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Abstract 

Background:  Increased epigenetic age acceleration (EAA) in survivors of childhood cancer is associated with specific 
treatment exposures, unfavorable health behaviors, and presence of certain chronic health conditions. To better 
understand inter-individual variability, we investigated the genetic basis underlying EAA.

Methods:  Genome-wide association studies of EAA based on multiple epigenetic clocks (Hannum, Horvath, Pheno‑
Age, and GrimAge) were performed. MethylationEPIC BeadChip array and whole-genome sequencing data were gen‑
erated with blood-derived DNA from participants in the St. Jude Lifetime Cohort Study (discovery: 2138 pre-existing 
and 502 newly generated data, all survivors; exploratory: 282 community controls). Linear regression models were fit 
for each epigenetic age against the allelic dose of each genetic variant, adjusting for age at sampling, sex, and cancer 
treatment exposures. Fixed-effects meta-analysis was used to combine summary statistics from two discovery data 
sets. LD (Linkage disequilibrium) score regression was used to estimate single-nucleotide polymorphism (SNP)-based 
heritability.

Results:  For EAA-Horvath, a genome-wide significant association was mapped to the SELP gene with the strong‑
est SNP rs732314 (meta-GWAS: β=0.57, P=3.30×10-11). Moreover, the stratified analysis of the association between 
rs732314 and EAA-Horvath showed a substantial heterogeneity between children and adults (meta-GWAS: β=0.97 vs. 
0.51, I2=73.1%) as well as between survivors with and without chest/abdominal/pelvic-RT exposure (β=0.64 vs. 0.31, 
I2=66.3%). For EAA-Hannum, an association was mapped to the HLA locus with the strongest SNP rs28366133 (meta-
GWAS: β=0.78, P=3.78×10-11). There was no genome-wide significant hit for EAA-PhenoAge or EAA-GrimAge. Inter‑
estingly, among community controls, rs732314 was associated with EAA-Horvath (β=1.09, P=5.43×10-5), whereas 
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Background
A 5-year survival for children diagnosed with cancer has 
increased to ~85% due to remarkable progress in treat-
ment [1]. Thus, the population of childhood cancer sur-
vivors has grown rapidly and is estimated to exceed 
500,000 in the USA [2]. Survivors of childhood cancer 
experience accelerated aging [3, 4], which may not only 
correlate with increased risk of chronic health conditions 
(CHCs), but likely reflect the influences of genetics, treat-
ment/environmental exposures, and behavioral factors 
that, in combination, impact physiological health [5, 6]. 
Understanding biological pathways and determinants 
underpinning the aging process among childhood can-
cer survivors will facilitate the identification of individu-
als at the greatest risk and inform molecular candidates 
and biological processes for those who may benefit from 
targeted therapies soon after curative treatment or later 
among long-term survivors.

Several molecular biomarkers of aging are available 
[5–10], including DNA methylation (DNAm)-based epi-
genetic age. Epigenetic age acceleration (EAA) (i.e., the 
difference between epigenetic and chronological ages) 
demonstrates excellent predictive accuracy for physi-
ological aging and age-related disease risks in the general 
population [11]. We recently reported that EAA based on 
PhenoAge (i.e., Levine’s clock) [12] is statistically signifi-
cantly higher in survivors of childhood cancer than com-
munity controls and is associated with specific treatment 
exposures, unfavorable health behaviors, and presence of 
different CHCs such as hypertension, myocardial infarc-
tion, obesity, obstructive pulmonary deficit, and periph-
eral sensory neuropathy [6]. However, the genetic basis 
underpinning EAA has not yet been investigated among 
the childhood cancer survivors.

A meta-analysis of genome-wide association stud-
ies (GWASs) on 9907 individuals demonstrated that the 
EAA derived from various epigenetic clocks is a trait 
with a moderate heritability (h2=0.19) in the general 
population [13] and identified five loci associated with 
IEAA-Horvath (Intrinsic Epigenetic Age Acceleration) 
and three associated with EEAA-Hannum (Extrinsic Epi-
genetic Age Acceleration) [13]. Gilson et  al. performed 
single-nucleotide polymorphism (SNP)-based and 

gene-based GWAS of both IEAA-Horvath and EEAA-
Hannum on 13,493 individuals of European ancestry 
and identified 10 independent SNPs and 21 genes asso-
ciated with IEAA-Horvath including the notable PIK3CB 
related to human longevity, and one SNP and 12 genes 
associated with EEAA-Hannum including CISD2 related 
to lifespan control [14]. Another large-scale GWAS study 
comprised of more than 40,000 individuals identified a 
bulk of 137 loci associated with DNAm biomarkers of 
aging [15], which enhanced knowledge about the genetic 
architecture underlying EAA. In addition to germline 
variants, clonal hematopoiesis of indeterminant poten-
tials (CHIP), which were somatically acquired genetic 
factors and predictive of the development of leukemia 
(particularly, acute myeloid leukemia in the elderly) [16], 
were associated with EAA derived from multiple epige-
netic clocks [17].

