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Abstract 

Background:  Coronary artery disease (CAD) remains the leading cause of mortality worldwide despite enormous 
efforts devoted to its prevention and treatment. While many genetic loci have been identified to associate with CAD, 
the intermediate causal risk factors and etiology have not been fully understood. This study assesses the causal effects 
of 37 heritable clinical factors on CAD in East Asian and European populations.

Methods:  We collected genome-wide association summary statistics of 37 clinical factors from the Biobank Japan 
(42,793 to 191,764 participants) and the UK Biobank (314,658 to 442,817 participants), paired with summary statis-
tics of CAD from East Asians (29,319 cases and 183,134 controls) and Europeans (91,753 cases and 311,344 controls). 
These clinical factors covered 12 cardiometabolic traits, 13 hematological indices, 7 hepatological and 3 renal function 
indices, and 2 serum electrolyte indices. We performed univariable and multivariable Mendelian randomization (MR) 
analyses in East Asians and Europeans separately, followed by meta-analysis.

Results:  Univariable MR analyses identified reliable causal evidence (P < 0.05/37) of 10 cardiometabolic traits (height, 
body mass index [BMI], blood pressure, glycemic and lipid traits) and 4 other clinical factors related to red blood cells 
(red blood cell count [RBC], hemoglobin, hematocrit) and uric acid (UA). Interestingly, while generally consistent, we 
identified population heterogeneity in the causal effects of BMI and UA, with higher effect sizes in East Asians than 
those in Europeans. After adjusting for cardiometabolic factors in multivariable MR analysis, red blood cell traits (RBC, 
meta-analysis odds ratio 1.07 per standard deviation increase, 95% confidence interval 1.02–1.13; hemoglobin, 1.10, 
1.03–1.16; hematocrit, 1.10, 1.04–1.17) remained significant (P < 0.05), while UA showed an independent causal effect 
in East Asians only (1.12, 1.06–1.19, P = 3.26×10−5).

Conclusions:  We confirmed the causal effects of 10 cardiometabolic traits on CAD and identified causal risk effects of 
RBC, hemoglobin, hematocrit, and UA independent of traditional cardiometabolic factors. We found no causal effects 
for 23 clinical factors, despite their reported epidemiological associations. Our findings suggest the physiology of red 
blood cells and the level of UA as potential intervention targets for the prevention of CAD.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  chaolong@hust.edu.cn

1 Department of Epidemiology and Biostatistics, Ministry of Education Key 
Laboratory of Environment and Health, School of Public Health, Tongji 
Medical College, Huazhong University of Science and Technology, Wuhan, 
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3945-1012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-022-01067-1&domain=pdf


Page 2 of 15Wang et al. Genome Medicine           (2022) 14:63 

Background
Coronary artery disease (CAD) is the foremost cause 
of mortality worldwide. In 2019, CAD was estimated to 
affect 197 million patients globally and accounted for 
9.1 million deaths (16.1% of all deaths) [1, 2]. CAD has a 
high heritability and often develops over decades before 
a symptomatic ischemia or any acute coronary event. 
Early intervention is essential to reduce the morbidity 
and mortality of CAD, which would have far-reaching 
implications for the related public health burden. How-
ever, CAD has a complex etiology involving the interplay 
of genetic and environmental factors [3]. Identification 
of causal risk factors is important for early precision 
prevention. In particular, improved understanding of 
the causality and effect sizes of different risk factors can 
refine prevention strategies and enable novel therapeutic 
targets for CAD.

To date, although hundreds of risk factors are being 
reported to associate with CAD by epidemiological 
studies [4], causal inference of these associations was 
hindered by unmeasured confounding and reverse causa-
tion. For instance, despite a strong association between 
circulating levels of lipoprotein-associated phospholipase 
A2 and the risk of coronary events [5], their causality was 
not verified by randomized controlled trials (RCTs) [6, 
7]. The recent advances of large-scale genome-wide asso-
ciation studies (GWAS) and Mendelian randomization 
(MR) methods have enabled evaluation of the causality 
between risk factors and disease outcomes [8]. In par-
ticular, MR analyses have uncovered the causal roles of 
height [9], body mass index (BMI) [10], serum lipids [11], 
blood pressure [12], hemoglobin A1c (HbA1c) [13], and 
type 2 diabetes (T2D) [13] in CAD. Yet, only one third 
of the variants associated with CAD mediate through the 
well-known cardiometabolic risk factors, such as lipids 
and blood pressure [14]. These findings suggested the 
existence of other causal pathways, which might provide 
novel insights into the etiology of CAD. Furthermore, the 
reported MR evidence were largely derived from Euro-
pean samples, and the generalizability to non-Europeans 
remains unverified due to different environmental back-
ground between populations.

In this study, we investigated and compared the causal 
effects of 37 clinical factors on CAD in East Asian and 
European populations. We developed a unified MR analy-
sis framework to analyze GWAS summary statistics from 
the Biobank Japan (BBJ) [15–17], the UK Biobank (UKB) 
[18, 19], the Coronary Artery Disease Genome-Wide 

Replication and Meta-analysis plus the Coronary Artery 
Disease Genetics (CARDIoGRAMplusC4D) consortium 
[20], and the FinnGen study [21]. These clinical factors 
included cardiometabolic, hematological, hepatic and 
renal function related, as well as serum electrolyte fac-
tors. Finally, we searched for clinical factors independent 
of cardiometabolic pathways by applying multivariable 
MR (MVMR) analysis with adjustment for traditional 
cardiometabolic factors.

