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Abstract 

Background:  Each year 3–6 million people develop life-threatening severe dengue (SD). Clinical warning signs for 
SD manifest late in the disease course and are nonspecific, leading to missed cases and excess hospital burden. Better 
SD prognostics are urgently needed.

Methods:  We integrated 11 public datasets profiling the blood transcriptome of 365 dengue patients of all ages 
and from seven countries, encompassing biological, clinical, and technical heterogeneity. We performed an iterative 
multi-cohort analysis to identify differentially expressed genes (DEGs) between non-severe patients and SD progres-
sors. Using only these DEGs, we trained an XGBoost machine learning model on public data to predict progression 
to SD. All model parameters were “locked” prior to validation in an independent, prospectively enrolled cohort of 377 
dengue patients in Colombia. We measured expression of the DEGs in whole blood samples collected upon presenta-
tion, prior to SD progression. We then compared the accuracy of the locked XGBoost model and clinical warning signs 
in predicting SD.

Results:  We identified eight SD-associated DEGs in the public datasets and built an 8-gene XGBoost model that 
accurately predicted SD progression in the independent validation cohort with 86.4% (95% CI 68.2–100) sensitivity 
and 79.7% (95% CI 75.5–83.9) specificity. Given the 5.8% proportion of SD cases in this cohort, the 8-gene model had 
a positive and negative predictive value (PPV and NPV) of 20.9% (95% CI 16.7–25.6) and 99.0% (95% CI 97.7–100.0), 
respectively. Compared to clinical warning signs at presentation, which had 77.3% (95% CI 58.3–94.1) sensitivity and 
39.7% (95% CI 34.7–44.9) specificity, the 8-gene model led to an 80% reduction in the number needed to predict 
(NNP) from 25.4 to 5.0. Importantly, the 8-gene model accurately predicted subsequent SD in the first three days post-
fever onset and up to three days prior to SD progression.
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Background
Dengue virus (DENV) is endemic in over 100 countries, 
with nearly half the global population at risk for infec-
tion [1]. The global incidence of dengue continues to rise, 
with increasing frequency of localized outbreaks. Among 
the estimated 60 million people per year who develop 
acute dengue fever, 5-10% progress within several days 
to severe dengue (SD), a potentially life-threatening com-
plication characterized by plasma leakage, hemorrhage, 
shock, and/or organ damage [2–5].

Early identification of SD progressors and timely 
administration of supportive care are essential to reduce 
morbidity and mortality. In response to this need, the 
World Health Organization (WHO) introduced new 
diagnostic subclassifications in 2009: dengue without 
warning signs (D), dengue with warning signs (DWS), 
and severe dengue (SD). Under these criteria, the WHO 
recommends that dengue patients with any clinical warn-
ing signs for SD be admitted to the hospital for close 
monitoring [6]. However, warning signs are broadly 
defined and nonspecific [7–9]. As a result, their imple-
mentation has substantially increased the number of 
patients admitted to hospitals, many of whom recover 
without severe complications [10–13]. Moreover, warn-
ing signs may develop late in the disease course, pre-
cluding early identification of SD progressors [2, 13]. 
Therefore, there is an urgent need to develop more accu-
rate prognostic tools to reduce dengue morbidity, mor-
tality, and healthcare burden.

Several such tools have been proposed to date, including 
host response-based gene signatures [14–17] and machine 
learning models using clinical features or genomic variants 
[18–21]. However, none have translated to clinical practice 
due to insufficient predictive power, lack of generalizability, 
and/or lack of parsimony [16, 22, 23]. We previously iden-
tified a 20-gene set associated with SD [24], but its perfor-
mance in a large, prospective cohort remains unknown. 
Furthermore, an accurate signature based on fewer genes 
would be more technically feasible for assay development 
and cost-effective in limited-resource settings.

Here, we trained an 8-gene machine learning model 
to predict progression to SD and validated it in an inde-
pendent prospective cohort. We improved upon exist-
ing work in four important ways: (1) we integrated more 
publicly available data, (2) we applied a modified iterative 

multi-cohort analysis method to identify genes robustly 
associated with progression to SD, (3) we trained a 
machine learning model using signature genes to learn 
complex underlying patterns within the data, and (4) we 
validated the model, with locked parameters, in a large, 
independent, prospectively-enrolled cohort of 377 den-
gue patients in Colombia. In this prospective cohort, we 
show the improved generalizability of the 8-gene model 
compared to the prior 20-gene set. Additionally, we dem-
onstrate the increased prognostic power of the 8-gene 
model relative to clinical warning signs, indicating the 
model’s potential utility in guiding dengue patient triage 
and management.

Methods
Curation of public dengue datasets
We searched the NCBI Gene Expression Omnibus 
(GEO) repository through August 1, 2019, using the 
query “dengue” for datasets profiling blood gene expres-
sion by array or high-throughput sequencing in human 
dengue patients with varying infection outcomes. We 
excluded studies that only examined uncomplicated 
dengue patients or that  did not report sample-level 
information on disease severity. We further excluded 
cell culture studies, studies on steroid-treated patients, 
and studies where over half of the genes profiled had 
sparse expression data (missing values for ≥15% of sam-
ples). The resulting 11 datasets were biologically, clini-
cally, and technically heterogeneous, representing seven 
different countries, patients of all ages, different sample 
types (whole blood and PBMCs), and distinct technolo-
gies for gene expression profiling (Table 1) [14, 15, 25–
32]. We classified patients with uncomplicated dengue 
fever (DF) as “non-severe” and patients with dengue 
hemorrhagic fever (DHF) or dengue shock syndrome 
(DSS) as “SD progressors.” We used samples from a total 
of 365 patients (199 non-severe, 166 SD progressors) 
for multi-cohort analysis. Additional pre-processing 
details are described in Additional file 1: Supplementary 
methods.

