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RNA profiling of blood platelets 
noninvasively differentiates colorectal cancer 
from healthy donors and noncancerous 
intestinal diseases: a retrospective cohort study
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Abstract 

Background:  The RNA profiles of tumor-educated platelets (TEPs) possess pathological features that could be used 
for early cancer detection. However, the utility of TEP RNA profiling in detecting early colorectal cancer (CRC) versus 
noncancerous colorectal diseases has not yet been investigated. This study assesses the diagnostic capacity of TEP 
RNA profiles in a cohort of patients with CRC and noncancerous diseases.

Methods:  Transcriptome sequencing for platelets isolated from 132 patients with CRC at early and late stages and 
190 controls consisting of healthy donors and patients with ulcerative disease, Crohn’s disease, polyps, and adenomas 
was performed and analyzed using binary particle swarm optimization coupled with support vector machine to iden-
tify genes that contributed to the classification of CRC patients versus controls. The area under the receiver operating 
curves (AUROCs) and the accuracy of TEP RNA profiles in CRC diagnosis were assessed.

Results:  TEP RNA profiling achieved high performance in distinguishing and staging CRC patients from the controls. 
Using the swarm intelligence algorithm, the 921 most contributive genes that classified CRC patients from the con-
trols were identified. AUROCs of 0.928 for the training set via leave-one-out cross-validation and 0.92 for the validation 
set were achieved, both of which were significantly higher than the clinically utilized serum biomarkers: carcinoem-
bryonic antigen and cancer antigen 19-9. Notably, an AUROC of 0.915 in an external validation set was achieved. For 
predicting different CRC stages, an AUROC of 0.984 was achieved in the training set and 1.000 in the internal valida-
tion set.

Conclusions:  RNA profiles of TEPs are of potential diagnostic value for identifying early CRC from noncancerous 
diseases. Prospective studies are needed to validate its clinical relevance.
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Background
Colorectal cancer (CRC) is a leading cause of cancer-
related death worldwide [1]. In the USA and China, 
the mortality and incidence of CRC rank 2nd/4th and 
4th/3rd, respectively, among various cancers [2, 3]. 
Although surgical removal is infrequently curative 
once metastatic diseases occur, early CRC detection at 
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surgically resectable stages without distant metasta-
sis can indeed improve both survival outcomes and life 
quality of patients. Given that the development of CRC 
malignancy often takes two to three decades before clini-
cal manifestation [4], a wide time window for detecting 
CRC before metastasis is provided. Therefore, it is criti-
cal to develop new methods and technology for the diag-
nosis of CRC at early stages, and particularly for patients 
who suffer from inflammatory bowel diseases (IBD, 
such as Crohn’s disease and ulcerative colitis), polyps, 
or adenomas, because these patients have a high risk of 
developing CRC [5–7]. Conventional serum protein bio-
markers, such as carcinoembryonic antigen (CEA) and 
cancer antigen 19-9 (CA199), have low sensitivity and 
specificity. The sensitivity of CEA and CA199 to detect 
CRC was reportedly 46.6% and 14.4%, respectively, while 
the specificity was 80% and 89%, respectively [8]. Pre-
cancerous lesions, such as advanced adenoma and high-
risk adenoma, also induce aberrant expression of CEA 
and CA199, which complicates early CRC detection [9]. 
Besides, some molecular biological markers of CRC, such 
as serum microRNAs and methylated septin-9 DNA, 
were also reported, but they did not distinguish well CRC 
from polyps or adenomas [10, 11]. Thus, a new accurate 
and efficient method is needed for screening CRC from 
patients with IBD, polyps, and adenomas.