Methods
Datasets
To conduct MR analysis, we collected GWAS summary 
statistics of CAD and clinical factors from the largest 
publicly available datasets of East Asian and European 
populations. For East Asians, we collected summary 
statistics of clinical factors from BBJ, a patient-based 
biobank with ~200,000 participants recruited from 12 
medical institutions across Japan in 2003–2008 [15, 16]. 
Summary statistics of CAD in East Asians were from 
Ishigaki et al. [17], consisting of 29,319 cases and 183,134 
controls primarily from BBJ. CAD in Ishigaki et  al. [17] 
included physician-diagnosed stable angina, unstable 
angina, and myocardial infarction (MI). For Europeans, 
we meta-analyzed CAD GWAS summary statistics from 
the CARDIoGRAMplusC4D consortium [20] and the 
FinnGen study [21] using the inverse-variance-weighted 
(IVW) fixed-effect model [22]. The FinnGen study 
(release 5) involved 30,952 cases and 187,840 controls of 
Finnish ancestry [21], with CAD determined by the Inter-
national Classification of Diseases version 10 (ICD-10) 
[23], including angina (I20), MI (I21, I22), complications 
following MI (I23), status post-acute MI (I253), coro-
nary atherosclerosis (I24, I25, Z951, T822), and coronary 
revascularization. The CARDIoGRAMplusC4D involved 
60,801 cases and 123,504 controls from 48 contributing 
studies, in which CAD included chronic stable angina, 
MI, acute coronary syndrome, and coronary stenosis 
>50% [20]. The majority of the CARDIoGRAMplusC4D 
samples were Europeans (77%), with the rest including 
South Asians (13%), East Asians (6%), and other ances-
tries. The European GWAS of clinical factors were based 
on UKB, a population cohort with over 500,000 partici-
pants recruited from 22 assessment centers throughout 
the UK in 2006–2010 [18]. We used GWAS summary 
statistics of clinical factors based on 361,194 white-Brit-
ish participants released by the Neale Lab (http://​www.​
neale​lab.​is/​uk-​bioba​nk) [24], except for T2D, which were 
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from Mahajan et al. [19], including 18,197 T2D cases and 
424,620 controls from UKB. We also obtained individual 
phenotype data of UKB participants to assess phenotypic 
correlations, as well as mean and standard deviation (SD) 
of quantitative clinical factors.

Study design
Figure  1 illustrates the overall study design. First, we 
reviewed and selected 37 clinical factors with GWAS 

data available in BBJ and UKB. Second, we chose 
instrumental variables (IVs) for each clinical factor 
based on a meta-analysis of summary statistics from 
BBJ and UKB. Third, we performed a univariable MR 
(UVMR) analysis to estimate population-specific causal 
effects of each clinical factor on CAD in East Asians 
and Europeans using four established methods (refer 
to Methods further below), followed by meta-analysis. 
Finally, we investigated causal effects independent of 
traditional cardiometabolic pathways by MVMR.

Fig. 1  Flowchart of the data collection, processing, and analysis procedures of this study. * The CARDIoGRAMplusC4D study consisted of primarily 
Europeans (77%) but also included non-Europeans (13% South Asians, 6% East Asians, and others), † MR-PRESSO was performed to identify 
pleiotropic IVs based on GWAS summary statistics from each population



Page 4 of 15Wang et al. Genome Medicine           (2022) 14:63 

Selection of clinical factors for CAD
There are 120 traits in BBJ and 4178 traits in UKB, of 
which GWAS summary statistics are publicly available. 
We first identified 78 traits in common across the BBJ 
and UKB GWAS databases. We then excluded 27 disease 
traits with case sample size ncases < 10,000 in BBJ or UKB, 
12 traits with inconsistent definitions in BBJ and UKB, 
and 2 female-specific traits (Additional file 1: Fig. S1). We 
computed the single nucleotide polymorphism (SNP)-
based heritability ( h2

SNP
 ) for each trait by linkage-dise-

quilibrium score regression (LDSC) [25], and found all 37 
remaining traits had h2

SNP
 > 0.05 in at least one popula-

tion (Fig. 2). These 37 traits include 12 cardiometabolic, 
13 hematological, 7 hepatic and 3 renal function related, 
and 2 serum electrolyte factors, all of which, except for 
mean corpuscular hemoglobin (MCH) and total protein 
(TP), had reported epidemiological associations with the 
risk of CAD (Additional file  1: Table  S1). Details about 
the GWASs of these 37 traits are presented in Additional 
file 1: Table S2-S3.