Thus, to advance the understanding about the genetic 
factors underlying EAA among childhood cancer sur-
vivors, we performed GWAS with Infinium Meth-
ylationEPIC BeadChip array and whole-genome 
sequencing (WGS) data generated with blood-derived 
DNA from participants of the St. Jude Lifetime Cohort 
Study (SJLIFE) [18, 19]. Specifically, we aimed to search 
for novel genetic loci, evaluate previous findings reported 
in the general population, and characterize genetic con-
tributions to EAA in childhood cancer survivors.

Methods
Study population
SJLIFE participants (n=2922) with pre-exiting whole-
genome sequencing data [20, 21] were included in the 
current study. The first discovery data set, denoted as 
SJLIFE1 Survivors, included 2138 survivors previously 
scanned with EPIC array [6]. The second discovery data 
set, denoted as SJLIFE2 survivors, included 502 sur-
vivors newly scanned with EPIC array in an expansion 
study focused primarily on childhood and adolescent 
survivors. The third exploratory data set, denoted Com-
munity Controls, included 282 controls with no history 
of childhood cancer, who were enrolled in SJLIFE study 
and frequency matched to the survivors by age, sex, and 

rs28366133 was not associated with EAA-Hannum (β=0.21, P=0.49). The estimated heritability was 0.33 (SE=0.20) for 
EAA-Horvath and 0.17 (SE=0.23) for EAA-Hannum, but close to zero for EAA-PhenoAge and EAA-GrimAge.

Conclusions:  We identified novel genetic variants in the SELP gene and HLA region associated with EAA-Horvath and 
EAA-Hannum, respectively, among survivors of childhood cancer. The new genetic variants in combination with other 
replicated known variants can facilitate the identification of survivors at higher risk in developing accelerated aging 
and potentially inform drug targets for future intervention strategies among vulnerable survivors.
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race. This set of controls was also previously scanned 
with an EPIC array [6].

Demographic, diagnostic, and treatment data
Demographic characteristics (sex and race/ethnicity) 
and clinical information (primary diagnosis, age at diag-
nosis, and treatment exposures) were abstracted using 
a structured protocol [19]. Region-specific radiotherapy 
(RT) dosimetry, including brain-RT, chest-RT, and abdo-
men/pelvic-RT, were estimated using radiation oncology 
treatment records [19]. Cumulative doses of individual 
chemotherapeutic agents, including alkylating agents, 
anthracyclines, epipodophyllotoxins, glucocorticoids, 
platinum, and vincristine, were abstracted from medical 
records.

DNA methylation measurement
Genome-wide methylation data were generated using 
Infinium MethylationEPIC BeadChip array on whole 
blood-derived DNA. Laboratory work followed the 
standard procedure as described previously [6, 21], 
including DNA extraction, bisulfite treatment, array 
hybridization, and scanning. The raw intensity was 
exported from Illumina Genome Studio and analyzed in 
R (version 3.6.3) using the minfi package [22]. Detailed 
quality controls (QCs) and data normalization were 
described previously [23]. After QCs, the data set com-
prised beta-values for 689,419 CpGs.

Epigenetic age and epigenetic age acceleration
Epigenetic age estimates based on different clocks, 
including those of Horvath [24], Hannum [25], Pheno-
Age [12], and GrimAge [26], were obtained from the 
online New Methylation Age Calculator (https://​dnama​
ge.​genet​ics.​ucla.​edu/​new) [24]. Normalized DNA meth-
ylation beta-values and the sample annotation files were 
submitted to the calculator, using the “Advanced Analy-
sis” option. Blood cell abundance measures were also 
estimated by the calculator, based on DNA methylation 
levels, as described previously [27, 28]. EAAs were esti-
mated as residuals from a linear regression model of the 
estimated epigenetic age against the chronological age 
(i.e., age at DNA sampling). Additionally, another varia-
tion of EAA was estimated based on the Horvath clock 
with adjustments for leukocyte subtype proportions, 
commonly referred to as IEAA, which captures cellular 
intrinsic DNAm changes [29, 30]. In contrast, EEAA, 
which tracks age-related changes in blood cell composi-
tion and cellular intrinsic DNAm level [29, 30], was cal-
culated as residuals from regressing BioAge4HAStatic 
(Hannum clock with up-weighting of blood cell counts) 
against the chronological age.