Blood platelets, small anucleate cells originated from 
bone marrow megakaryocytes, play important roles in 
response to tumor progression. Apart from genetic mate-
rials, proteins, and RNAs derived from megakaryocytes, 
platelets also actively sequester proteins and spliced/
unspliced RNAs, as well as oncogenic and angiogenic fac-
tors from cancer cells, such as VEGF, PDGF, and TGF-β 
[12]. Blood platelets reportedly contribute to creating 
tumor microenvironment supporting cancer develop-
ment and progression [13]. The interplays between 
tumor cells and blood platelets impact tumor growth 
and dissemination [14–16]. Tumor cells can regulate 
blood platelets by transferring tumor-associated factors 
into platelets, consequently altering the expression pro-
files of blood platelets [17]. Meanwhile, platelet activa-
tion can release growth factors to facilitate tumor cell 
survival [18]. Platelets can encompass circulating tumor 
cells (CTCs) in the bloodstream, helping CTCs escape 
from immune cell-induced apoptosis and fluidic shear-
ing force. Moreover, in addition to stimulating cancer cell 
adhesion and extravasation, platelets also contribute to 
CTC transmigration through the blood vessel walls and 
distant metastatic lesion formation [19].

RNA profiling of TEPs has emerged as a new liquid 
biopsy-based cancer detection method, allowing for non-
invasive cancer detection [12]. The advantage of using 
RNA profiles of TEPs as a new strategy for early cancer 

detection is that platelet is the second most abundant cell 
types in the blood and can be stored at room tempera-
ture up to 48 h [20]. RNA profiles of TEPs were reported 
to achieve an AUROC of 0.99 and an accuracy of 96% in 
differentiating healthy donors and multiple cancer types 
at advanced or metastatic stages [20]. Of note, primary 
tumor sites and oncogenic alterations at the DNA level 
could be pinpointed using TEP RNA profiles [20]. The 
performance of using RNA profiles of TEPs to differ-
entiate nonsmall cell lung cancer (NSCLC) from other 
noncancerous diseases was robust, but the control dis-
eases were not closely related to NSCLC, and the clas-
sification accuracy was not as good as its performance 
in distinguishing healthy donors from cancer patients at 
advanced stages [21]. The accuracy of TEP-based detec-
tion of nonsmall cell lung cancer was reportedly 81% 
for early stages and 88% for late stages [21]. This per-
formance is independent of age, smoking habits, and 
inflammatory states [21]. However, the analysis on RNA 
profiles of TEPs towards detecting early CRC, especially 
in the context of noncancerous intestinal diseases that 
were associated with the development of CRC, has not 
yet been explored. Tumorigenesis of sporadic CRC fol-
lows canonical multistep development, starting from 
polyps and adenomas to carcinoma and involving diverse 
genomic and epigenomic alterations [4], which collec-
tively complicate early CRC detection. This study was set 
to assess the diagnostic performance of TEP RNA pro-
files in detecting CRC at an early stage from a cohort of 
322 donors by expanding controls to cover a wide range 
of noncancerous diseases, such as IBDs, polyps, and 
adenomas.

Methods
Blood processing and platelet isolation
This study was conducted according to the Helsinki 
human subject doctrine and was approved by the 
Huazhong University of Science and Technology Review 
Board and Ethics Committee. Written consent to partici-
pate was acquired from all patients. A total of 322 blood 
samples were obtained from healthy donors (n = 21), 
patients with Crohn’s disease (CD, n = 40), ulcerative 
colitis (UC, n = 22), polyps (n = 48), and adenoma (Ad, 
n = 59) or CRC (n = 132) in Wuhan Union Hospital. The 
number of CRC patients at stages I, II, III, and IV was 25, 
48, 58, and 1, respectively. Blood samples were stored in 
5-mL purple-capped vacutainers equipped with the anti-
coagulant EDTAK2 (purchased from Zhiyuan Medical 
Technology Co., Ltd.). Platelets were isolated using gradi-
ent centrifugation according to the standard experimen-
tal method described previously [22]. To evaluate platelet 
purity, morphological analysis was implemented to check 
freshly isolated and randomly selected platelet samples. 
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Samples with 0–5 nucleated cells per 10 million platelets 
were included in the follow-up processes. Isolated plate-
lets were lysed with 1 mL RNAiso (takara NO9109), fol-
lowed by pipetting RNAiso solution to complete lysis. 
Platelet total RNA was purified with Direct-zol RNA 
Miniprep (ZYMO RESEARCH R2052), then 500 pg of 
total RNA was subjected to SMARTer mRNA amplifica-
tion and sequencing. During blood acquisition for library 
preparation, 134 (29.4%) samples were excluded due to 
low blood volume (< 2 mL, six samples), nucleated cell 
contamination (60 samples), or poor RNA quality (total 
RNA < 5 ng and/or RIN value < 6, 68 samples).