Calculation of heritability and genetic correlation
We applied LDSC to estimate the h2

SNP
 of each trait using 

GWAS summary statistics [25]. We reported h2
SNP

 on 
the liability scale for T2D and CAD, by assuming their 
population prevalence in East Asians and Europeans is 
7.5% and 10.0% for T2D [26, 27], and 5.24% and 6.77% 
for CAD [28], respectively. In addition, we conducted 
cross-trait LDSC to quantify the genetic correlations (rg) 
between the 37 clinical factors and CAD, separately in 
each population [29]. We used the population-matched 
LD scores calculated from the 1000 Genomes Project 
(https://​alkes​group.​broad​insti​tute.​org/​LDSCO​RE) [30]. 
The major histocompatibility complex region (chromo-
some 6: 25–34 Mb) was excluded due to its complex LD 
[31].

Selection of IVs
Valid IVs need to be associated with the exposure (the 
relevance assumption), have no association with any con-
founders (the independence assumption), and have no 
association with the outcome conditional on the expo-
sure (the exclusion restriction assumption) [8]. Assuming 
causal variants were largely shared between populations 
[32], we selected one set of IVs for both populations 
while using population-specific SNP effect sizes for the 
MR analyses in either population. We first meta-analyzed 

GWAS results from BBJ and UKB to identify potential 
causal variants for each clinical factor using the IVW 
fixed-effect model [22]. To meet the relevance assump-
tion, we filtered SNPs with P ≥ 0.05 in either cohorts 
or opposite effects between cohorts, and then extracted 
independent and significant SNPs from the meta-ana-
lyzed results using the clumping algorithm in PLINK 
(v.1.90, LD r2 < 0.01, Pmeta < 5×10−8, window size = 
1Mb) [33]. The clumping step was performed twice based 
on East Asian and European reference panels from the 
1000 Genomes Project, respectively [34]. The remaining 
SNPs were selected as candidate IVs for the clinical factor 
(exposure). The independence assumption is generally 
satisfied because of the random assortment of genetic 
alleles during meiosis, but it is challenging to ensure the 
exclusion restriction assumption due to the ubiquitous 
horizontal pleiotropic effects. Therefore, we adopted a 
stringent criterion to exclude candidate IVs in signifi-
cant association (Pmeta < 5×10−8) with any other clinical 
factors [8], with some exceptions detailed in Additional 
file  1: Table  S4. Furthermore, we removed candidate 
IVs that failed the Mendelian randomization pleiotropy 
residual sum and outlier (MR-PRESSO) test (P < 0.05) 
[35]. The same IV selection procedure was applied to 
CAD in the reverse MR analyses.

UVMR analyses
UVMR analyses were performed in East Asians and 
Europeans separately, followed by a fixed-effect meta-
analysis [36]. We performed Cochran’s Q test to exam-
ine heterogeneity between populations. Four UVMR 
methods were applied: the MR-Corr method [37], the 
IVW method [38], the Bayesian weighted Mendelian 
randomization (BWMR) method [39], and the robust 
adjusted profile score (RAPS) method [40]. MR-Corr 
is designed to address the correlated horizontal pleiot-
ropy issue [37]. We presented MR-Corr estimates as our 
main results. The IVW method combines effect estimates 
from individual IVs using a multiplicative random effect 
model to handle dispersion of effect estimates due to 
pleiotropy [38]. Both BWMR and RAPS can handle the 
measurement error and horizontal pleiotropy by adopt-
ing either a Bayesian weighting scheme [39] or a robust 
adjusted profile score [40]. We calculated the odds ratio 
(OR) and the corresponding 95% confidence interval 
(CI) of CAD per SD increment of a quantitative expo-
sure or per unit change on the log odds scale of a binary 

(See figure on next page.)
Fig. 2  Heritability and genetic correlation for 37 clinical factors and CAD estimated by LDSC. A Estimated SNP heritability for each trait/disease in 
East Asians and Europeans. The error bar indicates one SE and the dotted horizontal line indicates heritability cutoff of 0.05. B Genetic correlations in 
East Asians (upper triangular) and Europeans (lower triangular). Size of the square corresponds to the statistical significance of genetic correlation, 
and those with P < 0.05 are shown in full size. Genetic correlations that are significant after Bonferroni correction (P < 0.05/703, where 703 = 
38×37/2) are marked with an asterisk

https://alkesgroup.broadinstitute.org/LDSCORE
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Fig. 2  (See legend on previous page.)
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exposure. SDs for quantitative traits were presented in 
Additional file  1: Table  S2-S3, in which the values for 
UKB (SDUKB) were calculated using individual phenotype 
data of 472,671 white-British participants, and the values 
for BBJ (SDBBJ) were obtained from reference [16]. While 
SDUKB ≈ SDBBJ for most traits, we rescaled the SNP effect 
sizes (and standard errors) of IVs from BBJ by SDUKB/
SDBBJ, such that the MR causal effect estimates from 
two populations are in the same unit of SDUKB. Bonfer-
roni-corrected thresholds (0.05/37 = 0.00135 in the for-
ward MR and 0.05/4 = 0.0125 in the reverse MR) were 
adopted to account for multiple testing. We performed 
Steiger’s directionality test based on all IVs to confirm the 
bi-directional causal relationships between hemoglobin 
(Hb) and CAD [41]. MR analyses were conducted using 
the MR.Corr2 [37], TwoSampleMR [42], BWMR [39], 
and mr.raps [40] R packages.