Multi‑cohort analysis and gene set discovery
We compared gene expression between non-severe 
patients and SD progressors  by applying Monte Carlo 
cross-validation at the dataset level to our previously 

Conclusions:  The 8-gene XGBoost model, trained on heterogeneous public datasets, accurately predicted progres-
sion to SD in a large, independent, prospective cohort, including during the early febrile stage when SD prediction 
remains clinically difficult. The model has potential to be translated to a point-of-care prognostic assay to reduce 
dengue morbidity and mortality without overwhelming limited healthcare resources.
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described multi-cohort analysis framework, MetaInte-
grator (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​MetaI​
ntegr​ator/) [23], which has enabled identification of sev-
eral host response-based gene signatures that have been 
validated independently by our group and others [33–
35]. In each iteration, we randomly selected seven data-
sets for “training” and performed multi-cohort analysis 
using MetaIntegrator. We applied significance thresholds 
∣effect size  (ES) ∣  ≥ 0.4  and  false discovery rate ≤ 10% to 
identify differentially expressed genes (DEGs). We then 
performed multi-cohort analysis on the remaining four 
“validation” datasets to identify the genes from train-
ing that also passed the significance threshold ∣effect 
size  (ES) ∣  ≥ 0.25 in validation. After 100 iterations, we 
derived a set of 25 DEGs that were significant in both 
training and validation in greater than 50% of the itera-
tions. From this gene set, we performed a greedy forward 
search, as implemented in MetaIntegrator, to identify 
the most predictive gene set. Briefly, we added genes 
one-by-one to optimize area under the receiver operat-
ing characteristic (ROC) curve (AUC) across all 11 data-
sets (weighted by sample size in each dataset) using the 
difference-of-geometric-means score, computed by sub-
tracting the geometric mean of the downregulated genes 
from the geometric mean of the upregulated genes. This 
resulted in an 8-gene set with three upregulated genes 
and five downregulated genes.

Longitudinal analysis in public datasets
For longitudinal analysis of the eight genes in the pub-
lic datasets, we used the seven datasets that reported 

day post-fever onset at the sample level (GSE13052, 
GSE17924, GSE18090, GSE25001, GSE38246, 
GSE43777_GPL201, GSE43777_GPL570). We used a 
total of 539 samples (342 from non-severe patients, 197 
from SD progressors), including those from multi-cohort 
analysis and additional longitudinal samples. We calcu-
lated and analyzed standardized expression values for 
the eight genes across all seven datasets over the disease 
course (see Additional file  1: Supplementary methods). 
We performed smoothing using local weighted regres-
sion (LOESS) [36].

Model generation
Data pre‑processing
We combined the public datasets and generated a 
reduced gene expression matrix consisting of the 25 
DEGs from multi-cohort analysis and the prior SD-asso-
ciated 20-gene set [24] (43 unique genes in total). We 
excluded two genes that were missing from five datasets, 
and two datasets (GSE43777_GPL201 and GSE40628) 
that were missing over a third of the genes. We imputed 
the remaining missing values using missForest [37] and 
adjusted for batch effects using ComBat [38].

Linear models
We built two linear models based on the eight genes to 
classify non-severe patients and SD progressors. The first 
model used the difference-of-geometric-means score, 
computed as described above. The second was a logistic 
regression model with the eight genes as predictors.

Table 1  Publicly available datasets used for discovery of the 8-gene set and training of the 8-gene XGBoost model. Healthy controls, 
convalescent patients, and patients with other febrile illnesses were removed. Longitudinal samples were excluded for gene set 
discovery and model training but included for temporal gene expression analysis (included in “Total samples used”). WB, whole blood; 
PBMC, peripheral blood mononuclear cells

Dataset Platform Year Reference Country Age Tissue Samples used 
in discovery

Total 
samples 
used

GSE40628 GPL16021 (Lymphochip) 2007 Simmons CP [25] Vietnam Adults WB 14 14

GSE18090 GPL570 (Affymetrix) 2009 Nascimento EJ [26] Brazil Adults PBMC 18 18

GSE13052 GPL2700 (Illumina) 2009 Long HT [27] Vietnam Children WB 18 18

GSE25001 GPL6104 (Illumina) 2010 Hoang LT [28] Vietnam Children/adults WB 96 168

GSE17924 GPL4133 (Agilent) 2010 Devignot S [29] Cambodia Children WB 48 48

GSE38246 GPL15615 (Illumina) 2012 Popper SJ [30] Nicaragua Children PBMC 41 102

GSE43777 GPL201 (Affymetrix) 2013 Sun P [31] Venezuela Children/adults PBMC 26 112

GSE43777 GPL570 (Affymetrix) 2013 Sun P [31] Venezuela Children/adults PBMC 20 74

GSE51808 GPL13158 (Affymetrix) 2014 Kwissa M [32] Thailand Adults WB 28 28

GSE94892 GPL16791 (Illumina) 2017 Banerjee A [14] India Children/adults PBMC 31 31

GSE100299 GPL17586 (Affymetrix) 2017 Simon-Lorière E [15] Cambodia Children PBMC 25 25

Total 365 638

https://cran.r-project.org/web/packages/MetaIntegrator/
https://cran.r-project.org/web/packages/MetaIntegrator/
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Age‑dependent performance
Most public datasets did not include sample-level age 
information. We therefore compared model performance 
in datasets that profiled different age groups (four data-
sets profiled children only, three profiled adults only, and 
four profiled both children and adults).