Transcriptome sequencing
The quality of total RNA was examined using an Agi-
lent 2100 bioanalyzer and then was subjected to cDNA 
synthesis and amplification using SMARTer kit (Clon-
tech Laboratories, Inc.) according to the manufacturers’ 
protocol. By using Agilent 2100 bioanalyzer with DNA 
high-sensitivity chip, we performed quality control to 
amplified sequencing. Samples were prepared using 
the Ovation® SoLo RNA-seq Systems (HUMAN PART 
NO0500) according to the manufacturer’s protocol. 
Finally, we pooled high-quality samples with product 
sizes ranging 300–500 bp in equimolar concentrations, 
then submitted for 100 bp paired-read sequencing on 
the Illumina HiSeq X-ten.

Sequencing data analysis
We used STAR to perform spliced alignment of clean 
reads to human reference genome hg19 guided by 
annotated transcripts of Ensembl version 75 [23]. The 
intron-spanning read count table of each transcript was 
collected by STAR during sequence alignment. The read 
count table obtained from the STAR aligner was equal to 
those obtained from the HTSeq tool [24]. Both coding 
and noncoding RNAs were included in abundance esti-
mation and downstream analyses.

Differential gene expression analysis and data 
normalization
Differential gene expression analysis was performed 
using the R-package DESeq2 [25]. Transcripts with less 
than five read counts in all samples were excluded. We 
constructed DESeq object from the read count table 
obtained above and performed variance stabilizing 
transformation with the vst function [26]. Construction 
of the DESeq object included estimation of size factors, 
estimation of dispersion, and fitting negative binomial 
general linear model to the data. The differential expres-
sion analysis statistics including log2 fold-change, test 
statistics, and p-value were extracted from the DESeq 
object. We employed the R routine results to extract the 

result table from the DESeq analysis. We used the test 
statistics to perform gene set enrichment analysis for 
cancer hallmark pathways and platelet signatures down-
loaded from MsigDB [27]. We obtained normalized gene 
expression data after variance stabilizing transformation. 
We calculated the correlation of the expression level of 
each gene with the age of individuals. Genes that exhib-
ited significant correlation with age were excluded from 
the downstream analysis to avoid the impact induced 
by age. We then performed surrogate variable analysis 
to remove unwanted variations within the data via the 
R-package sva [28].

Training sets and validation sets
The training set (n = 202) was composed of 80 CRC 
patients at stages I (n = 15), II (n = 30), III (n = 34), 
and IV (n = 1) and 122 controls including HD (n = 17) 
and patients with CD (n = 24), UC (n = 24), polyps (n 
= 31), and Ad (n = 36) (Additional file  1: Table  S1). 
The internal validation set (n = 120) was composed of 
68 CRC patients at stages I (n = 10), II (n = 18), and 
III (n = 24) and 52 controls including HD (n = 4) and 
patients with CD (n = 16), UC (n = 8), polyps (n = 17), 
and Ad (n = 23) (Additional file  1: Table  S1). Mean-
while, the cohort from Best and colleagues (n = 101, 38 
cancer patients and 63 controls) was used as the exter-
nal validation set [20].

Feature selection via binary particle swarm optimization
Particle swarm optimization (PSO) mimics natural phe-
nomena such as movements of bird flocks. The optimiza-
tion procedure was first initiated with multiple particles. 
In the feature selection setting, particles are subsets of 
different predictors. Each particle has its position, veloc-
ity, and fitness value in the searching space. In our study, 
we used support vector machine (SVM) as the classi-
fier and area under the receiver operating characteristic 
curve (AUROC) as the fitness value of the classification 
model. The fitness of the model was iteratively evaluated 
on the last position and current velocity, and the best 
position was determined. The PSO algorithm was firstly 
proposed for real-value optimization and later adapted 
to discrete optimization [29]. Let xid and vid denote the 
coordinates and velocity of the ith particle in D-dimen-
sional space and g as the index of the best particle in the 
neighborhoods identified so far [28]. The movement of 
the ith particle is as follows:

where pid and xid are binary values, i.e., 0 or 1, and 𝝋 
is the random positive number generated for particle ith. 