Genotyping based on whole‑genome sequencing (WGS)
WGS data (n=2922) for this study were obtained from 
a previous large effort to sequence blood-derived DNA 
from 4402 SJLIFE survivors as previously described [20, 
21], including the first set of 3006 survivors sequenced 
by using HiSeq X Ten System with 36.8-fold average 
genome-wide coverage per sample, and the second set of 
1396 survivors sequenced on Illumina NovaSeq with sim-
ilar (38.7-fold) average genome-wide coverage. Sequenc-
ing reads were aligned to the GRCh38 human reference 
genome assembly with BWA (v0.7.12-r1039) [31] using 
default settings, and variant calls were processed with the 
GATK v3.4 pipeline by following its recommended best 
practices including VQSR (variant quality score recali-
bration) filtering [32]. The entire collection of WGS data 
for 4402 survivors, including raw sequence reads, aligned 
BAM files, and joint genotype calls (gVCFs), is accessible 
through St. Jude Cloud (https://​stjude.​cloud). Additional 
quality control was performed when genotypes for the 
subset of survivors (n=2640 also with DNA EPIC array 
data available) were extracted with VCFtools v0.1.15 [33], 
including the following criteria for keeping the variants 
or genotypes: (1) minimum genotype quality score of 20, 
(2) minimum depth of 5, (3) minimum mean depth of 
10, (4) Hardy Weinberg Equilibrium (HWE) P > 1×10-6, 
(5) maximum of missing rate is 10% across all samples, 
and (6) minor allele frequency (MAF) > 0.01. Genotypes 
for a set of community controls (n=282) was extracted 
from the existing WGS data and processed in the same 
manner. A total of 8.3 million autosomal single-nucleo-
tide variants (SNVs) and small insertions and deletions 
(indels) were advanced for further association analysis.

Statistical and bioinformatic analyses
Population characteristics were compared between sur-
vivors in the SJLIFE1 and SJLIFE2 data sets, and between 
survivors and controls by chi-square test for categorical 
variables and t test for continuous variables. Pearson’s 
correlation coefficient (r) was used to measure the linear 
correlation between the estimated epigenetic age and the 
chronological age, and between a pair of the estimated 
epigenetic ages or EAAs based on different epigenetic 
clocks among survivors. For EAA GWAS, linear regres-
sion models were fit for each estimated epigenetic age 
against the additive dose of each genetic variant, adjust-
ing for age at DNA sampling, sex, and cancer treatment 
exposures. EAA GWAS analysis was carried out for each 
of three data sets with both WGS and EPIC array data, 
respectively. Fixed-effects meta-analysis was used to 
combine the summary statistics of two discovery data 
sets. A fixed meta-GWAS P value threshold of 5×10-8 
was set as the level of genome-wide significance. PLINK 
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(1.90b) was used for the genetic association analysis [34]. 
Genetic heterogeneity between data sets was assessed by 
using I2 and P value (Phet) calculated from the Cochran’s 
Q statistic. Differentially methylated regions (DMR) 
between survivors and community controls were ana-
lyzed with DMRcate R package [35] using R 4.0.2 [30]. 
Other statistical analyses were performed with R 3.6.1 
[36], and a two-sided P value <0.05 was considered as sta-
tistically significant.

Manhattan plots were generated using CMplot [37]. 
Regional SNP association results were visualized with 
the LocusZoom [38]. All linkage disequilibrium (LD) 
estimates were calculated using individuals of European 
ancestry from the 1000 genomes reference panel using 
LDlink [39]. LD score regression [40] was used to esti-
mate SNP-based heritability (h2 and its standard error 
[SE]) and to calculate genetic correlations between EAA 
and other traits (n=855) through LD Hub [41].

Results
Characteristics of the study population
Demographics, primary diagnosis, and treatment infor-
mation for the SJLIFE1 data set were described pre-
viously [6] and were included in Table  1, along with 
information for the SJLIFE2 data set with newly gener-
ated DNAm data. Among those in the SJLIFE2 data set, 
53.2% were male and 97.8% were non-Hispanic. Primary 
diagnoses were leukemia (35.1%), lymphoma (7.2%), 
sarcoma (7.8%), central nervous system (CNS) tumors 
(16.5%), and other solid tumors (33.4%). Regarding treat-
ments, 29.3% were exposed to brain-RT, 16.3% chest-RT, 
16.1% abdominal/pelvic-RT, 51.2% alkylating agents, 
51.2% anthracyclines, 33.1% epipodophyllotoxins, 39.6% 
glucocorticoids, 25.1% platinum, and 68.3% vincristine. 
The median ages at diagnosis and at DNA sampling were 
3.1 (range= 0.0–19.9) and 16.5 (range= 7.3–66.6) years, 
respectively. Among the 282 noncancer controls, 48.6% 
were male and 2.1% Hispanic. The median age at DNA 
sampling was 35.0 (range = 18.7 to 70.2) years [6].

Epigenetic age and epigenetic age acceleration
All four epigenetic age estimates had high Pearson’s cor-
relation with chronological age (r=0.87–0.95) (Addi-
tional file  1: Fig. S1). Pair-wise comparisons among the 
four epigenetic age estimates also showed a high corre-
lation (r=0.85–0.90) (Fig.  1A). However, the pair-wise 
comparison among the four EAA showed a range of cor-
relations (r=0.11–0.57); the pair of EAA-Hannum and 
EAA-PhenoAge had a moderately strong correlation 
(r=0.57), whereas EAA-Horvath and EAA-GrimAge had 
weak correlation (r=0.11) (Fig. 1B).

