 0.001), with 
no significant difference between mild patients and nor-
mal controls (P = 0.1, Fig. 4D). Furthermore, the inflam-
matory cytokine scores among CCR1+ CD16+monocytes 
were significantly elevated with increased severities 
(Trend P = 0.0013, Fig. 4E). In comparison with normal 
controls, mild, moderate, and severe patients displayed 
significantly up-regulated expressions (up-DEGs) with 
14, 169, and 190 genes respectively (FDR < 0.05, Fig. 4F 
and Additional file  3: Fig. S23D). Notably, there existed 
a high correlation between up-DEGs of moderate and 
severe patients (r = 0.937, P < 2.2×10−16; Fig. 4G), such 
as S100A8, S100A9, and IFITM1 (Fig. 4H–J), indicating a 
similar expression pattern between moderate and severe 
patients. Accumulating release of massive amounts of 
calprotectin (S100A8/S100A9) in monocytes contrib-
utes to inflammatory response among severe COVID-19 
patients [10, 12, 16].

Furthermore, these 190 up-DEGs were significantly 
enriched in disease terms associated with viral infection 
and inflammation and 17 functional GO-terms (FDR 
< 0.05, Fig.  4K, Additional file  2: Tables S15-S16 and 
Additional file  3: Fig. S23E), including interferon alpha/
beta signaling and interferon gamma signaling. These 
interferon-related genes, including IRF3, IRF2, IFI6, 
IFITM1, ISG15, and ICAM1, may induce autoinflam-
matory and autoimmune conditions contributing to the 
innate immune cells against SARS-CoV-2 infection [68, 
69]. Of note, a high proportion of 63.68% among 190 up-
DEGs, such as CXCL8, IFITM1, S100A8, and S100A9, 
were annotated into 15 potential druggable gene catego-
ries (Additional file 2: Table S17 and Additional file 3: Fig. 
S23F-L). These results indicate that interferon-related 
genes among CCR1+ CD16+monocytes have instrumen-
tal effects in exacerbating inflammation among severe 
patients.

In addition, we found that ABO+ megakaryocytes had 
a significantly higher inflammatory cytokine score than 
that in ABO− cells by using two independent methods 
of AddModuleScore in Seurat [30] and Cell-ID [64] (P < 
0.001, Additional file  3: Fig. S25A-B, S26A-B and S29). 
Compared with ABO− megakaryocytes, 424 genes were 
significantly highly expressed in ABO+ megakaryocytes 
(FDR < 0.05, Additional file 2: Table S18 and Additional 
file 3: Fig. S25C). These 424 highly expressed genes were 
significantly enriched in systemic lupus erythematosus, 
alcoholism, and platelet activation (FDR < 0.05, Addi-
tional file 2: Table S19 and Additional file 3: Fig. S25D). 

Similar to CCR1+ CD16+monocytes, the cell percent-
age of ABO+ megakaryocytes was significantly elevated 
among moderate and severe patients (P < 0.01, Additional 
file 3: Fig. S25E). Among ABO+ megakaryocytes, 20 and 
35 up-DEGs were notably associated with moderate and 
severe patients, respectively (FDR < 0.05, Additional 
file 3: Fig. S25F-G). There was a highly overlapped rate of 
these up-DEGs between moderate and severe COVID-19 
groups, including ACP1, S100A8, and A100A9 (18/20 = 
90%, Additional file  3: Fig. S25F-N). These 35 up-DEGs 
were annotated to 12 druggable gene categories, and sig-
nificantly enriched in several disease terms, such as shock 
and thrombocytopenia (Additional file 2: Tables S20-S21 
and Additional file 3: Fig. S25H), which were reported to 
be associated with COVID-19 [70]. Overall, these results 
suggest that both CCR1+ CD16+monocytes and ABO+ 
megakaryocytes contribute higher risk to dysfunctional 
inflammation among severe patients.