vid = vid + ϕ(pid − xid)+ ϕ
(

pgd − xid
)
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The velocity vid was transformed by logistic function 
S(vid) as follows:

The function rand is a uniform random number gen-
erator in [0.0, 1.0], and the range of S(vid) is [0.0, 1.0]. We 
ran the algorithm for 100 iterations. The feature sets with 
the highest AUROC were used to build the final SVM 
classifier and subsequently evaluated its performance 
on internal and external validation sets. The R package 
caret (version 6.0–78) was used to build and optimize 
the parameters of the SVM classifier. The calculation of 
AUROC and the visualization of ROC were performed 
with the R package pROC (version 1.10.0). We used the 

if (rand() < S(vid)) then xid = 1, else xid = 0

R function multiclass.roc in the pROC package to calcu-
late the multiclass AUROC, which implemented the mul-
ticlass AUROC calculation proposed by Hand and Till 
[30]. Tenfold cross-validation was used as an optimiza-
tion cohort.

Results
We collected and isolated blood platelets from 132 CRC 
patients and 190 controls from Wuhan Union Hospital 
between January 2016 and August 2017 (322 samples 
in total). A flowchart depicting the experimental design 
is shown in Fig.  1. These 132 CRC patients included 
patients at stage I (n = 25), stage II (n = 48), stage III (n 
= 58), and stage IV (n = 1), whereas the control group 

Fig. 1  Flowchart depicting the experimental design of this study
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included healthy donors (HD, n = 21) and patients with 
Crohn’s disease (CD, n = 40), ulcerative colitis (UC, 
n = 22), polyps (n = 48), and adenomas (Ad, n = 59) 
(Fig. 2A). The age ranged from 31 to 72 (mean ± SD, 54.6 
± 11.3) for healthy donors, 24 to 89 (59.3 ± 12.5) for CRC 
patients, 15 to 69 (30.6 ± 13.2) for CD, 18 to 65 (42.9 ± 
11.9) for UC, 18 to 85 (56.2 ± 12.9) for polyps, and 30 to 
76 (54.9 ± 10.1) for adenomas. The clinical features were 
provided in Additional file 1: Table S1. The proportions 
of different genders (i.e., male and female) in the CRC 
group versus the control group were comparable (60.6% 
male (80/132) versus 67.3% female (128/190); Fisher’s 
exact test, p = 0.237; Fig.  2B). The levels of CEA and 
CA199 were significantly higher in CRC patients versus 
the controls (Additional file 1: Fig. S1, log2-transformed 
median, 2.08 versus 0.77, 3.16 versus 2.68; Wilcoxon rank 
sum test, p < 0.001, p = 0.002, respectively). The distribu-
tions of CEA and CA199 with respect to disease status 
are shown in Figs. 1D and 2C.

We tested the platelet purity by morphological anal-
ysis (Additional file  1: Fig. S2) [20]. Platelet samples 
that passed the quality control criteria were subjected 
to RNA isolation, quality and quantity assessment, 
and RNA sequencing (see the “Methods” section). 

The median sequencing reads of 58.8 million per 
sample were obtained; RNA sequence alignment was 
performed by STAR [21], and the median percent-
age of uniquely mapped reads was 83.2% per sample 
(for detailed information regarding sequencing data 
and mapping results, see Additional file  1: Table  S2). 
Intron-spanning reads of each gene were collected dur-
ing sequence alignment (see the “Methods” section). 
After exclusion of genes with low coverage, 16,300 
genes were finally obtained for the following analyses. 
We performed differential gene expression analysis and 
subsequently gene set enrichment analysis (GSEA). 
In total, 863 genes exhibited significant differences in 
CRC patients versus all controls (adjusted p < 0.1): 161 
upregulated and 702 downregulated genes; 1095 genes 
exhibited differential expression across CRC patients, 
healthy donors, and patients with noncancerous dis-
eases. The GSEA analysis showed that immune-related 
signaling circuits were significantly downregulated in 
CRC patients, whereas the circuits of platelet signa-
tures and platelet activation were significantly upreg-
ulated in CRC patients. This finding was consistent 
with a previous study by Best and colleagues [20]. The 
downregulated circuits included TNF-α signaling 