XGBoost model
We trained an XGBoost gradient-boosted tree model 
[39] using only the eight genes as features. We held out 
one dataset (GSE100299) from hyperparameter tuning to 
check for overfitting in silico prior to testing the model 
in an independent, prospective cohort from Colombia 
(see below). On the remaining eight datasets consisting 
of 300 samples (146 severe, 154 non-severe), we per-
formed XGBoost hyperparameter tuning using Caret 
[40] with leave-one-dataset-out cross-validation, which is 
shown to be less biased than k-fold cross-validation [41]. 
We “locked” the model using the set of parameters that 
maximized AUC in cross-validation and in the held-out 
dataset. The final locked model had the following param-
eters and hyperparameters: nrounds = 40, max_depth = 
2, min_child_weight = 4, subsample = 0.9, colsample_
bytree = 0.5, eta = 0.2, gamma = 0.9, nthread = 1, and 
scale_pos_weight = 1.5. We assessed feature importance 
using the “gain” metric as calculated by XGBoost, which 
represents the relative contribution of each of the eight 
genes to model accuracy.

Model performance metrics
Summary ROC curves
The summary ROC curve represents a weighted average 
of multiple independent ROC curves and was calculated 
as follows. True positive rate (TPR) values for each curve 
were approximated using linear interpolation, and the 
summary ROC curve was calculated using the mean of 
the TPR values for each curve, weighted based on sam-
ple size. A weighted standard deviation was also calcu-
lated for each TPR and is depicted by the shaded gray 
area around the summary ROC curve. The area under 
the summary ROC curve (summary AUC) was calcu-
lated using the trapezoid rule. Finally, the 95% confidence 
interval (CI) for the summary AUC was calculated using 
the pooled standard error of the individual AUCs.

Number needed to predict (NNP)
NNP, like number needed to treat (NNT), is a metric of 
diagnostic or prognostic accuracy that provides a more 
intuitive benchmark for clinicians than other measures 
of accuracy [42–44]. Here, NNP is defined as the num-
ber of dengue patients who need to be examined in order 
to accurately predict that one patient will progress to SD. 

NNP is equal to the inverse of the predictive summary 
index (PSI), or 1/(PPV + NPV – 1).

CIs for performance metrics
We computed 95% CIs for individual AUCs using the 
DeLong method as implemented in the pROC package in 
R [45, 46]. We computed 95% CIs for sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive 
value (NPV), and NNP using stratified bootstrapping, 
with the proportion of SD cases held constant across 
all 10,000 bootstrap samples. We used the same cut-off 
point for 8-gene model predicted probabilities across all 
bootstrap samples, set at the Youden threshold of the 
original dataset. For likelihood ratios, we used the alter-
native bootstrapping approach described in Marill et al. 
to obtain appropriate CIs when sample sensitivity was 
100% [47].

Benchmarking against published gene signatures
We identified 12 studies that described sets of DEGs in 
dengue patients (Additional file 2: Table S1). Of these, we 
excluded two studies that did not describe severity-asso-
ciated DEGs, two that described hundreds or thousands 
of DEGs which would not be suitable for translation to a 
point-of-care test, and five studies that provided a list of 
top severity-associated DEGs without any classification 
model for severity prediction. We additionally excluded 
the study by Nikolayeva et  al. [17] due to insufficient 
methodological details and lack of access to their training 
data with which to reproduce their model. The remaining 
two studies (Nascimento et  al. [26] and Robinson et  al. 
[24]) described reproducible classification models using 
parsimonious gene signatures to predict progression to 
SD. We therefore assessed the performance of both mod-
els in unseen public datasets, excluding those that had 
been used for training each respective model.

Independent prospective Colombia cohort
Ethics Statement
All work with human subjects was approved by the Stan-
ford University Administrative Panel on Human Subjects 
in Medical Research (protocols #35460 and #50513) and 
the ethics committees in biomedical research of the Fun-
dación Valle del Lili (FVL, Cali, Colombia) and Centro 
de Atención y Diagnóstico de Enfermedades Infeccio-
sas (CDI, Bucaramanga, Colombia). All subjects or their 
parents or legal guardians provided written informed 
consent, and subjects between 2 and 17 years of age and 
older provided assent. Subjects were not involved in pre-
vious procedures and were all test-naïve.
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Study population and sample collection
The independent, prospective Colombia cohort consisted 
of 377 individuals presenting to the emergency room or 
clinics of FVL or CDI between March 2016 and Jan 2020. 
Enrollment criteria consisted of (i) age equal to or greater 
than 2 years; (ii) presentation with an acute febrile illness 
of less than seven days associated with one or more of 
the following symptoms or signs: headache, rash, arthral-
gia, myalgia, retroorbital pain, abdominal pain, posi-
tive tourniquet test, petechiae, and bleeding; and (iiia) 
a positive dengue IgM antibody and/or NS1 antigen by 
the SD BIOLINE Dengue Duo combo device (Standard 
Diagnostic Inc., Korea) test [48] or (iiib) clinical pres-
entation highly consistent with dengue and subsequent 
confirmation of diagnosis via rRT-qPCR at Stanford (see 
Additional file 1: Supplementary methods). Patients were 
classified by infectious diseases specialists, both upon 
presentation and following the end of the disease course, 
as having dengue (D), dengue with warning signs (DWS), 
or severe dengue (SD) according to 2009 WHO criteria 
[49, 50] (Table 2). Venous blood samples were collected 
upon enrollment on the first day of presentation. 2.5 ml 
of whole blood were collected in Paxgene tubes (Pre-
AnalytiX) and stored at − 80 °C. Serum samples were 
obtained for additional assays. Sample transport, recep-
tion, and processing were strictly controlled using per-
sonal data assistants (PDAs) with barcode scanners.