Genome‑wide association analysis of EAA‑Horvath
The overall association results (-log10 of P values) for the 
EAA based on the Horvath clock [24] in the meta-GWAS 
of two discovery data sets (SJLIFE1 and SJLIFE2) with a 
total of 2640 survivors were illustrated in Fig.  2A, with 
a genomic inflation factor of 1.01, suggesting little sys-
tematic inflation (Additional file 1: Fig. S2A). The strong-
est association was observed for rs732314 (combined: 
β=0.57, P=3.30×10-11, I2=54.36%; SJLIFE1: β=0.50, 
P=1.55×10-7; SJLIFE2: β=0.82, P=2.09×10-5), which is 
mapped to the first intron of SELP gene on chromosome 
1, and this SNP also showed statistically significant asso-
ciation among the community controls (Table  2). There 
were 53 other variants reaching genome-wide signifi-
cance (P<5×10-8) (Additional file  1: Table  S1), and they 
are all mapped to the same genomic region with high LD 
with the index variant rs732314 (R2 > 0.62) based on CEU 
(Utah residence from North and West Europe) popula-
tion in 1000 Genomes project (Fig. 3A).

In addition, we carried out an analysis with another 
variation of EAA based on the Horvath clock, i.e., IEAA 
[29]. The top findings were similar, but with one addi-
tional SNP rs3917679 reaching the genome-wide sig-
nificance level (Additional file  1: Table  S2). This SNP, 
which also mapped to the first intron of SELP, had high 
LD with rs732314 (R2=0.98) and perfect LD (R2=1) with 
rs3917647, suggesting that they share the same haplotype 
and presumably tag the same causative variant.

Genome‑wide association analysis of EAA‑Hannum
A similar analysis was performed for the EAA based 
on the Hannum clock [25]. The overall association 
results (-log10 of P values) across the genome in the 
meta-GWAS were provided in Fig.  2B. The genomic 
inflation factor was 1.02, suggesting little system-
atic inflation (Additional file  1: Fig. S2B). The most 
strongly associated SNP was rs28366133 (com-
bined: β=0.78, P=3.78×10-11, I2=0; SJLIFE1: β=0.76, 
P=5.30×10-8; SJLIFE2: β=0.84, P=2.05×10-4), but this 
SNP did not show a statistically significant association 
among the community controls (Table  2). There were 
10 other variants reaching genome-wide significance 
(Additional file 1: Table S1), and they were all mapped 
to the complex HLA region with a number of genes 
nearby and moderate to high LD with the index vari-
ant rs28366133 (R2 > 0.29) (Fig.  3B). To explore rea-
sons for the heterogeneity, we analyzed and observed 
significant DMRs in the HLA locus between survivors 
and community controls (Additional file  1: Table  S3). 
In further analysis conditioning on rs28366133, 
the strength of association with these ten variants 
was attenuated with the lowest P value >1.0×10-3, 
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Table 1  Characteristics of participants included in the study

Abbreviations: SJLIFE1 survivors The first discovery data set of 2138 survivors included in our previously published study (ref. [6]), SJLIFE2 survivors The second discovery 
data set of 502 children and adolescent survivors, CNS Central nervous system, PNET Primitive neuroectodermal tumor, RT Radiotherapy
a Starting from 2139 survivors included in our previous publication (ref. [6]), a retinoblastoma survivor failed the minfi QC with low total intensity and hence was 
excluded from this current analysis

Characteristics SJLIFE1 survivors
No. (%)

SJLIFE2 survivors
No. (%)

Non-cancer controls
No. (%)

SJLIFE1 vs. 
SJLIFE2
P

Survivors vs. 
controls
P

Total 2138a 502 282

Sex

  Male 1132 (53.0) 267 (53.2) 137 (48.6) 0.17 0.19

  Female 1006 (47.0) 235 (46.8) 145 (51.4)

Ethnicity

  Hispanic 24 (1.1) 11 (2.2) 6 (2.1) 0.18 0.15

  Non-Hispanic 2114 (98.9) 491 (97.8) 276 (97.9)

Diagnosis

  Leukemia 731 (34.2) 176 (35.1)

    Acute lymphoblastic leukemia 671 (31.4) 159 (31.7) –

    Acute myeloid leukemia 58 (2.7) 15 (3.0) –

    Other leukemia 2 (0.1) 2 (0.4) –

  Lymphoma 460 (21.5) 36 (7.2)

    Hodgkin lymphoma 296 (13.8) 11 (2.2) –

    Non-Hodgkin lymphoma 164 (7.7) 25 (5.0) –

  Sarcoma 283 (13.2) 39 (7.8) –

    Ewing sarcoma 76 (3.6) 7 (1.4) –

    Osteosarcoma 76 (3.6) 5 (1.0)