To evaluate the validity of UVMR analyses, we 
computed the proportion of variance explained by 
each IV (PVE) and the corresponding F statistic as 
F =

PVE×(N−2)
1−PVE

 , where N represents the effective GWAS 
sample size [43]. An IV with F > 10 was considered as a 
strong instrument [8]. For multiple IVs, we computed the 
mean F statistic across IVs [43]. We inspected the heter-
ogeneity of MR estimates by Cochran’s Q test [44], and 
the potential directional horizontal pleiotropy by a funnel 
plot [44]. Besides, we estimated the potential bias intro-
duced by sample overlap as βr/F, where β is plugged-in 
with the MR-Corr estimate and r is the overlapping rate 
of sample between the GWASs of the exposure and the 
outcome [43].

MVMR analyses
We performed MVMR analyses using the MVMR-Robust 
method [45]. We first jointly analyzed 6 cardiometabolic 
exposures, including height, BMI, HbA1c, low-density 
lipoprotein cholesterol (LDL-C), triglyceride (TG), and 
systolic blood pressure (SBP) to estimate their inde-
pendent causal effect on CAD after adjusting for each 
other. We then performed MVMR analyses for each of 
red blood cell count (RBC), Hb, hematocrit (Ht), and 
uric acid (UA), adjusting for the aforementioned 6 car-
diometabolic factors. We did not adjust for T2D, fasting 
glucose (FG), total cholesterol (TC), and diastolic blood 
pressure (DBP) due to their high correlation with HbA1c, 
LDL-C, and SBP. For each MVMR, we took the union 
set of candidate IVs of all exposures, and then extracted 
independent (LD r2 < 0.01) IVs, preferentially keeping IVs 
of the risk factor of interest. We excluded candidate IVs 
associated (Pmeta < 5×10−8) with any clinical factors not 
included as exposures to remove pleiotropy. We calcu-
lated the conditional F statistic to assess the instrumental 

strength with the phenotypic correlations obtained from 
UKB samples (Additional file 1: Fig. S2) [46].

Results
Heritability and genetic correlation
The SNP heritability h2

SNP
 and pairwise genetic corre-

lations of 37 clinical factors and CAD are displayed in 
Fig.  2. In Europeans, CAD was estimated to have h2

SNP
 

= 0.080 (standard error = 0.005), while the highest h2
SNP

 
was 0.417 (0.018) for height and the lowest was 0.022 
(0.003) for basophil count (Baso). Heritability estimates 
were highly correlated between populations (Spearman’s 
rs = 0.781, P = 7.21×10−9), but estimates based on UKB 
tended to be higher than those based on BBJ. Similarly, 
genetic correlations were largely consistent between pop-
ulations (rs = 0.758, P = 2.13×10−132), but many more 
significant correlations were identified in UKB due to 
larger sample sizes (Additional file  2: Table  S5). In par-
ticular, CAD had a significant genetic correlation (P < 
7.1×10−5, Bonferroni correction for 703 tests) with 22 
out of 37 clinical factors in Europeans, indicating shared 
genetic architecture (Fig. 2B).

Causal effects of clinical factors on CAD
By UVMR analyses, we identified 14 significant risk fac-
tors: four in East Asians only, one in meta-analysis only, 
and nine in both populations (Table 1, Fig. 3, Additional 
file 1: Table S6-S8). The significant factors showed over-
all consistent effect estimates between populations (rs = 
0.947, P = 6.16×10−9), except for BMI (Phet = 0.007) and 
UA (Phet = 0.003) showing significant population hetero-
geneity (Fig. 4). The effect sizes in East Asians tended to 
be slightly larger than those in Europeans.

Ten out of 12 cardiometabolic risk factors showed 
consistent causal effects on CAD in both populations 
(Table 1, Fig. 3A, Additional file 1: Table S6). Height was 
protective with the meta-analysis odds ratio (ORmeta) 
being 0.85 per 9.3 cm increment (95% CI: 0.82–0.88, P = 
1.65×10−23). BMI presented stronger risk effect in East 
Asians (OR = 1.67 per 4.8 kg/m2 increment, 1.48–1.89, 
P = 4.04×10−16) than in Europeans (1.38, 1.29–1.47, P 
= 2.20×10−20, Phet = 0.007). Blood pressure and LDL-C 
showed the strongest risk effects, almost doubling the 
risk of CAD per SD increment (SBP: ORmeta = 1.87 per 
18.67 mmHg increment, 1.66–2.10, P = 1.74×10−25; 
DBP: 1.83 per 10.14 mmHg increment, 1.59–2.10, P = 
9.47×10−18; LDL-C: 1.80 per 33.63 mg/dL increment, 
1.63–1.99, P = 7.74×10−31). In addition, we found sig-
nificant risk effects of FG, HbA1c, T2D, TG, and TC, but 
not of high-density lipoprotein cholesterol (HDL-C) and 
C-reactive protein (CRP). Causal effect estimates from 
IVW, BWMR, and RAPS methods were consistent with 
estimates based on MR-Corr (Additional file 1: Table S6).
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For 13 hematological indices, we found evidence 
of causal effects on CAD for RBC (OR = 1.21 per 
40.94×104/μL increment, 1.10–1.33, P = 9.46×10−5), 
Hb (1.28 per 1.23 g/dL increment, 1.11–1.47, P = 
4.87×10−4), and Ht (1.31 per 3.53% increment, 1.16–
1.48, P = 1.18×10−5) in East Asians, with similar results 
yielded by different MR methods (Tables 1 and 2, Fig. 3B, 
Additional file  1: Table  S7). These causal effects were 