Of 399 patients who consented, four patients were 
excluded following confirmatory rRT-PCR analysis 
at Stanford (one false positive, three with Zika virus 
co-infection) (Additional file  3: Fig. S1). Another five 
patients were excluded who already displayed SD mani-
festations upon presentation. RNA was extracted from 
the remaining 390 blood samples, of which nine were 
excluded due to low RNA concentrations and another 
four excluded for other technical reasons. Altogether, 377 
blood samples were analyzed for mRNA expression of 
the signature genes using NanoString.

For 154 of 377 patients who were managed in the out-
patient setting, follow-up was conducted daily via phone, 
during which patients were provided information about 
the clinical warning signs and asked about their appear-
ance, until full recovery when final diagnoses were deter-
mined. For all patients, final diagnoses were blindly 
re-classified by infectious diseases specialists according 
to the 1997 WHO criteria into DF, DHF, and/or DSS [51]. 
Organ damage was defined according to standard clinical 
endpoints for DENV infection [52]. Demographics and 
clinical information were collected at the time of presen-
tation. The first day of fever (fever day 0) was defined by 
the patients or their relatives. Symptoms, warning signs, 
and laboratory parameters (including complete blood 
count, chemistry, and liver function test results) were 
documented by healthcare professionals (Additional 

Table 2  Summary of demographic information and clinical parameters of the independent prospective Colombia cohort. For days 
from sample to severe dengue (SD) onset, “0” indicates patients whose sample was collected on the day of (at least several hours prior 
to) the appearance of SD manifestations. WS, warning signs; NS1 Ag, nonstructural protein 1 antigen; DENV, dengue virus

Dengue (N=93) Dengue with WS 
(N=262)

Severe dengue (N=22)

Age Adult 39 86 13

Child (<17 years) 54 176 9

Gender Male 49 137 6

Female 44 125 16

Total 93 262 22

First sample day Mean (range) 5.0 (1–10) 5.2 (0–10) 4.8 (0–7)

Days from sample to SD onset Median (range) - - − 1 (− 3, 0)

Dengue diagnostics Positive NS1 Ag 60 215 17

Positive DENV IgM 53 149 9

Dengue exposure Primary 29 59 5

Secondary 59 186 15

Undetermined 5 17 2

Dengue serotype DENV-1 40 135 10

DENV-2 - 3 -

DENV-3 1 3 3

DENV-4 2 3 1

DENV co-infected - 1 -

Unknown 50 117 8
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file 4: Table S2). Serotype and prior DENV exposure were 
determined through rRT-PCR and serological assays at 
Stanford (see Additional file 1: Supplementary methods).

RNA extraction and gene expression measurement
RNA was extracted from PAXgene RNA tubes using the 
PAXgene Blood RNA Kit IVD (Qiagen) according to the 
manufacturer’s protocol and analyzed for RNA qual-
ity using the Agilent bioanalyzer QC analysis. RNA was 
concentrated using RNA Clean & Concentrator-5 kit 
(Zymo Research) according to the manufacturer’s pro-
tocol. Gene expression was measured using NanoString 
nCounter technology. Each NanoString expression profil-
ing reaction consisted of 300 ng of total RNA per 15 uL 
sample, hybridized for 16 h at 65° C per the manufac-
turer’s instructions. nCounter SPRINT standard protocol 
was used to generate mRNA counts. A quality control 
check was performed according to the manufacturer’s 
guidelines for assessing imaging quality, binding den-
sity, positive control linearity, and the limit of detection. 
Raw mRNA counts were normalized to EIF6 and ILF2 as 
housekeeping genes.

Power analysis
We calculated statistical power to detect a range of AUCs 
based on SD prevalence in the Colombia cohort using 
the method of Obuchowski and McClish [53], as imple-
mented in the pROC R package [45].

Association of model predictions with clinical features
We examined the association between 8-gene model pre-
dicted probabilities and various clinical features using the 
Wilcoxon rank-sum test and Pearson correlation coeffi-
cient for categorical or continuous variables, respectively.

Model calibration
We calibrated our model using the Platt scaling method 
[54]. We resampled control samples in the training data, 
with replacement, to achieve the same prior probability 
of SD as observed in the independent cohort (5.8%). We 
applied the Platt scaling method to this dataset of 2702 
(resampled) controls and 157 cases, fitting a logistic 
regression model on the 8-gene model predicted prob-
abilities. We then applied this logistic regression model 
to transform the 8-gene model predicted probabilities for 
the independent cohort.

Generalizability of the 8‑gene model to other viral 
infections
We identified four public datasets, preprocessed as 
described previously [55], consisting of samples from 336 
patients with SARS-CoV-2, influenza virus, respiratory 
syncytial virus (RSV), or chikungunya virus infection 

(Additional file  2: Table  S3) [56–60]. Patients were of 
all ages, enrolled across six different countries, profiled 
using microarray or RNA sequencing technologies, with 
mild/moderate (N=166) or severe (N=170) infection. We 
excluded healthy controls and patients who were asymp-
tomatic or convalescent. We calculated 8-gene signa-
ture scores based on the difference of geometric means 
and examined the performance of the 8-gene signature 
in classifying patients with mild/moderate or severe 
infection.

Results
Identification of an 8‑gene set associated with progression 
to severe dengue
We identified 11 publicly available datasets that pro-
filed the blood transcriptome in 365 dengue patients, of 
which 199 remained non-severe and 166 progressed to 
SD (Table 1) [14, 15, 25–32]. These datasets collectively 
encompassed biological, clinical, and technical heteroge-
neity. To identify DEGs robustly associated with progres-
sion to SD across all 11 public datasets, we developed a 
novel method for multi-cohort analysis, using MetaIn-
tegrator [23] with iterative Monte-Carlo sampling at 
the dataset level (Methods, Fig.  1A). We found 25 sig-
nificant DEGs with consistent effect size across all itera-
tions (Fig.  1B). Among these 25 DEGs, our previously 
described greedy forward search [61] selected eight, of 
which three were over-expressed (LTF, UQCRQ, CKAP4) 
and five under-expressed (ARNTL, PDGFRB, TGFBR3, 
RASSF5, GDPD5) in SD progressors (Additional file  2: 
Table  S4, Fig.  1C). While LTF, CKAP4, and TGFBR3 
were differentially expressed between SD progressors 
and non-progressors throughout the disease course, the 
remaining five genes exhibited differential expression in 
the first 3–6 days post-fever onset and converged for the 
remainder of the disease course (Fig. 1D).