    Rhabdomyosarcoma 73 (3.4) 15 (3.0) –

    Nonrhabdomyosarcoma 58 (2.7) 12 (2.4) –

  CNS tumors 245 (11.5) 83 (16.5)

    Astrocytoma or glioma 113 (5.3) 41 (8.2) –

    Medulloblastoma or PNET 59 (2.8) 15 (3.0) –

    Ependymoma 27 (1.3) 8 (1.6) –

    Other CNS tumors 46 (2.2) 19 (3.8) –

  Embryonal 285 (13.3) 82 (16.3)

    Wilms tumor 140 (6.5) 32 (6.4) –

    Neuroblastoma 109 (5.1) 39 (7.8) –

    Germ cell tumor 36 (1.9) 11 (2.2) –

  Other 134 (6.3) 86 (17.1)

    Retinoblastoma 50 (2.3) 67 (13.3) –

    Hepatoblastoma 15 (0.7) 2 (0.4) –

    Melanoma 13 (0.6) 4 (0.8) –

    Carcinomas 24 (1.1) 3 (0.6) –

    Others 32 (1.5) 10 (2.0) –

Radiation

  Brain RT 666 (31.2) 147 (29.3) –

  Chest RT 608 (28.4) 82 (16.3) –

  Abdomen/pelvis RT 479 (22.4) 81 (16.1) –

Chemotherapy

  Alkylating agent 1269 (59.4) 257 (51.2) –

  Anthracyclines 1265 (59.2) 257 (51.2) –

  Epipodophyllotoxins 762 (35.6) 166 (33.1) –

  Glucocorticoids 1010 (47.2) 199 (39.6) –

  Platinum 271 (12.7) 126 (25.1) –

  Vincristine 1489 (69.6) 343 (68.3) –

Median age at diagnosis, years (range) 7.3 (0.0, 23.6) 3.1 (0.0, 19.9) NA

Median age at DNA sampling, years (range) 31.8 (6.0, 66.4) 16.5 (7.3, 66.6) 35.0 (18.7, 70.2) <0.001 <0.001
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suggesting that a secondary signal in this locus is less 
likely.

In addition, we analyzed another variation of EAA 
based on the Hannum clock, i.e., EEAA. Only rs28366133 
was associated with EEAA-Hannum at the genome-wide 
significant level (Additional file 1: Table S2).

There was no genome-wide significant associa-
tion in our analysis for EAA based on PhenoAge and 
GrimAge.

Stratified analysis by chronologically defined age and sex
The fixed effects meta-analysis that showed substantial 
heterogeneity for the top EAA-Horvath associated SNP 
(I2: 54.36% for rs732314, Table 2) prompted us to conduct 
stratified analysis, given the difference in distributions 
of chronological age between the SJLIFE1 and SJLIFE2 
data sets. Among children (<18 years old), the association 
between rs732314 and EAA-Horvath was stronger with a 
much larger effect size (combined: β=0.97, P=1.52×10-

5, I2=0.0%; SJLIFE1: β=0.96, P=0.062; SJLIFE2: β=0.97, 
P=1.27×10-4) compared to adults (combined: β=0.51, 
P=1.39×10-8, I2=0.0%; SJLIFE1: β=0.51, P=1.14×10-7; 
SJLIFE2: β=0.51, P=0.05) (Table 3). It is notable that the 
effect size is highly consistent between the SJLIFE1 and 
SJLIFE2 data sets among children (0.96 vs. 0.97) or adults 
(0.51 vs. 0.51). Overall, a comparison between the chil-
dren and adults showed substantial heterogeneity (com-
bined: β=0.97 vs. 0.51, I2=73.1%, Phet=0.05).

The association between rs28366133 and EAA-Han-
num in children (combined: β=1.01, P=8.80×10-5, 
I2=35.12%; SJLIFE1: β=0.17, P=0.82; SJLIFE2: β=1.13, 
P=5.17×10-5) did not vary much from that in adults 
(combined: β=0.74, P=3.69×10-8, I2=32.01%; SJLIFE1: 
β=0.80, P=2.54×10-8; SJLIFE2: β=0.28, P=0.48) 
(Table  3). There was only moderate heterogeneity 
between SJLIFE1 and SJLIFE2 data sets among children 
(I2=35.12) or adults (I2=32.01).

Sex was significantly associated with EAA-Horvath 
or EAA-Hannum in the multivariable regression mod-
els (Additional file 1: Table S4). The association between 
rs732314 and EAA-Horvath was slightly stronger in 
females (β=0.60 vs. 0.53) whereas the association 
between rs28366133 and EAA-Hannum was slightly 
stronger in males (β=0.79 vs. 0.76) (Table 3).