generally consistent between populations, despite rela-
tively lower effect sizes in Europeans (OR = 1.06, 0.98–
1.16, P = 0.159 for RBC; 1.16, 1.03–1.32, P = 0.018 for 
Hb; 1.22, 1.09–1.38, P = 7.88×10−4 for Ht). Reversely, we 
found no evidence of causal effect of CAD on RBC (Pmeta 
= 0.051) or Ht (Pmeta = 0.448, Table 2). In contrast, CAD 
had a significant causal effect on Hb (Pmeta = 2.46×10−3), 
indicating bidirectional causal relationships, which were 

Table 1  UVMR analyses of 37 clinical factors on CAD

a  SD of each trait among white-British participants of UKB. OR of CAD was reported on the same SD unit of each quantitative trait for MR analyses in both Europeans 
and East Asians. b For T2D, OR of CAD was reported per unit change on the log odds scale

Category Clinical factor (abbreviation) SDa OR (95% CI) per SD incrementb

East Asian European Meta-analysis

Cardiometabolic Height 9.3 cm 0.86 (0.81, 0.92) 0.85 (0.81, 0.88) 0.85 (0.82, 0.88)

Body mass index (BMI) 4.8 kg/m2 1.67 (1.48, 1.89) 1.38 (1.29, 1.47) 1.44 (1.36, 1.53)

Fasting glucose (FG) 21.82 mg/dL 1.41 (1.20, 1.67) 1.17 (1.05, 1.30) 1.23 (1.13, 1.35)

Hemoglobin A1c (HbA1c) 0.60% 1.37 (1.24, 1.52) 1.21 (1.12, 1.30) 1.26 (1.19, 1.34)

Type 2 diabetes (T2D) - 1.13 (1.08, 1.19) 1.08 (1.05, 1.12) 1.10 (1.07, 1.13)

High-density lipoprotein cholesterol (HDL-C) 14.80 mg/dL 0.89 (0.78, 1.02) 0.89 (0.80, 0.99) 0.89 (0.82, 0.97)

Low-density lipoprotein cholesterol (LDL-C) 33.63 mg/dL 1.77 (1.50, 2.09) 1.82 (1.61, 2.06) 1.80 (1.63, 1.99)

Triglyceride (TG) 90.68 mg/dL 1.44 (1.08, 1.92) 1.27 (1.03, 1.57) 1.32 (1.12, 1.57)

Total cholesterol (TC) 44.21 mg/dL 1.67 (1.37, 2.04) 1.25 (1.10, 1.41) 1.35 (1.21, 1.50)

Systolic blood pressure (SBP) 18.67 mmHg 1.68 (1.36, 2.08) 1.96 (1.70, 2.26) 1.87 (1.66, 2.10)

Diastolic blood pressure (DBP) 10.14 mmHg 1.79 (1.44, 2.24) 1.85 (1.55, 2.21) 1.83 (1.59, 2.10)

C-reactive protein (CRP) 0.44 mg/dL 1.16 (0.83, 1.64) 1.02 (0.92, 1.14) 1.03 (0.94, 1.14)

Hematological White blood cell count (WBC) 2134.64/μL 0.94 (0.81, 1.07) 1.00 (0.93, 1.07) 0.98 (0.92, 1.05)

Lymphocyte count (Lym) 1191.27/μL 0.84 (0.67, 1.05) 1.05 (0.97, 1.14) 1.02 (0.95, 1.10)

Monocyte count (Mono) 276.57/μL 1.31 (1.07, 1.59) 1.01 (0.94, 1.08) 1.04 (0.97, 1.11)

Neutrophil count (Neutro) 1416.78/μL 0.97 (0.86, 1.11) 1.02 (0.93, 1.12) 1.01 (0.93, 1.08)

Eosinophil count (Eosino) 136.22/μL 0.96 (0.89, 1.04) 0.95 (0.87, 1.05) 0.96 (0.90, 1.02)

Basophil count (Baso) 51.73/μL 1.06 (0.76, 1.47) 1.17 (0.68, 1.99) 1.08 (0.82, 1.44)

Platelet count (Plt) 5.99×104/μL 0.95 (0.88, 1.02) 1.04 (0.99, 1.09) 1.01 (0.97, 1.05)

Red blood cell count (RBC) 40.94×104/μL 1.21 (1.10, 1.33) 1.06 (0.98, 1.16) 1.12 (1.06, 1.20)

Mean corpuscular volume (MCV) 4.41 fL 0.98 (0.92, 1.04) 0.98 (0.93, 1.03) 0.98 (0.94, 1.02)