Collectively, these results show that there is an early 
blood transcriptional response to DENV infection that 
is robustly associated, during the acute febrile stage, 
with subsequent progression to SD across heterogeneous 
patient populations.

Model generation to predict severe dengue progression 
in existing cohorts
To build a generalizable model to predict SD progression, 
we first examined age as a confounding variable, as sev-
eral studies have described differences in dengue pres-
entation and severity by age [7, 62–65]. Indeed, linear 
classifiers exhibited age-dependent performance, with 
area under the receiver operating characteristic curves 
(AUCs) ≥ 0.85 in datasets profiling children and AUCs 
≤ 0.7 in datasets profiling adults (Additional file  3: Fig. 
S2). We could not include age as a variable due to lack 
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of sample-level age information in many public datasets. 
Therefore, we turned to a non-linear classifier that could 
better learn the latent, complex relationships among age, 
gene expression, and dengue severity.

Utilizing the eight genes as features, we trained a 
machine learning model with XGBoost [39] on public 
data. The model parameters were tuned and “locked” 
prior to validation in an independent, prospective cohort 
from Colombia (see below). The model predictions 
were driven by four genes, LTF, UQCRQ, TGFBR3, and 
RASSF5, which together had a relative contribution to 
model accuracy of 72.9% (Fig. 2A). In the public datasets, 

the 8-gene XGBoost model classified non-severe patients 
and SD progressors with a summary AUC = 0.891 
(95% CI 0.706–1) (Additional file  3: Fig. S3A–B). At 
the Youden threshold [66], the model had 89.2% (95% 
CI 84.1–93.8) sensitivity and 81% (95% CI 75.0–86.7) 
specificity (Fig.  2B). Although the 8-gene model had a 
higher AUC in children (< 18 years) than adults, this 
difference was statistically insignificant (DeLong test 
p-value=0.205) (Fig.  2C, Additional file  3: Fig. S3C). 
Together, these results suggest that our 8-gene XGBoost 
model has improved generalizability compared to linear 
classifiers.

Fig. 1  Multi-cohort analysis identifies eight genes robustly associated with progression to SD. A Schematic of multi-cohort analysis method 
with Monte Carlo sampling at the dataset level. In each of 100 cross-validation (CV) iterations, we randomly selected seven datasets for “training” 
(gray), identified differentially expressed genes (DEGs) using MetaIntegrator, and examined them in the remaining four “validation” (blue) datasets. 
DEGs that passed significance thresholds (as denoted by asterisks) in both training and validation were considered significant for that iteration. 
We then did a greedy forward search on DEGs significant in greater than 50% of all iterations and identified the eight most predictive DEGs. B 
Representative plots of the distribution of effect size (log2) in training (gray) and validation (blue) across the 100 iterations for over-expressed (LTF) 
and under-expressed (TGFBR3) genes that passed significance thresholds in >50% of iterations. Regardless of the combination of datasets in training 
or validation, the distribution of effect sizes for all 25 genes did not contain 0. C Forest plot of the effect size of the eight genes in each discovery 
dataset. Two genes (RASSF5 and GDPD5) were not measured in every dataset. The black lines indicate the 95% confidence interval (CI) of the effect 
size for a given gene in a given dataset, and the size of the black box is proportional to the sample size of each dataset. The summary effect size of 
each gene across all datasets is indicated by the red diamond; the width of the diamond indicates the 95% CI. D Standardized expression of each 
of the eight genes over the disease course (days post-symptom onset) in patients who remained non-severe (blue) or progressed to SD (purple). 
Seven discovery datasets that reported day of sample collection were included in longitudinal analysis. Lines represent the local regression (LOESS) 
curve fit for non-severe patients and SD progressors. Gray bands represent the 95% CI
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To benchmark performance of the 8-gene XGBoost 
model, we evaluated two previously published gene sig-
natures for SD that provided sufficient information to be 
reproduced (Additional file  2: Table  S1). When applied 
to public datasets not used for model training, a 2-gene 
model by Nascimento et  al. performed poorly, but our 
previously described 20-gene set generalized well to 
unseen data (Additional file  3: Fig. S4). We therefore 
assessed the 20-gene set alongside the 8-gene XGBoost 
model in the prospective cohort as described below.

Independent validation and comparison to warning signs 
in a prospective cohort of dengue patients
To independently validate our locked 8-gene XGBoost 
model, we prospectively enrolled 377 patients with 
DENV infection in Cali and Bucaramanga, Colom-
bia (Table  2, Additional file  3: Fig. S1, Additional file  4: 
Table S2). Patients presenting with SD were excluded. We 
collected whole blood samples at presentation (i.e., prior 
to progression to SD) and followed patients throughout 
the course of infection (Fig. 3A). Upon presentation, 231 
patients had warning signs (DWS), and 146 did not (D). 
By the end of the disease course, 22 patients had pro-
gressed to SD, defined as one or more of the following: 
(i) plasma leakage that may lead to shock and/or fluid 
accumulation, with or without respiratory distress, and/
or (ii) severe bleeding, and/or (iii) severe organ impair-
ment [6]. With the proportion of SD cases observed here 
(5.8%), we had >90% statistical power to detect AUC > 

0.70 (Additional file  2: Table  S5). The proportion of SD 
cases was higher in adults (9.4%) than in children (4%).