Stratified analysis by treatment exposures
In the multivariable regression models, chest-RT, 
abdominal/pelvic-RT, and alkylators were significantly 
associated with EAA-Horvath, and chest-RT was signifi-
cantly associated with EAA-Hannum (Additional file  1: 
Table  S4). The association between rs732314 and EAA-
Horvath was much stronger in survivors without expo-
sure to chest/abdominal/pelvic-RT (combined: β=0.64 
vs 0.31, I2=66.3%, Phet=0.08) whereas the association 
between rs28366133 and EAA-Hannum was slightly 
stronger in those without exposure to chest-RT (com-
bined: β=0.80 vs. 0.74) (Table 3).

Fig. 1  Pairwise correlations of four epigenetic age (A) and epigenetic age acceleration (B). Abbreviations: epigenetic age (EA) and epigenetic age 
acceleration (EAA). Pair-wise Pearson correlation coefficients were shown with P< 0.001 denoted as ***
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SNP‑based heritability and genetic correlation with other 
traits
The estimated h2 using LD score regression was 0.33 
(SE=0.20) and 0.17 (SE=0.23) for EAA-Horvath and 
EAA-Hannum, respectively. The point estimates were 
negative numbers and nearly zero for EAA-Pheno-
Age and EAA-GrimAge (Additional file  1: Table  S5). 
Notably, there were significant positive genetic cor-
relations between EAA-Horvath and heart rate, pulse 
rate, glycoprotein, falls in the last year, and a negative 
genetic correlation with creatinine (Additional file  1: 
Table S6).

Previously established loci in survivors of childhood cancer
Among the 39 SNPs associated with IEAA in the gen-
eral population, 20 were replicated (P<0.05) based on 
our meta-analysis of the SJLIFE1 and SJLIFE2 data sets 
(Additional file  1: Table  S7). Similarly, only a limited 
number of the SNPs associated in the general popula-
tion with each EAA were replicated: none of the three 
SNPs for EEAA-Hannum, two of the nine SNPs for 
EAA-Hannum, one of the four SNPs for EAA-GrimAge, 
and two of the 12 SNPs for EAA-PhenoAge (Additional 
file  1: Table  S7). Notably, the previous most intriguing 
finding of rs2736099 (TERT) had a P value of 0.55 in 

Fig. 2  Manhattan plots of genome-wide association study (GWAS) for epigenetic age acceleration (EAA)-Horvath (A) and EAA-Hannum (B). 
aEach dot represents the test result for one SNP. bX-axis is the genomic location along each chromosome, and Y-axis is -log10 of P value. cThe red 
horizontal line corresponds to the P value of 5×10-8
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our data, suggesting substantial genetic heterogeneity. 
We observed multiple significant DMRs between sur-
vivors and controls in the TERT gene including its pro-
moter region (Additional file  1: Table  S8). A polygenic 
risk score (PRS) for IEAA was derived from the weighted 
sum of the number of risk alleles (13 independent SNPs 
including our novel SNP rs732314) carried by each sur-
vivor. IEAA increased across the PRS quintiles with posi-
tive correlation (r=0.23, P< 2.2×10-16) (Additional file 1: 
Fig. S3), suggesting that 5.3% of the variance of IEAA can 
be explained by PRS.

Discussion
It is well-established that adult survivors of childhood 
cancer are at risk for developing a high cumulative 
burden of age- and therapy-related CHCs and prema-
ture mortality, a phenomenon that might be indicative 
of accelerated aging [3, 4, 6, 42–48]. By leveraging the 
existing genetic (WGS) and epigenetic (DNAm) data in 

the SJLIFE cohort, an informative population of child-
hood cancer survivors, we performed GWAS analyses 
on EAA and identified two novel genome-wide sig-
nificant associations. The findings identify genetic 
variations contributing to EAA, which may explain 
inter-individual variability beyond exposures of can-
cer treatment toxicity [6]. These novel genetic varia-
tions in combination with other replicated known hits 
can facilitate the identification of survivors at higher 
risk in accelerated aging and potentially inform drug 
targets for future intervention strategies in vulnerable 
survivors.

rs732314 was previously reported as a susceptibility 
locus for low high-density lipoprotein cholesterol and 
coronary heart disease [49]. rs732314 was also identi-
fied as a strong mQTL (methylation quantitative trait 
loci) with its C allele associated with a lower methylation 
level of cg01459453 across the human life course [50], 
potentially upregulating expression of the SELP gene 

Table 2  Top SNP significantly associated with EAA-Horvath and EAA-Hannum among survivors (SJLIFE1, SJLIFE2) and controls

Abbreviations: GWAS Genome-wide association study, EAA Epigenetic age acceleration, Chr Chromosome, SE Standard error, SJLIFE1 survivors The first discovery data 
set of 2138 survivors included in our previously published study (ref. [6]), SJLIFE2 survivors The second discovery data set of 502 children and adolescent survivors, 
Combined survivors A combined set (meta-GWAS analysis) of the two discovery data sets (SJLIFE1 and SJLIFE2), Community controls A set of 282 community controls