CXCR6+ memory CD8+T cells convey risk to severe 
COVID‑19
Earlier studies [10, 71] have indicated that polyfunctional 
T cells play important roles in dominating the antiviral 
infection immune response and can release a substan-
tially higher amount of multiple distinct cytokines and 
chemokines in comparison to other T cells. It is plausible 
to infer that there exist subsets of memory CD8+T cells 
predisposing to be multi-functional for against SARS-
CoV-2 infection. We calculated several immunological 
features to evaluate whether CXCR6+ memory CD8+T 
cells have a higher polyfunctionality than CXCR6− 
memory CD8+T cells. Compared with CXCR6− mem-
ory CD8+T cells, we found that scores of cytokine, 
chemokine, IFN-ɑ/β response, T cell activation, prolif-
eration, and migration were significantly higher among 
CXCR6+ memory CD8+T cells using both AddModule-
Score in Seurat [30] and Cell-ID [64] (P < 0.05, Fig. 5A–D 
and Additional file  3: Fig. S27A-C, S28A-G and S29). 
There were 158 highly expressed genes among CXCR6+ 
memory CD8+T cells in comparison with CXCR6− cells 
(FDR < 0.05, Fig. 5E). These highly expressed genes were 
significantly enriched in two biological pathways of 
cytokine-cytokine receptor interaction and inflammatory 
bowel (FDR < 0.05, Additional file 2: Table S22 and Addi-
tional file 3: Fig. S27D). The chemokine signaling pathway 
showed a suggestive enrichment (P < 0.05). These highly 
expressed genes contained numerous proinflammatory 
cytokine and chemokine genes, such as CCR1, CCR2, 
CCR5, CCR6, CCL3L1, IFNGR1, IL18R1, IL23R, MYC, 
and TNFSF14, which may be associated with the activa-
tion of memory CD8+T cells.

Furthermore, the cell proportion of CXCR6+ memory 
CD8+T cells was significantly higher among both mild 
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and moderate COVID-19 than that among the normal 
group (P < 0.05), whereas the cell proportion of CXCR6+ 
memory CD8+T cells among severe COVID-19 was 

remarkably lower than that among the normal group (P 
= 0.012, Fig. 5F). Consistently, we found that the scores 
of chemokine, T cell activation, and migration were 

Fig. 5  Multi-functionality of CXCR6+ memory CD8+T cells for severe COVID-19. A–D Boxplots showing the difference in A cytokine score, 
B chemokine score, C IFN-ɑ/β response score, and D T cell activation score between CXCR6+ and CXCR6− memory CD8+T cells. A two-side 
Wilcoxon sum-rank test was used. E Volcano plot showing differentially expressed genes between CXCR6+ and CXCR6− memory CD8+T cells. F 
Bar graph showing the proportion of CXCR6+ memory CD8+T cells among normal, mild, moderate, and severe groups. G–I Boxplots showing the 
G chemokine score, H T cell activation score, and I migration score of CXCR6+ memory CD8+T cells among normal, mild, moderate, and severe 
groups. The Mann-Kendall trend analysis was used. J Venn plot showing the overlapped up-DEGs between pairwise comparisons: mild vs. normal, 
moderate vs. normal, and severe vs. normal. K Representative gene of GZMH among CXCR6+ memory CD8+T cells showing significantly elevated 
expressions with increased COVID-19 severities. L Heatmap showing up-DEGs in CXCR6+ memory CD8+T cells from pairwise comparisons: mild 
vs. normal, moderate vs. normal, severe vs. normal. The up-DEGs listed in the green panel were from mild vs. normal, in the yellow panel were from 
moderate vs. normal, and in the orange panel were from severe vs. normal. M Scatter plot showing the enriched GO biological processes by 108 
up-DEGs among CXCR6+ memory CD8+T cells. The x-axis shows -Log10(FDR), and the y-axis shows the enrichment ratio
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increased with the increasing patient severities among 
CXCR6+ memory CD8+T cells (Trend P < 0.05, Fig. 5G–
I) and that lower cytotoxicity score and exhaustion score 
were observed among moderate-to-severe patients 
(Trend P < 0.05, Additional file 3: Fig. S27E-F). Addition-
ally, we found 44, 42, and 53 up-DEGs that were notably 
associated with mild, moderate, and severe COVID-19, 
and there were six significant common genes across 
three phases of COVID-19, including TCF7, GZMH, 
RAB5IF, CCND2, BIRC6, and NDUFAF3 (Fig. 5J–K and 
Additional file 3: Fig. S27G-N). The gene of TCF7 was an 
essential factor in memory CD8+T cell differentiation 
[72], and GZMH was reported to mediate antiviral activ-
ity through direct cleavage of viral substrates [73]. These 
108 up-DEGs were found to be significantly enriched in 
22 functional GO-terms, including Fc-gamma receptor 
signaling pathway, regulation of leukocyte differentiation, 
and activation of immune response (Fig. 5L, M and Addi-
tional file  2: Table  S23). Overall, these results indicated 
that CXCR6+ memory CD8+T cells have an enhanced 
propensity to be multi-functional and activated T cells 
involved in severe COVID-19.