Mean corpuscular hemoglobin (MCH) 1.84 pg 0.98 (0.91, 1.05) 0.98 (0.92, 1.03) 0.98 (0.93, 1.02)

Mean corpuscular hemoglobin concentration (MCHC) 1.07% 0.99 (0.81, 1.21) 0.81 (0.66, 1.00) 0.90 (0.78, 1.04)

Hemoglobin (Hb) 1.23 g/dL 1.28 (1.11, 1.47) 1.16 (1.03, 1.32) 1.22 (1.11, 1.34)

Hematocrit (Ht) 3.53% 1.31 (1.16, 1.48) 1.22 (1.09, 1.38) 1.27 (1.16, 1.38)

Hepatic function Total bilirubin (TBil) 0.26 mg/dL 1.03 (0.98, 1.08) 0.99 (0.94, 1.04) 1.01 (0.97, 1.04)

Aspartate aminotransferase (AST) 10.60 IU/L 0.99 (0.76, 1.29) 1.03 (0.92, 1.14) 1.02 (0.92, 1.13)

Alanine aminotransferase (ALT) 14.16 IU/L 0.69 (0.47, 1.04) 0.96 (0.75, 1.23) 0.88 (0.71, 1.08)

Alkaline phosphatase (ALP) 26.45 IU/L 0.99 (0.88, 1.12) 1.04 (0.96, 1.12) 1.02 (0.96, 1.09)

γ-glutamyl transferase (GGT) 42.18 IU/L 1.14 (0.95, 1.37) 1.08 (1.00, 1.16) 1.09 (1.01, 1.17)

Total protein (TP) 0.40 g/dL 1.07 (0.97, 1.18) 1.03 (0.94, 1.14) 1.05 (0.98, 1.13)

Serum albumin (Alb) 0.26 g/dL 1.19 (1.02, 1.39) 1.14 (0.99, 1.32) 1.17 (1.05, 1.29)

Renal function Serum creatinine (sCr) 0.20 mg/dL 1.21 (1.07, 1.36) 0.93 (0.84, 1.02) 1.02 (0.95, 1.10)

Blood urea nitrogen (BUN) 3.90 mg/dL 1.13 (1.00, 1.28) 0.99 (0.88, 1.11) 1.06 (0.97, 1.15)

Uric acid (UA) 1.35 mg/dL 1.27 (1.13, 1.42) 1.02 (0.93, 1.11) 1.11 (1.03, 1.19)

Electrolyte Calcium (Ca) 0.38 mg/dL 1.01 (0.89, 1.16) 0.98 (0.87, 1.11) 1.00 (0.91, 1.09)

Phosphorus (P) 0.50 mg/dL 0.91 (0.79, 1.05) 1.02 (0.90, 1.15) 0.97 (0.88, 1.07)
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further supported by Steiger’s directionality test (Addi-
tional file  1: Table  S9). No significant causal effects on 
CAD were found for other hematological indices, includ-
ing counts of white blood cells (WBC), lymphocytes 
(Lym), monocytes (Mono), neutrophils (Neutro), eosino-
phils (Eosino), Baso, and platelets (Plt), as well as mean 
corpuscular volume (MCV), MCH, and mean corpuscu-
lar hemoglobin concentration (MCHC) (Table  1, Addi-
tional file 1: Table S7).

Finally, we examined 7 hepatic function biomarkers, 
3 renal function biomarkers, and 2 serum electrolytes 
(Tables 1 and 2, Fig. 3C, Additional file 1: Table S8). None 
of the 7 hepatic function biomarkers showed significant 
causal effects on CAD, including total bilirubin (TBil), 

aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), alkaline phosphatase (ALP), γ-glutamyl 
transferase (GGT), TP, and serum albumin (Alb). Among 
renal function biomarkers, UA was found to increase 
the risk of CAD in East Asians (OR = 1.27 per 1.35 mg/
dL increment, 95% CI: 1.13–1.42, P = 3.27×10−5), but 
not in Europeans (1.02, 0.93–1.11, P = 0.658, Phet = 
0.003 between populations). Results based on differ-
ent MR methods were similar and we found no causal 
role of CAD on UA (Pmeta = 0.972, Table 2). In addition, 
we observed no evidence of a causal effect on CAD for 
serum creatinine (sCr) and blood urea nitrogen (BUN), 
as well as two serum electrolytes, calcium (Ca) and phos-
phorus (P).

Fig. 3  Causal effects of 37 clinical factors on CAD estimated by UVMR analyses. A Causal effects for 12 cardiometabolic risk factors. B Causal effects 
for 13 hematological indices. C Causal effects for 7 hepatic function biomarkers, 3 renal function biomarkers, and 2 serum electrolytes. Effect sizes 
are represented by OR per SD increment of a quantitative exposure or per unit change on the log odds scale of a binary exposure (T2D). The 
horizontal bars represent 95% CIs. Significant P values after Bonferroni correction (P < 0.05/37 = 0.00135) are highlighted in red
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We confirmed the validity of our UVMR analyses 
from three aspects. First, the mean F statistics for the 
valid IVs were all above 10, except for Lym, Mono, Hb, 
and Ht, which had a mean F slightly below 10 in BBJ, 
suggesting negligible concern on the weak instrumen-
tal bias (Table  2, Additional file  1: Table  S6-S8) [8]. 
Second, although Cochran’s Q tests suggested hetero-
geneity in the causal estimates for some clinical factors 
(Phet < 0.01 in Additional file 1: Table S10), we observed 
no obvious directional horizontal pleiotropy in the fun-
nel plots (Additional file  1: Fig. S3-S10). Furthermore, 
we confirmed that the sample overlap between GWASs 
of clinical factors and CAD in East Asians introduced lit-
tle bias to our causal effect estimates (Additional file  1: 
Table S11).