GWAS SNP Chr Pos_hg38 Effect allele Other allele Population Effect size (SE) P Phet I2 (%)

EAA-Horvath rs732314 1 169630016 C T SJLIFE1 survivors 0.50 0.10 1.55E−07

SJLIFE2 survivors 0.82 0.19 2.09E−05

Combined survivors 0.57 0.09 3.30E−11 0.14 54.36

Community controls 1.09 0.27 5.43E−05

EAA-Hannum rs28366133 6 31396299 C T SJLIFE1 survivors 0.76 0.14 5.30E−08

SJLIFE2 survivors 0.84 0.23 2.05E−04

Combined survivors 0.78 0.12 3.78E−11 0.75 0.00

Community controls 0.21 0.30 4.88E−01

Fig. 3  Regional plots for genetic associations between SELP locus and epigenetic age acceleration (EAA)-Horvath (A), HLA locus, and EAA-Hannum 
(B). aEach dot represents the test result for one SNP. bX-axis is the genomic location along each chromosome, and Y-axis is -log10 of P value. cThe red 
horizontal line corresponds to the P value of 5×10-8. dSNP depicted in diamond is the index SNP for the region, and all other SNPs were depicted as 
circles and their correlations (i.e., pair-wise linkage disequilibrium) with the index SNP was warm/cool color-coded
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(encoding P-selectin). Notably, cg01459453 was inversely 
correlated with chronological age and included as an 
aging predictive CpG in both Levine’s and Horvath’s epi-
genetic clocks [12, 24]. Furthermore, SELP, associated 
with IEAA-Horvath using gene-based association analy-
sis [14], is the top-ranking aging-related gene consist-
ently showing upregulated expression in hematopoietic 
stem cells across multiple studies [51]. SELPLG gene that 

encodes P-selectin glycoprotein ligand 1 had the highest 
level of expression in blood across all tissues analyzed 
in GTEx [52] and is upregulated in Alzheimer’s disease 
[53, 54]. We previously investigated persistent varia-
tions of DNAm-associated specific treatment exposures 
where cg00159243 was one of the borderline epigenome-
wide significant CpGs and was inversely associated with 
RT exposure (raw P value: 8.50×10-11, genomic control 

Table 3  Age-related, gender-, and treatment-stratified effect sizes of significant SNPs associated with EAA among different data sets

Abbreviations: GWAS Genome-wide association study, EAA Epigenetic age acceleration, Chr Chromosome, SE Standard error, N Number of samples, survivor (SJLIFE1) 
The first discovery data set of 2138 survivors included in our previously published study (ref. [6]), survivor (SJLIFE2) The second discovery data set of 502 children and 
adolescent survivors, survivors (combined) A combined set (meta-GWAS analysis) of the two discovery data sets (SJLIFE1 and SJLIFE2), trunk-RT Chest/abdominal/pelvic 
radiation therapy, chest-RT Chest radiation therapy

GWAS SNP Population − Effect size (SE) P Phet I2 (%)