Elevated interactions of CXCR6+ memory CD8+T cells 
with epithelial cells among severe COVID‑19
To gain refined insights into CCR1+ CD16+monocytes 
and CXCR6+ memory CD8+T cells, we examined the 
cellular interactions among cell populations in PBMCs 
and BALFs according to the COVID-19 disease sta-
tus using the CellChat algorithm [53]. For CCR1+ 
CD16+monocytes in PBMCs, we found an increase 
in cell-to-cell interactions with other immune cells 
among severe patients than that in normal controls (P 
< 0.05, Fig.  6A and Additional file  3: Fig. S30). There 
was no statistical difference in cellular communica-
tions of CCR1− CD16+monocytes with other cells 
between normal and COVID-19 patients (P > 0.05, 
Fig.  6B). Compared with normal controls, CCR1+ 
CD16+monocytes showed elevated interactions with 
megakaryocytes, memory CD8+T cells, NK, effector 
CD8+T cells, and CD14+monocytes among severe 
patients (Additional file  3: Fig. S30). There were 14 
ligand-receptor interactions remarkably dominated 
among severe patients (Fig.  6C and Additional file  3: 
Fig. S31A), including ANXA1-FPR1, ITGB2-ICAM2/
CD226, LGALS9-CD44, SELPLG-SELL/SELP, APP-
CD74, and THBS1-CD36/CD47.

With regard to CXCR6+ memory CD8+T cells in 
PBMCs, the predicted cell-to-cell interactions showed 
an elevation with increased severities of COVID-19 (P 
< 0.05, Fig.  6D). Similar to CCR1− CD16+monocytes, 
we observed no remarked difference of cellular interac-
tions between normal controls and COVID-19 patients 

among CXCR6− memory CD8+T cells (P > 0.05, Fig. 6E). 
Compared with healthy individuals, CXCR6+ memory 
CD8+T cells demonstrated higher cellular communi-
cations with CD14+monocytes, CD34+progenitors, 
dendritic cells, effector CD8+T cells, naïve CD8+T 
cells, memory CD4+T cell, naïve CD4+T cells, NK, and 
megakaryocytes among severe patients (Additional file 3: 
Fig. S30). There were 20 elevated cellular interactions 
of CXCR6+ memory CD8+T cells with other immune 
cells among severe patients, including ANXA1-FPR1, 
THBS1-CD47, CD99-CD99, ICAM2-(ITGAL+ITGB2), 
and ITGB2-ICAM2/CD226 (Fig. 6F and Additional file 3: 
Fig. S31B). These cell adhesion molecules (ANXA1 and 
ICMA2), cytokine binding and receptor activity genes 
(CD44, CD45, CD47, CD74, and THBS1), and inflam-
matory genes (FPR1 and SELL) have been reported to be 
associated with COVID-19 [16, 66, 74, 75].