Fig. 2  Distribution of blood platelet samples and serum levels of CEA and CA199 stratified by different diseases. A Numbers of different blood 
platelet samples from healthy donors (HD), patients with noncancerous diseases (polyps, Ad, UC, and CD), and CRCs (stages I–IV). B The number of 
males and females in the cancer group and control group. C, D Distribution of CEA (C) and CA199 (D) stratified by disease types and TNM stages (I, 
II, III, and IV)
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via NF-κB, interferon α/γ responses, and IL2 signal-
ing, while the upregulated circuits included myogen-
esis, heme metabolism, platelet signature, responses 
to elevated platelet cytosolic CA2, and platelet activa-
tion and aggregation (Fig. 3). On the contrary to CRC, 
those immune-related signaling pathways (TNF-α sign-
aling via NF-κB, interferon α/γ responses, and allo-
graft rejection) were significantly upregulated in both 
polyp or adenoma patients (Additional file  1: Fig. S3). 
The heatmap representation of differentially expressed 
genes (Fig.  4) suggests that RNA profiles of TEPs in 
healthy donors are clearly separable from patients diag-
nosed with CRC, polyps, adenoma, Crohn’s disease, 
and ulcerative colitis in our cohort (Fisher’s exact test, 
all p < 0.001) and in an external cohort from Best and 
colleagues (Fisher’s exact test, p < 0.001) [20].

Binary particle swarm optimization (PSO) coupled 
with support vector machine (SVM) was used to identify 
a panel of genes that contributed the most to the clas-
sification of CRC patients versus controls. We excluded 
the genes significantly associated with age of individuals 
to avoid unwanted impact on classification. Variance sta-
bilizing transformation of gene expression matrix (after 

exclusion of age-associated genes) was used as the inputs 
for binary PSO-based feature selection. Eventually, 921 
genes were identified as the most contributive genes and 
used to build the cancer-versus-control classifier (Addi-
tional file 1: Table S3). The area under the receiver oper-
ating curves (AUROCs) for the repeated cross-validation 
of the training set and the internal validation set were 
evaluated iteratively (Additional file  1: Fig. S4), which 
indicates that SVM fits well to both the training and the 
validation sets. We achieved an AUROC of 0.928 (95% 
CI 0.891–0.965) on the training set (Fig.  5A) as meas-
ured by leave-one-out cross-validation and 0.92 (95% 
CI 0.869–0.971) on the internal validation set (Fig. 5B). 
Additionally, an AUROC of 0.915 (95% CI 0.859–0.970) 
was obtained for the external dataset reported by Best 
and colleagues (Fig. 5C) [20]. The AUROC values in the 
training set and the internal validation set were 0.785 
(95% CI 0.708–0.863) and 0.679 (95% CI 0.562–0.796) 
for CEA, respectively, and 0.676 (95% CI 0.581–0.771) 
and 0.546 (95% CI 0.416–0.482) for CA199, respec-
tively. The identified panel markers achieved significantly 
higher AUROC in both the training set and the internal 
validation set than did CEA (p = 0.001 and p = 0.0003, 

Fig. 3  Gene set enrichment analyses of differentially expressed genes in the pathways of cancer hallmarks and platelet signatures
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respectively) and CA199 (all p < 0.0001). For the training 
set, the classification accuracy, sensitivity, and specificity 
were 87.6%, 97.5%, and 81.1%, respectively; for the inter-
nal validation set, the classification accuracy, sensitivity, 
and specificity were 87.5%, 88.5%, and 86.8%, respec-
tively; for the external dataset from Best and colleagues, 
the classification accuracy, the sensitivity, and the speci-
ficity were 86.1%, 76.1%, and 94.5%, respectively. Other 
classification metrics including positive predictive value, 
negative predictive value, kappa coefficient, and F1 score 
were shown in Table 1. Moreover, we observed that the 
classification accuracy was comparable when stratified 
by different disease types and TNM stages. The sensi-
tivities of identifying CRC patients in the training set 
were 93.3% (14/15) at stage I, 96.7% (29/30) at stage II, 
and 100% (34/34) at stage III. For the internal validation 
set, the sensitivities were 80% (8/10) for stage I, 88.9% 
(16/18) for stage II, and 91.7% (22/24) for stage III. We 