Of the 231 patients who initially presented with warn-
ing signs, 17 (7.4%) progressed to SD, and 214 (92.6%) 
remained non-severe (Fig.  3B). Importantly, five of 22 
(22.7%) SD progressors did not initially present with 
warning signs. Hence, clinical warning signs at presenta-
tion had 77.3% (95% CI 58.3–94.1) sensitivity and 39.7% 
(95% CI 34.7–44.9) specificity for predicting progression 
to SD (Fig.  3C), corresponding to positive and negative 
likelihood ratios of 1.3 (95% CI 0.9–1.6) and 0.6 (95% 
CI 0.2–1.1), respectively (Table  3). In adults, warning 
signs were an especially poor predictor of SD, with sen-
sitivity and specificity of 66.7% and 45.2%, respectively 
(Additional file  2: Table  S6). In children, warning signs 
were more sensitive (90.0%) but less specific (37.1%). 
Altogether, clinical warning signs upon presentation 
had a PPV of 7.4% (95% CI 4.3–10.9) and NPV of 96.6% 
(95% CI 93.3–99.3), resulting in an NNP of 25.4 patients 
(Table 3). Overall, warning signs upon presentation were 
a poor predictor of progression to SD.

Next, we applied the 8-gene XGBoost model to whole 
blood samples obtained upon presentation, prior to pro-
gression to SD. In this independent prospective cohort 
where gene expression was measured on a different plat-
form (NanoString), the locked 8-gene XGBoost model 
predicted subsequent progression to SD with an AUC 
of 0.844 (95% CI 0.749–0.938) (Fig.  3C). At the Youden 
threshold, the 8-gene XGBoost model had a sensitivity of 
86.4% (95% CI 68.2–100.0), specificity of 79.7% (95% CI 

Fig. 2  The 8-gene XGBoost-based model predicts progression to SD in public datasets. A Relative contribution of each of the eight genes to 
the XGBoost model. B Violin plot of predicted probabilities of progression to SD for samples across all public datasets. The dotted horizontal line 
indicates the Youden optimal threshold for the public datasets. C ROC curves of the 8-gene model predictions for distinguishing non-severe 
patients from SD progressors in datasets profiling children (red), adults (blue), or both children and adults (orange). The DeLong test p-value for 
children vs. adults is 0.205
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Fig. 3  The locked 8-gene XGBoost model predicts progression to SD in an independent prospective dengue cohort. A Description of independent 
Colombia cohort. Blood samples were collected upon presentation from dengue patients presenting with or without warning signs. B Confusion 
matrix depicting the number of patients with an initial diagnosis of D or DWS upon presentation and final diagnosis of D, DWS, or SD. C ROC 
curve of the locked 8-gene XGBoost model in predicting progression to SD in the independent cohort. The black point indicates the sensitivity 
and specificity of the 8-gene model at the Youden threshold in the independent cohort. The red point indicates the sensitivity and specificity of 
clinical warning signs in predicting progression to SD in the independent cohort. D 8-gene model predictions on samples collected throughout the 
disease course, on days 0–3, 4–6, or 7–10 post-fever onset. E Violin plot of the predicted probabilities of progression to SD for SD progressors in the 
independent cohort who initially presented with or without warning signs. F Predicted probabilities using the 8-gene model for the 22 patients in 
the independent Colombia cohort who progressed to SD, by days from sample collection to the appearance of severe manifestations (“Days to SD 
Onset”). “0” indicates patients whose sample was collected on the day of—but at least several hours prior to—the appearance of SD manifestations. 
The dotted horizontal line indicates the Youden threshold in the Colombia cohort

Table 3  Performance of the 8-gene XGBoost model and clinical warning signs in the independent cohort. 95% confidence intervals 
(CIs) from bootstrapping are shown in parentheses for each metric. For the NNP of warning signs, the lower CI bound is omitted as the 
95% CI contained negative values due to the sum of PPV and NPV being less than 1 (indicating no gain in certainty according to the 
Predictive Summary Index). LR+, positive likelihood ratio; LR−, negative likelihood ratio; PPV, positive predictive value; NPV, negative 
predictive value; NNP, number needed to predict

Sensitivity % Specificity % LR+ LR− PPV % NPV % NNP

8-gene XGBoost model 86.4 (68.2–100.0) 79.7 (75.5–83.9) 4.3 (3.2–5.5) 0.2 (0.01–0.4) 20.9 (16.7–25.6) 99.0 (97.7–100.0) 5.0 (4.0–6.8)

Warning signs 77.3 (58.3–94.1) 39.7 (34.7–44.9) 1.3 (0.9–1.6) 0.6 (0.2–1.1) 7.4 (4.3–10.9) 96.6 (93.3–99.3) 25.4 (NA–185.6)
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75.5–83.9), and positive and negative likelihood ratios of 
4.3 (95% CI 3.2–5.5) and 0.2 (95% CI 0.01–0.4), respec-
tively (Table 3). Compared to warning signs, the 8-gene 
model had a substantially higher PPV of 20.9% (95% CI 
16.7–25.6) and NPV of 99.0% (95% CI 97.7–100.0). This 
resulted in an area under the precision-recall curve 
(AUPRC) of 0.280 (Additional file 3: Fig. S5A) and an 80% 
reduction in the NNP to 5.0 (95% CI 4.0–6.8).

The 8-gene model exhibited statistically insignificant 
differences by age (DeLong p = 0.19), outperforming 
clinical warning signs for both age groups with AUCs of 
0.751 (95% CI 0.601–0.901) and 0.889 (95% CI 0.747–1) 
in adults and children, respectively (Additional file  2: 
Table S6, Additional file 3: Fig. S5B). In contrast, the prior 
20-gene set performed significantly worse in adults (AUC 
= 0.665, 95% CI 0.501–0.830) than in children (AUC = 
0.936, 95% CI 0.881–0.991; DeLong p = 0.0026). Thus, 
the 8-gene XGBoost model improved prediction for both 
age groups compared to clinical warning signs and was 
more generalizable than the 20-gene set.