Causal effects independent of cardiometabolic factors
In the MVMR analysis including six cardiometabolic 
factors (Fig. 5A, Additional file 1: Table S12), all factors 
showed consistent and independent causal effects on 

CAD in East Asians and Europeans. SBP remained as 
the strongest risk factor with ORmeta = 1.47 (1.37–1.58, 
P = 6.51×10−26). We next examined the independ-
ent causal effects of RBC, Hb, Ht, and UA, condition-
ing on six cardiometabolic factors (Fig. 5B, Additional 
file  1: Table  S12). Compared to the UVMR analyses, 
all four risk factors had attenuated effect sizes. RBC 
(ORmeta = 1.07, 1.02–1.13, P = 4.09×10−3), Hb (1.10, 
1.03–1.16, P = 2.01×10−3), and Ht (1.10, 1.04–1.17, P 
= 1.24×10−3) had similar and significant causal effects, 
which may due to their strong genetic correlations (rg 
≥ 0.715, Additional file 2: Table S5). UA, on the other 
hand, reached significance in East Asians (OR = 1.12, 
1.06–1.19, P = 3.26×10−5), but not in Europeans (1.00, 
0.95–1.06, P = 0.953, Phet = 0.002). Except of height, 
the conditional F statistics of other clinical factors 
were lower than the conventional instrument strength 
threshold of 10, especially in the East Asian population 
(Additional file 1: Table S12). Nevertheless, the consist-
ent causal effect estimates between MVMR and UVMR 
reduced concerns about false positive results due to 
potential weak instrumental bias.

Fig. 4  Comparison of causal effect sizes (βcausal) on CAD for 14 significant risk factors. The x- and y-axes indicate estimates based on East Asian and 
European populations, respectively. The horizontal and vertical bars for each point indicate one standard error. Phet < 0.01 based on Cochran’s Q test 
of population heterogeneity are labeled in red
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Discussion
Identification and comparison of causal risk factors in 
diverse populations can provide important information 
on developing prevention strategies for CAD. In this 
study, we evaluated the causality of 37 clinical factors 
on CAD by MR analyses in East Asians and Europeans. 
By analyzing large GWAS datasets under a unified MR 
framework, we identified 1 protective and 13 risk factors, 
the majority of which showed consistent effects between 
populations. These findings might inform prevention 
strategies and suggest potential therapeutic targets of 
CAD.

Our results highlight causal effects of red blood cell 
traits, including RBC, hemoglobin, and hematocrit, 
independent of traditional cardiometabolic factors. 
These three indices are highly correlated and all reflect 
the level of red cells in the blood. While red blood cells 
are traditionally viewed to function in oxygen trans-
port, they are now recognized to actively participate in 
both arterial and venous thrombosis, as supported by 
clinical observations in patients with RBC abnormali-
ties [47]. Furthermore, epidemiological studies have 
reported positive associations between hemoglobin 
concentration and both cardiovascular and all-cause 
mortality [48]. Potential mechanisms might involve an 
elevation of blood viscosity due to excess of RBC, vaso-
constriction due to scavenging of nitric oxide by hemo-
globin, promotion of platelet adhesion or activation 
by increasing hematocrit, or participation of normal 
RBC in thrombin generation [47]. By MR analysis, we 

confirmed the causal role of RBC on CAD, elevating the 
risk by nearly 10% per SD increase in RBC, hemoglobin, 
or hematocrit, even after adjusting for cardiometabolic 
factors. It is important to note that MR analysis based 
on GWAS summary statistics uses a linear approxima-
tion to estimate the causal effect, while the actual effect 
can be nonlinear, such as a U-shaped curve. In fact, 
both anemia and polycythemia vera have been reported 
to associate with increased cardiovascular risk [49, 50]. 
In particular, anemia can exacerbate cardiovascular 
complications, possibly due to compensatory conse-
quences of hypoxia, including increased cardiac output 
and myocardial load, left ventricular hypertrophy, pro-
gressive heart enlargement, and atherosclerotic effects 
[49, 51]. Thus, our causal effect estimates should be 
interpreted with caution at extremes of red blood cell 
indices.