Among BALF cells, we also observed an increase in 
cellular interactions of CCR1+ CD16+monocytes and 
CXCR6+ memory CD8+T cells comparing to their cor-
responding negative cells (P < 0.001, Fig.  6G–J and 
Additional file  3: Fig. S32A), for example, enhanced 
ligand-receptor axes of SELPLG-SELL, CCL5-CCR1, 
FN1-(ITGA4+ITGB1), CD99-CD99, and APP-CD74 
among CCR1+ CD16+monocytes (Fig.  6H), as well as 
CXCL16-CXCR6, TNFSF14-TNFRSF14, ITGB2-CD226, 
CLEC2B/CLEC2C-KLRB1, and CCL3/CCL4-CCR5 
among CXCR6+ memory CD8+T cells (Fig.  6J). Nota-
bly, there was a 60% increase in cellular interactions 
between CCR1+ CD16+monocytes and epithelial cells 
compared with that of CCR1− CD16+monocytes (Addi-
tional file 3: Fig. S32B). We also found a 33.33% increase 
in the interactions between CXCR6+ memory CD8+T 
cells and epithelial cells compared with that of CXCR6− 
memory CD8+T cells (Additional file  3: Fig. S32C), 
such as enhanced ligand-receptor interactions including 
TNF-TNFRSF1A, CXCL16-CXCR6, and CCL3-CCR5. 
Previous studies [76, 77] have reported that the CXCL16-
CXCR6 axis modulates the localization of tissue-resident 
memory CD8+T cells to the lung airways. Overall, these 
results suggest that the increased cellular interactions of 
CXCR6+ memory CD8+T cells with epithelial cells prob-
ably enhance the residence of this specific population 
of T cells to the lung airways for against SARS-CoV-2 
infection.

Discussion
By using large-scale genetics data, we identified eight 
genomic loci including three novel loci (e.g., 1p22.2, 
6p21.33, and 7p11.2) that were significantly associ-
ated with severe COVID-19. Other five loci includ-
ing 3p21.31, 9q34.2, 12q24.13, 19p13.3, and 21q22.11 
have been reported to be involved in COVID-19 risk in 
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Fig. 6  Cell-to-cell interactions of CCR1+ CD16+momocytes and CXCR6+ memory CD8+T cells with other cells in PBMC and BALF. A, B Boxplot 
showing the number of cellular interactions of ACCR1+ CD16+ monocytes and BCCR1− CD16+ monocytes with other immune cells in PBMC 
between normal controls and patients with increased COVID-19 severities. C Predicted cellular interactions of CCR1+ CD16+ monocytes with 
other immune cells in PBMC, comparing severe COVID-19 vs. normal control. D, E Boxplot showing the number of cellular interactions of DCXCR6+ 
memory CD8+T cells and ECXCR6− memory CD8+T cells with other immune cells in PBMC between normal controls and patients with increased 
COVID-19 severities. F Predicted cellular interactions of CXCR6+ memory CD8+T cells with other immune cells in PBMC, comparing severe 
COVID-19 vs. normal control. G Boxplot showing an increase in cellular interactions with other cells in BALF for CCR1+ CD16+ monocytes than 
CCR1− CD16+ monocytes. H Predicted cellular interactions with other cells in BALF, comparing CCR1+ CD16+ monocytes with CCR1− CD16+ 
monocytes. I Boxplot showing an increase in cellular interactions with other cells in BALF for CXCR6+ memory CD8+T cells than CXCR6− memory 
CD8+T cells. J Predicted cellular interactions with other cells in BALF, comparing CXCR6+ memory CD8+T cells with CXCR6− memory CD8+T cells. 
The circular size represents the significance of each ligand-receptor axis, and color represents the communication probability
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previous studies [23–28]. Notably, we prioritized 34 risk 
genes, including potential causal genes of CXCR6, CCR1, 
and ABO, to be associated with severe COVID-19. The 
CXC motif chemokine receptor 6 (CXCR6), which is a 
G protein-coupled receptor with seven transmembrane 
domains, regulates the partitioning of resident memory T 
cells by recruiting lung tissue-resident memory CD8+T 
cells to airways [76]. CCR1 gene encodes the CC motif 
chemokine receptor 1 (CCR1) belonging to a member 
of the beta chemokine receptor family. Several previous 
GWASs have reported genetic variants in CCR1 are asso-
ciated with COVID-19 susceptibility at a genome-wide 
significant level [25, 27]. For the ABO gene, it encodes 
protein relevant to the ABO blood group system. Both 
genetic and non-genetic studies [25, 27, 78] have showed 
the involvement of ABO gene in COVID-19 susceptibil-
ity, while the ABO gene encodes protein that is relevant 
to the ABO blood group system, and it was also nota-
bly associated with several thrombotic and coagula-
tion-related traits including deep vein thrombosis and 
pulmonary heart disease, which have been reported to be 
risk factors and sequalae to severe COVID-19 [79, 80].