achieved comparable classification performance when 
incorporating the serum levels of CEA and CA199 into 
the identified gene panels in both the training set (0.926, 
95% CI 0.877–0.976) and the validation set (0.933, 95% 
CI 0.883–0.984) (Fig. 5D). The sensitivities were 73% in 
the training set at 98% specificity and 76% in the internal 
validation set at 99% specificity (Fig. 5D).

TEP RNA profiling also showed high sensitivity and 
specificity in predicting the stages of CRC. An AUROC of 
0.984 (95% CI 0.966–1.000) was achieved on the training 
set and 1.000 (95% CI 1.000–1.000) for the internal vali-
dation set (Fig.  5E). Apart from CRC identification and 
staging, TEP RNA profiles also allowed the classification 
of healthy donors, patients with noncancerous diseases, 
and CRC patients. We obtained a gene panel of 929 genes 
from the binary PSO algorithm for the classification of 
healthy donors, patients with noncancerous diseases, 
and CRC (Additional file 1: Table S4). The AUROCs were 

Fig. 4  Heatmap representation of differentially expressed genes in healthy donor versus cancer group (stages I–III) and noncancerous controls 
(polyps, Ad, UC, and CD) in our cohort and in Best and colleagues’ cohort
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Fig. 5  A–C The ROC curves of the selected gene panels and confusion matrices in the training set (A), the internal validation set (B), and the 
external validation set (C). D The ROC curves of the training set (via LOOCV) and the internal validation set by including CEA and CA199 into the set 
of selected genes. SP, specificity; SN, sensitivity. E The ROC curves of the selected genes in the classification of CRC stage
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0.895 and 0.892 for the training set and the internal vali-
dation set, respectively (Additional file 1: Table S5).

Discussion
Blood-based liquid biopsy provides a potential non-
invasive alternative for early CRC detection. Among 
various liquid biopsy procedures (such as circulating 
cell-free DNA sequencing and gut microbiome profil-
ing) [31–33], TEP RNA profiles emerged as a promis-
ing marker of molecular diagnostics to detect CRC at 
early stages. TEP RNA profiling has been employed for 
multiclass cancer diagnosis and reportedly achieved 
high accuracy in detecting several cancer types, 
including CRC [20]. However, previous studies did not 
include IBDs, polyps, and adenomas, which are com-
mon among human populations and often confound 
CRC early detection. Here, we showed that the TEP 
RNA profile can effectively detect CRC patients at an 
early stage from the population with the inclusion of 
noncancerous diseases, as well as predicting the stages 
of CRC. Our study revealed that RNA profiles of blood 
platelets from healthy donors are distinct from those 
of patients with CRC and other noncancerous dis-
eases, whereas RNA profiles of blood platelets from 
patients with CRC and noncancerous diseases were 
admixed in the linear space of heatmap representation 
even though they were separable (Additional file  1: 
Fig. S5, Fisher’s exact test, p = 0.002). The SVM algo-
rithm has high classification power as it projects data 
into higher dimensional space with kernel methods, 
which can model the nonlinear features embedded in 
the TEP RNA expression data that were not captured 
in heatmap representation. This underscored the 
importance of including noncancerous diseases in the 
control group when developing TEP-based CRC early 
detection methods. In the internal validation set, five 

patients with adenoma, two with polyps, and two with 
Crohn’s disease were misclassified as CRC (Fig. 5). Fol-
low-up of these misclassified noncancerous patients 
in this study should be conducted to determine their 
risks of CRC development in the future.