As the early prediction of SD is of utmost importance 
given the rapid nature of progression following deferves-
cence, we next examined the performance of the 8-gene 
model by time in the disease course. The 8-gene model 
was predictive of subsequent SD on samples collected 
throughout the disease course, including those from the 
first three days of acute fever (Fig. 3D). For most patients, 
this is prior to the manifestation of clinical warning signs 
[1]; indeed, the 8-gene model accurately predicted sub-
sequent SD even for patients who, at the time of sample 
collection, did not present with warning signs (Fig.  3E). 
Furthermore, for SD patients, the 8-gene model predic-
tions were accurate up to three days before progression 
to SD (Fig. 3F).

Finally, we analyzed the performance of the 8-gene 
model against the 1997 WHO criteria used in the public 
datasets (DF, DHF, DSS) (Additional file 4: Table S2) [51]. 
The 8-gene model performed comparably with the 1997 
criteria (AUC = 0.842, 95% CI 0.716–0.968) (Additional 
file 3: Fig. S5C–D). Notably, although the model was not 
trained to classify patients with organ damage—a severe 
complication included in 2009, but not 1997, criteria—
seven of eight patients in our independent cohort who 
developed organ damage without severe hemorrhage or 
shock were accurately predicted by the 8-gene model as 
SD progressors.

Collectively, these results demonstrate the early prog-
nostic power and generalizability of the 8-gene model 
applied to samples collected at presentation in a large, 
independent, prospectively enrolled cohort. Of note, due 
to differences in class balance between the public datasets 
used for training and the independent validation cohort, 
our model probabilities were not calibrated; however, 

calibrated probabilities generated through monotonic 
transformation did not change any of our conclusions 
(Fig. S6).

Association of clinical features with 8‑gene model 
predicted probabilities
We next examined the relationship between the 8-gene 
model predictions and relevant clinical features. The 
8-gene model predicted probabilities were significantly 
higher in patients with prior exposure to DENV than 
those without; nonetheless, the model accurately dis-
tinguished SD progressors with primary or secondary 
infection (Additional file  3: Fig. S7A). Additionally, the 
8-gene model predictions were positively associated with 
fluid accumulation but not with vomiting, hemorrhage, 
abdominal pain, or hepatomegaly (Additional file  3: 
Fig. S7B–F). The 8-gene model predictions were signifi-
cantly, moderately positively correlated with peak alanine 
transaminase (ALT) and aspartate transaminase (AST) 
and moderately negatively correlated with platelet nadir 
(Fig. S7G–I).

Generalizability of the 8‑gene model to other viral 
infections
We have previously described a conserved host response 
to a broad range of viral infections that are associated 
with disease severity [34, 55]. We therefore assessed 
whether the 8-gene set may also predict severity in other 
viral infections. We identified four independent cohorts 
consisting of 336 patients (166 mild/moderate and 170 
severe) infected with SARS-CoV-2, chikungunya, influ-
enza, or respiratory syncytial virus (RSV) (Additional 
file  2: Table  S3) [56–60]. The 8-gene signature distin-
guished mild/moderate infection  from severe infection 
for SARS-CoV-2, influenza, and RSV, but not chikungu-
nya (Fig. S8). These preliminary results suggest that the 
8-gene signature may have some discriminatory power in 
other viral infections.

Discussion
Clinical warning signs, designed to guide dengue patient 
triage, have poor sensitivity and specificity for predict-
ing progression to SD [7–13], as reflected in the present 
study. An accurate prognostic assay for SD could improve 
early detection of SD and reduce healthcare burden. 
Here, we leveraged the substantial biological, clinical, 
and technical heterogeneity in publicly available dengue 
datasets and identified an 8-gene set associated with SD, 
from which we built an XGBoost-based machine learn-
ing model to predict progression to SD. We validated the 
locked 8-gene model in a large, independent, prospec-
tive cohort. Applied to blood samples collected prior to 
SD, the 8-gene model accurately predicted progression 
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to SD, including in the early febrile stage. Compared to 
clinical warning signs, which were pervasive, nonspecific, 
and insufficiently sensitive, the 8-gene model reduced the 
NNP by 80%, demonstrating potential for translation to a 
point-of-care assay for SD prediction.

Though the eight genes were robustly associated with 
SD across heterogeneous patient cohorts, their biological 
roles in the DENV host response are largely unknown, 
except for lactotransferrin (LTF), a non-specific antimi-
crobial peptide upregulated in SD patients as well as in 
patients with severe sepsis [27, 67–69]. While the other 
seven genes have not been specifically studied in den-
gue, they are known to be involved in pathways that have 
been implicated in DENV or other viral infections. For 
instance, TGFβ signaling has been associated with den-
gue severity [70], and the RAS pathway may be a target of 
miRNAs expressed in DHF [71]. Interestingly, six of the 
eight genes were differentially expressed in SD progres-
sors early in the disease course (days 2–6), indicating that 
they are biomarkers of a defective early host response 
rather than signs of ongoing SD pathogenesis. Such tem-
poral dynamics likely contribute to the predictive nature 
of the 8-gene set. Moreover, they suggest that early thera-
peutic interventions for high-risk patients may be effec-
tive in reducing or preventing subsequent morbidity and 
mortality.