Understanding the immune responses of monocytes 
and memory T cells is fundamental to the rational 
design of innovative and effective strategies to develop 
better vaccines [81, 82] and contributes to reveal the 
pathogenesis of severe COVID-19 [12]. Our cur-
rent analyses reveal that host genetic determinants 
have a prominent influence on the immune responses 
of CD16+monocytes, megakaryocytes, and memory 
CD8+T cells to severe COVID-19. Previous studies [11, 
12, 65] showed that the influence caused by monocytes 
and megakaryocytes in inflammatory storms is notewor-
thy among severe COVID-19 patients. We found that 
CCR1+ CD16+monocytes and ABO+ megakaryocytes 
showed a significantly increased propensity to cause 
inflammatory storms among severe patients. The obser-
vations suggest highly expressed interferon-related genes 
among the two cell subsets, including S100A8, S100A9, 
S100A12, CD14, CXCL8, IGSF6, IRF3, IFI6, IFITM1, and 
IFITM3, contribute to exacerbate inflammation among 
severe patients. The inflammatory mediator of EN-
RAGE encoded by S100A12 was significantly correlated 
with COVID-19 [21], and S100A8, S100A9, IRF3, IFI6, 
IFITM1, and IFITM3 have been reported to elicit auto-
inflammatory and autoimmune conditions in response to 
SARS-CoV-2 infection [10, 12, 16, 68, 69]. Double-posi-
tive CD14+CD16+monocytes reported as tissue-infiltra-
tive cells have a higher potency of antigen presentation 
and highly expressed proinflammatory cytokines [83, 
84]. Additionally, interferons are the mediators in sev-
eral canonical host antiviral signaling for activating the 
expression of numerous required molecules of the early 

response to viral infection [85], and impaired type I inter-
feron activity plays important roles in severe COVID-19 
[69]. Our findings described above suggest that CCR1+ 
CD16+monocytes and ABO+ megakaryocytes as two 
functional subsets of myeloid cells convey higher risks to 
severe COVID-19.

Memory CD8+T cells could elicit immunization that 
shows enhanced functional features contributing to pro-
tect host from viral infectious [82]. After influenza virus 
infections, memory CD8+T cells reside in the lung for a 
couple of months and these resident memory T cells are 
necessary for effective immunity against secondary infec-
tion [86]. Among severe COVID-19 patients, we found 
that CXCR6+ memory CD8+T cells undertook several 
enhanced functional features, including higher scores of 
cytokine, chemokine, T cell activation, proliferation, and 
migration, which suggests CXCR6+ memory CD8+T 
cells potentially contributing to the protection of SARS-
CoV-2 infection. Among these positive CXCR6+ cells, 
numerous highly expressed cytokine and chemokine 
genes, including CCR1, CCR2, IFNGR1, and MYC, may 
work on activating memory T cells. Earlier evidence 
indicated that MYC was rapidly but temporally induced 
during the early stage of T cell activation [87]. The CCR1 
plays a pivotal role in the recruitment of effector immune 
cells to the site of inflammation, and the pharmacologic 
inhibition of this gene may suppress immune hyper-acti-
vation in severe COVID-19 [15]. Memory CD8+T cells 
obtained the capability of transforming to effector cells 
by sensing inflammation from monocytes [82]. Thus, 
inflammatory CCR1+ CD16+monocytes among severe 
COVID-19 patients potentially accelerate the activation 
of memory CD8+T cells.