EAA-Horvath rs732314 survivors (SJLIFE1) <18 Y 70 0.96 0.50 6.16E−02

survivors (SJLIFE2) <18 Y 314 0.97 0.25 1.27E−04

survivors (combined) <18 Y 384 0.97 0.22 1.52E−05 0.98 0.00

survivors (SJLIFE1) ≥18 Y 2066 0.51 0.10 1.14E−07

survivors (SJLIFE2) ≥18 Y 188 0.51 0.26 5.04E−02

survivors (combined) ≥18 Y 2254 0.51 0.09 1.39E−08 1.00 0.00

survivors (SJLIFE1) male 1132 0.46 0.13 3.92E−04

survivors (SJLIFE2) male 267 0.79 0.25 1.71E−03

survivors (combined) male 1399 0.53 0.11 3.94E−06 0.24 28.57

survivors (SJLIFE1) female 1004 0.54 0.14 2.10E−04

survivors (SJLIFE2) female 235 0.84 0.30 5.04E−03

survivors (combined) female 1239 0.60 0.13 4.58E−06 0.35 0.00

survivors (SJLIFE1) trunk-RT_Yes 649 0.37 0.17 3.47E−02

survivors (SJLIFE2) trunk-RT_Yes 91 0.03 0.39 9.39E−01

survivors (combined) trunk-RT_Yes 740 0.31 0.16 4.99E−02 0.42 0.00

survivors (SJLIFE1) trunk-RT_No 1487 0.56 0.12 1.30E−06

survivors (SJLIFE2) trunk-RT_No 411 0.91 0.22 3.46E−05

survivors (combined) trunk-RT_No 1898 0.64 0.10 3.88E−10 0.16 49.83

EAA-Hannum rs28366133 survivors (SJLIFE1) <18 Y 70 0.17 0.73 8.20E−01

survivors (SJLIFE2) <18 Y 314 1.13 0.27 5.17E−05

survivors (combined) <18 Y 384 1.01 0.26 8.80E−05 0.21 35.12

survivors (SJLIFE1) ≥18 Y 2066 0.80 0.14 2.54E−08

survivors (SJLIFE2) ≥18 Y 188 0.28 0.40 4.78E−01

survivors (combined) ≥18 Y 2254 0.74 0.13 3.69E−08 0.23 32.01

survivors (SJLIFE1) male 1131 0.74 0.19 1.40E−04

survivors (SJLIFE2) male 267 0.91 0.32 4.43E−03

survivors (combined) male 1398 0.79 0.17 1.97E−06 0.64 0.00

survivors (SJLIFE1) female 1005 0.77 0.20 1.39E−04

survivors (SJLIFE2) female 235 0.71 0.33 3.47E−02

survivors (combined) female 1240 0.76 0.17 1.23E−05 0.87 0.00

survivors (SJLIFE1) chest-RT_Yes 608 0.72 0.27 6.89E−03

survivors (SJLIFE2) chest-RT_Yes 83 0.84 0.71 2.41E−01

survivors (combined) chest-RT_Yes 691 0.74 0.25 3.14E−03 0.88 0.00

survivors (SJLIFE1) chest-RT_No 1528 0.77 0.16 2.48E−06

survivors (SJLIFE2) chest-RT_No 419 0.88 0.24 3.02E−04

survivors (combined) chest-RT_No 1947 0.80 0.14 2.56E−09 0.70 0.00



Page 10 of 12Dong et al. Genome Medicine           (2022) 14:32 

adjusted P value: 2.28×10-7 for chest-RT, and similarly 
for abdominal/pelvic-RT). Specifically, survivors previ-
ously treated with chest-RT or abdominal/pelvic-RT 
had a low methylation level of cg00159243 and presum-
ably had a higher expression level of the SELPLG gene. 
Moreover, cg00159243 was associated with low-grade 
chronic inflammation [55] and was an expression quan-
titative trait methylation ([eQTM], negative correlation) 
for SELPLG [56, 57]. Based on our new data and existing 
evidence from literature, we propose a potential molec-
ular mechanism underlying the association between 
rs732314, chest/abdominal/pelvic-RT, and EAA-Hor-
vath (Additional file 1: Fig. S4). The stratified analysis of 
the association between rs732314 and EAA-Horvath by 
age or chest/abdominal/pelvic-RT showed substantial 
heterogeneity between children and adults as well as 
between survivors with and without RT exposure. We 
postulate that higher expression of SELP (receptor) in 
adults or SELPLG (ligand) in irradiated survivors sub-
stantially weakens the association between rs732314 and 
EAA-Horvath.

The association between rs28366133 and EAA-
Hannum association is novel and seems to be spe-
cific to the survivor population. Based on the GTEx 
database, rs28366133 is an expression quantitative 
trait locus (eQTL) for XXbac-BPG181B23.7 (a novel 
transcript) and MICA among other genes. It is also a 
splicing quantitative trait locus (sQTL) for multiple 
genes including MICA, HLA-B, HLA-C, and HLA-S 
across different tissues including the blood. rs3093956 
is a known hit for EAA-Hannum [15]; however, it has 
low LD (r2=0.075) with rs28366133. Multiple striking 
DMRs were observed between survivors and controls 
in the HLA region, which might be due to the fact that 
genotoxic cancer treatments modified the epigenome 
among other physiological alterations in survivors and 
hence altered functional genomic links (e.g., eQTL, 
mQTL, and eQTM) [23, 58], which may lead to either 
disruption or introduction of genetic associations 
with EAA. For the same reason, a substantial propor-
tion (e.g., 20 out of 39 IEAA-associated SNPs) of pre-
viously reported genetic associations, including the 
most notable rs2736099 (TERT), were not replicated 
in our study. One caveat in interpreting DMRs in the 
HLA region is that the inferred DMRs might be partly 
contributed by subtle differences in genetic variations 
between survivors and controls in this highly polymor-
phic genomic region.

Although our meta-GWAS study identified genetic 
variants associated with EAA at a genome-wide sig-
nificance level, further validation is warranted by using 
our expanded cohort or other survivorship cohorts in 
the future.

Conclusions
In summary, we identified novel genetic variants in 
SELP gene and HLA region associated with EAA-Hor-
vath and EAA-Hannum, respectively, among survivors 
of childhood cancer. This research represents the first 
EAA GWAS conducted in childhood cancer survivors, a 
unique clinical population who demonstrate accelerated 
aging. Future studies including larger and more racially 
and ethnically diverse populations, integrating multi-
omics data such as RNA-seq and metabolomics profiling, 
are warranted for new discovery, association refinement, 
and elucidation of functional mechanisms.
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