The 8-gene XGBoost model offers two major improve-
ments to dengue patient triage: generalizability and early 
prognostic power. We found highly age-dependent per-
formance of clinical warning signs and the prior 20-gene 
set in the independent Colombia cohort. While linear 
models using the 8-gene set also exhibited differences 
by age in the public datasets, our 8-gene XGBoost model 
mitigated these differences and outperformed clinical 
warning signs in both children and adults in the Colom-
bia cohort. Moreover, despite being trained on datasets 
that used the 1997 WHO criteria [51], the 8-gene model 
accurately predicted SD in patients with various clinical 
manifestations in the Colombia cohort, including those 
presenting with organ damage in the absence of DHF or 
DSS. Additionally, the 8-gene XGBoost model predicted 
SD progression for patients whose samples were collected 
in the first three days of fever, prior to the appearance of 
warning signs, and up to three days before onset of SD. 
In this early febrile stage of illness, it remains clinically 
difficult to accurately predict subsequent outcomes [72]. 
Therefore, the 8-gene model has potential to improve SD 
prediction, particularly in the early stages of disease.

The generalizability of the 8-gene XGBoost model 
reflects the robustness of our methods for gene selec-
tion and model training. Regarding gene selection, the 
multi-cohort analysis framework with Monte-Carlo 
sampling used here provides important advantages over 

approaches that merge independent datasets through 
batch correction. First, attempts to eliminate technical 
heterogeneity using batch correction may inadvertently 
reduce the meaningful biological and clinical heterogene-
ity across independent patient cohorts [22, 73, 74]. Pres-
ervation of this biological and clinical heterogeneity is 
necessary for the discovery of a gene signature that gen-
eralizes to the real-world dengue patient population [22]. 
Second, data-merging approaches preclude estimation 
of intra- and inter-dataset variability of each gene, which 
can be useful for gene selection. In contrast, our multi-
cohort analysis approach uses these features as weights 
when computing gene-wise effect size and standard 
error, and additionally estimates between-dataset het-
erogeneity for each gene, which can be utilized for gene 
selection [23]. Third, unlike an approach that merges all 
datasets and analyzes them simultaneously, the itera-
tive Monte-Carlo sampling approach ensures that data-
sets with large sample sizes do not have undue influence 
on gene selection. Moreover, it requires that genes are 
robustly associated with progression to SD, regardless of 
the combination of datasets used for in silico training and 
validation.

Regarding model training, we took several steps to 
avoid overfitting. We avoided the curse of dimension-
ality [75] by restricting the model to the pre-selected 
genes from the multi-cohort analysis. Next, we per-
formed leave-one-dataset-out cross-validation for 
model training and hyperparameter tuning, preventing 
the information leakage that occurs with k-fold cross-
validation [41]. Finally, we held out an additional public 
dataset from model training and hyperparameter tuning 
for an in silico evaluation of overfitting prior to locking 
the model for independent validation in the Colombia 
cohort.

While the 8-gene set was discovered in dengue data-
sets, it also distinguished severe and non-severe patients 
with other viral infections with reasonably high accuracy. 
However, it had lower accuracy in other viral infections 
than other host response-based signatures [55] and did 
not generalize to chikungunya patients. While further 
validation is needed in other cohorts and viral infections, 
these preliminary findings suggest that the 8-gene set is 
comprised of elements of the conserved host response to 
viral infection [34, 55] as well as elements more specific 
to DENV infection.

Future work should focus on evaluating clinical rele-
vance and implementation of the 8-gene model. In the 
present study, model predictions were associated with 
some, but not all, clinical warning signs and SD risk 
factors, suggesting it may provide useful information 
beyond existing clinical measures. Assessing the com-
bined predictive power of the 8-gene model with various 
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demographic and clinical features should be a priority 
area for future research, as it may enable an enhanced 
prognostic algorithm that accounts for age and other 
factors to further improve accuracy. This work would 
also inform the design of clinical trials to determine the 
optimal stage(s) for implementation of such an assay in 
the clinical workflow: whether as an additional warn-
ing sign for SD, a rule-out test for non-severe dengue 
patients, and/or an additional parameter to further par-
tition DWS patients when allocation of limited resources 
is needed.

Our study has several limitations. First, it is possi-
ble that hospitalization and supportive care of some 
patients in the Colombia cohort reduced their risk for 
severe complications. Nevertheless, the highest-risk 
patients—those who progressed to SD despite sup-
portive care—accordingly had the highest predicted 
probabilities of SD from the 8-gene model. Next, the 
class balance in the training data was inconsistent with 
real-world SD prevalence, leading our model to overes-
timate probabilities of SD in the Colombia cohort; how-
ever, calibration did not change any of our conclusions. 
Lastly, we measured gene expression in the Colom-
bia cohort using a different platform (NanoString) 
than those used in the training datasets. Despite this, 
our model accurately distinguished SD progressors in 
the Colombia cohort, although the optimal (Youden) 
threshold differed from that in training. An important 
next step is to select a low-cost transcript measurement 
platform with rapid turnaround time for implementa-
tion of the 8-gene model, after which model recalibra-
tion and threshold selection can be performed. Several 
point-of-care platforms are now available that offer 
reliable measurement of RNA targets and subsequent 
application of machine learning algorithms to compute 
a risk score in as little as an hour [76, 77]. Such plat-
forms could accommodate a prognostic assay based 
on the eight genes alone or in conjunction with DENV 
probes for rapid, simultaneous diagnosis of DENV 
infection and prediction of disease severity.

Conclusions
The 8-gene XGBoost model, trained on heterogeneous 
public data, predicted progression to SD in a large inde-
pendent cohort, improving upon clinical warning signs 
in accuracy, generalizability, and early prognostic power. 
Translated to a point-of-care prognostic assay, the 8-gene 
model has potential to improve dengue patient triage, 
guide treatment decisions, and reduce dengue mor-
bidity and mortality without overwhelming healthcare 
resources.
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