We also identified a potential causal role of UA on 
CAD, but the causal effects are heterogeneous between 
Europeans and East Asians. Consistent with the finding 
from Keenan et  al. [52], we found no causal evidence 
of UA on CAD in Europeans, but we observed a sig-
nificant causal effect in East Asians, which remained 
significant after adjusting for cardiometabolic risk fac-
tors. In fact, the pathogenetic role of UA on cardiovas-
cular disease has been suggested by early experimental 
studies, potentially involving endothelial dysfunction, 
vascular smooth muscle cell proliferation, and inflam-
mation [53]. The population heterogeneity of UA might 
be attributed to interaction with environmental factors, 

Fig. 5  MVMR analyses of 10 significant clinical factors on CAD. A Independent effect estimates by joint analysis of six cardiometabolic factors. B 
Independent effect estimates for each of RBC, Hb, Ht, and UA after adjusting for six cardiometabolic factors in panel A. Effect sizes are represented 
by OR per SD increment in the exposure. The horizontal bars represent 95% CIs. P < 0.05 are highlighted in red
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such as diet, because the prevalence of hyperuricemia 
and gout in East Asians is much higher than that in 
Europeans [54].

While 35 of the 37 clinical factors examined in our 
study have been reported to associate with CAD by epi-
demiological studies, we conclude no causal effects for 
23 clinical factors, including HDL-C, CRP, hepatic func-
tion indices, white blood cell and platelet traits, most of 
the renal function indices, and two serum electrolytes. 
These negative results are as important as the positive 
discoveries for better understanding of the etiology of 
CAD. Many of the negative results are confirmatory to 
previous studies, including null associations for HDL-C 
[55], CRP [56], and Alb [57, 58], but some are contra-
dictory. For example, Xu et al. [59] reported an increase 
in the liver function biomarker ALT could lower the 
risk of CAD in a MR analysis with two IVs. We found 
their results might be plagued by horizontal pleiotropy, 
because their IVs were significantly associated with TG 
in our meta-analysis (Pmeta < 5×10−8). This example 
highlights a key strength of our study in selecting IVs 
with stringent criteria to exclude potential pleiotropy. 
In another example, Larsson et al. [60] reported a causal 
risk effect of serum calcium on CAD in an MR analy-
sis with 6 IVs. While these SNPs were carefully selected 
to have no association with traditional cardiometa-
bolic risk factors [60], we found 3 out of 6 SNPs were 
significantly associated with hepatic and renal function 
indices in our data (Pmeta < 5×10−8), such that residual 
pleiotropy was possible. Furthermore, the sample size 
of the serum calcium GWAS used in Larsson et al. [60] 
(n = 61,079) was much smaller than those used in our 
analyses (n = 315,153 in UKB and 71,701 in BBJ). Our 
results are consistent with observational studies and 
RCTs that calcium intake from food or supplements has 
weak relationship with the risk of cardiovascular disease 
or all-cause mortality in the general population [61]. The 
effect of genetic predisposition to higher serum calcium 
levels on the risk of CAD needs future investigation.

Compared with previous MR studies, our study has sev-
eral key strengths. First, our analyses are well powered by 
leveraging the largest publicly available GWAS datasets. 
Second, we have carefully selected IVs for each clini-
cal factor, excluding potential horizontal pleiotropy with 
the other clinical factors to avoid false-positive findings, 
although our stringent criteria might be conservative by 
discarding SNPs with vertical pleiotropy. This issue is mit-
igated in MVMR analyses, in which SNPs associated with 
multiple exposures were included as the IVs. Third, our 
results are robust given consistent results derived from 
several different MR methods and two diverse ancestry 
groups. Fourth, our unified analysis framework facili-
tates direct comparison of causal effects among different 

clinical factors or between populations, leading to a more 
complete understanding of the etiology of CAD.

Nonetheless, there are several limitations of our study. 
First, the sample sizes of East Asian studies are still much 
smaller than those of Europeans. Thus, our meta-analysis 
results are likely dominated by European samples. Never-
theless, the Eurocentric bias in human genetics research 
is a well-recognized issue, and efforts have been made 
to promote research in non-European populations. Our 
study is among the first attempts to directly compare 
the causal effects of a large number of CAD risk fac-
tors across populations. Second, BBJ is a hospital-based 
patient-ascertained cohort, whereas UKB is a popula-
tion-based healthy volunteer cohort. The cohort discrep-
ancy may impair the comparability between populations, 
potentially explaining the slightly larger causal effect esti-
mates in East Asians than in Europeans. In addition, there 
are concerns about the representativeness of BBJ and 
UKB to the general population [62, 63]. Nevertheless, it 
has been pointed out that a sufficiently large sample size 
with different levels of exposure is essential for the gener-
alizability of associations between exposures and diseases 
[64, 65], and that the risk factor association results based 
on UKB are highly consistent to those from nationally 
representative cohorts [66]. Finally, our study is limited 
to 37 clinical factors with available summary statistics 
from large-scale GWAS, despite hundreds of CAD risk 
factors having been reported. We expect the aforemen-
tioned limitations to be resolved in future investigations 
with the increasing availability of data from large-scale 
population-based biobanks in many countries.

Conclusions
We have identified 1 protective and 13 risk factors with 
reliable causal evidence on CAD, consistently in East 
Asians and Europeans. In addition to traditional car-
diometabolic risk factors, red blood cells and uric acid 
showed significant independent risk effects. These find-
ings have important implications for informing preven-
tion strategies and potential therapeutic targets of CAD.
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