Additionally, we observed a decrease of the cell pro-
portion of CXCR6+ memory CD8+T cells among severe 
patients. This decrease in peripheral blood among severe 
patients is probably due to efflux to the site of virally 
infected lung tissue in answer to ongoing tissue dam-
age. Earlier studies [12, 88] have reported that functional 
CD8+T cell subsets manifest a notable decrease in the 
peripheral blood of severe COVID-19 patients. The epi-
thelium is the most vulnerable tissue to be attacked by 
viral or microbial infection; thus, the presence of resi-
dent memory CD8+T cells is imperative for defend-
ing the debilitating infections for hosts [86]. In the 
current study, we found an increase in cellular interac-
tions of CXCR6+ memory CD8+T cells with epitheli-
ums. Enhanced ligand-receptor interactions including 
TNF-TNFSFRSF1A, CXCL16-CXCR6, and CCL3-CCR5 
may contribute to the lung residence of memory CD8+T 
cells. Previous evidence demonstrated a major role for 
CXCL16-CXCR6 interactions in regulating the resi-
dence of virus-specific memory CD8+T cells [76, 77]. An 
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earlier study showed a stronger interaction between epi-
thelial and immune cells among severe COVID-19 cases 
than that among moderate cases [15]. We demonstrated 
that CXCR6+ memory CD8+T cells mounted highly 
effective immune responses to against COVID-19, high-
lighting the remarkable biological plasticity in subsets of 
memory CD8+T cells differentiation.

The power of this study is limited by the lack of 
matched genetic data and scRNA-seq data in each sam-
ple for uncovering the genetic effects on immune cells 
for severe COVID-19. To reduce the influence of this 
limitation, we adopted a widely used approach by inte-
grating a large-scale GWAS summary statistics with an 
enormous amount of single-cell sequencing data, as ref-
erenced in previous studies [49, 89, 90]. As referenced to 
previous studies [91–94], we excluded the major histo-
compatibility complex (MHC) region from all genomic 
analyses to avoid the confounding of methods by the 
unusual genetic architecture and extensively high levels 
of LD at this locus, which could lead to the inflation of 
identified COVID-19-associated genes and pathways. 
However, it should be noticed that there might exist un-
identified risk genes implicated in severe COVID-19 in 
this region. Based on our findings suggesting that host 
genetic components exert regulatory effects on immuno-
logical dysregulations for SRAS-CoV-2 infection, more 
studies are warranted for exploring the genetic modifica-
tion of peripheral T cells to defend against lethal severe 
COVID-19.

Conclusions
In sum, we provide comprehensive insights that host 
genetic determinants are fundamental in influencing the 
peripheral immune responses to severe COVID-19. Both 
CCR1+ CD16+monocytes and ABO+ megakaryocytes 
contribute higher risk to the dysfunctional inflamma-
tory response among severe patients. CXCR6+ memory 
CD8+T cells exhibit a notable polyfunctionality includ-
ing high expression of cytokines and chemokines, as well 
as enhanced activation and proliferation of T cells in 
severe COVID-19 patients. Further experiments to parse 
the molecular mechanism of three cell subpopulations 
are crucial for understanding the inter-individual varia-
tion of the initiation and progression of COVID-19.
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