Pathologically, there is a cross-talk between blood 
platelets and cancer cells. Cancer cells participate in 
platelet activation and reshape platelet RNA profiles 
by their oncogenic transformation mechanisms. Mean-
while, platelets contain growth and angiogenic factors 
facilitating cancer progression, and also interact with 
immune cells, such as natural killer cells and neutro-
phils, to promote cancer cell evasion from immune sur-
veillance. Functional analysis from our study indicates 
that gene sets related to platelet activation and plate-
let signature are upregulated in CRC patients, while 
immune-related pathways, such as TNF-α signaling via 
NF-κB and interferon responses, are downregulated 
in CRC patients. This observation is consistent with a 
previous study [18]. Notably, the platelet RNA profiles 
of patients with polyps or adenomas are clearly dis-
tinguishable from healthy donors, which has not been 
reported before, suggesting that the development of 
noncancerous diseases involves pathological interac-
tions with platelets.

The identified gene panels achieved significantly 
higher performance than did serum protein biomark-
ers, such as CEA and CA199 (p < 0.001). The perfor-
mance was validated by an internal validation set and 
an external validation set whose control group how-
ever only contained healthy donors. The accuracy of 
detecting CRC patients at different stages was com-
parable. When incorporating CEA and CA199, the 
sensitivity of the performance of the classifier was 
marginally improved, suggesting that the selected gene 
panel possesses the CEA/CA199 comparable or even 

Table 1  Classification metrics of SVM

a Kappa measured the agreement between the predicted classification with true labels. F1 was the harmonic average of precision (positive predicted value) and recall 
rates (sensitivity)

Performance metrics The classification metrics of SVM across three data sets

Training set (LOOCV, n = 202) Internal validation set (n = 120) External 
validation set (n 
= 101)

Accuracy (95% CI) 0.876 (0.823–0.918) 0.875 (0.802–0.928) 0.861 (0.778–0.922)

Sensitivity (95% CI) 0.975 (0.913–0.997) 0.885 (0.766–0.956) 0.761 (0.612–0.874)

Specificity (95% CI) 0.811 (0.731–0.877) 0.868 (0.764–0.938) 0.945 (0.849–0.989)

Positive predicted value 0.772 (0.678–0.850) 0.836 (0.712–0.922) 0.921 (0.786–0.983)

Negative predicted value 0.980 (0.930–0.998) 0.908 (0.810–0.965) 0.825 (0.709–0.909)

Kappaa 0.752 0.747 0.717

F1
a 0.862 0.860 0.833
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higher power in identifying CRC patients. Despite the 
incorporation of CEA and CA199, the performance 
of the classifier was marginally improved, suggesting 
that the selected gene panel possesses the CEA/CA199 
comparable or even higher power in identifying CRC 
patients. Besides, TEP RNA profiling maintained a sta-
ble performance in the external validation set, indicat-
ing that the classifier is suitable for the data acquired 
by different RNA isolation and sequencing methods. 
Although some other biomolecules, such as cell-free 
DNA and intestinal microbiome, employed by several 
liquid biopsies were also interrogated in the early CRC 
detection, they have their own limitations. The recall 
rates based on mutations of cell-free DNA depend on 
the sequencing depth and vary across different stages 
[31]. The profiles of microbiome collected from fecal 
samples and intestinal microenvironment during 
colonoscopy examination were reportedly valuable 
for early CRC detection [32], but microbiome data 
are readily affected by antibiotics and sample collec-
tion procedures [32, 34, 35]. The classification power 
of these early CRC detection approaches, including 
our TEP RNA profiling, is expected to increase in the 
future by including more samples, incorporating mul-
tiple types of datasets, and using deep learning algo-
rithms that have higher feature representation learning 
capability.

Although we demonstrated the applicability of TEP 
RNA profiling for CRC screening, some limitations should 
be considered. In this study, the sample exclusion rate 
reached 29.4%, mainly due to the insufficient blood vol-
ume, nucleated cell contamination, or poor sample qual-
ity, thus burdening the sample collection process. These 
underscore the importance of optimizing platelet and 
platelet RNA isolation procedure for TEP RNA profiling. 
Furthermore, the CRC diagnostic efficiency of TEP RNA 
profiling still needs to be evaluated in prospective studies.

Conclusions
In summary, we showed that RNA profiles of blood 
platelet are potentially applicable for early CRC detec-
tion from noncancerous diseases. However, further vali-
dation, especially prospective validation, is required for 
further demonstrating the diagnostic significance of TEP 
RNA profiling.
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