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Abstract 

Background:  The widespread clinical application of genome-wide sequencing has resulted in many new diagnoses 
for rare genetic conditions, but testing regularly identifies variants of uncertain significance (VUS). The remarkable rise 
in the amount of genomic data has been paralleled by a rise in the number of protein structures that are now publicly 
available, which may have clinical utility for the interpretation of missense and in-frame insertions or deletions.

Methods:  Within a UK National Health Service genomic medicine diagnostic laboratory, we investigated the number 
of VUS over a 5-year period that were evaluated using protein structural analysis and how often this analysis aided 
variant classification.

Results:  We found 99 novel missense and in-frame variants across 67 genes that were initially classified as VUS by our 
diagnostic laboratory using standard variant classification guidelines and for which further analysis of protein struc-
ture was requested. Evidence from protein structural analysis was used in the re-assessment of 64 variants, of which 
47 were subsequently reclassified as pathogenic or likely pathogenic and 17 remained as VUS. We identified several 
case studies where protein structural analysis aided variant interpretation by predicting disease mechanisms that 
were consistent with the observed phenotypes, including loss-of-function through thermodynamic destabilisation or 
disruption of ligand binding, and gain-of-function through de-repression or escape from proteasomal degradation.

Conclusions:  We have shown that using in silico protein structural analysis can aid classification of VUS and give 
insights into the mechanisms of pathogenicity. Based on our experience, we propose a generic evidence-based work-
flow for incorporating protein structural information into diagnostic practice to facilitate variant classification.
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Background
In an era of rapidly expanding genomic data, the inter-
pretation and classification of novel missense variants 
remains a perennial challenge for diagnostic laboratories. 
Over the years, numerous in silico tools have been devel-
oped to assess the impact and pathogenicity of amino 
acid substitutions and aid variant classification. These 
tools have developed broadly along two lines [1]: first, 
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analysis of conservation in homologous proteins across 
species, and second, modelling the impact of mutation on 
the physicochemical properties of the protein. Although 
many of these tools perform very well, with high sensitiv-
ities and specificities in test datasets, their implementa-
tion by diagnostic genomics laboratories has nonetheless 
been variable and often unsystematic. Furthermore, indi-
vidual tools can often produce conflicting interpretations 
[2], contributing to a significant proportion of novel mis-
sense variants being classified as variants of uncertain 
significance (VUS).

The great advances in genomic medicine over the last 
decade have been paralleled by a concomitant rise in 
the number of experimentally derived protein struc-
tures publicly available in the Research Collaboratory 
for Structural Bioinformatics (RSCB) Protein Data Bank 
(PDB) [3] (https://​www.​rcsb.​org). Currently, around 17% 
of residues in the human proteome are represented in 
experimentally solved protein structures, although the 
use of comparative modelling can increase the propor-
tion of residues for which reliable structural analysis can 
be performed to around 50% [4, 5]. The recently released 
database of structures predicted by the AlphaFold-2 
machine-learning method now provides a predicted 
structure for 98.5% of residues in the human proteome; 
however, the confidence with which structure can be 
predicted is highly variable, and only 58% of residues in 
the AlphaFold database have a predicted Local Distance 
Difference Test score (pLDDT) of > 70, the lower limit 
recommended for use in analysis [6, 7]. As such, while 
the AlphaFold database represents a valuable resource 
for structural analysis, it provides a relatively modest 
increase in the proportion of the human genome which 
can be modelled with confidence [5, 8, 9].

Where experimental or predicted models of suit-
able quality are available, numerous studies have dem-
onstrated that in silico protein structural analysis can 
provide diagnostic utility in genomic medicine, by iden-
tifying genetic variants that are likely to be deleterious 
to protein structure and/or function. Examples of genes 
studied include MSH2 [10], PAH [11], MLH1 [12], LDLR 
[13], GABRA2 [14], MEN1 [15] and various other genes 
involved in endocrine disease [16]. Furthermore, in silico 
thermodynamic predictions based on data from many 
thousands of protein engineering experiments may offer 
a generic approach to identifying likely loss-of-func-
tion missense variants with high specificity [10, 12, 13, 
15]. However, despite this literature, structural analysis 
remains an underused tool in clinical diagnostic labora-
tories, in part due to lack of confidence in the validity and 
utility of the approach. This is a particular problem for 
diagnostic laboratories that routinely analyse genomes, 
exomes or other large gene panels, where there may be 

little or no prior specialist knowledge about the biol-
ogy of genes in which candidate diagnostic variants are 
identified.

On the basis of this prior work, we reasoned that pro-
tein structural analysis has the potential to be of diag-
nostic utility for investigating novel missense variants 
that would otherwise be classified as VUS across a wide 
range of genes. Here, we report a retrospective dataset 
of candidate diagnostic variants which were subjected to 
structural analysis within a UK National Health Service 
(NHS) genomics laboratory over a 5-year period follow-
ing implementation of the American College of Medi-
cal Genetics and Genomics (ACMG) and Association of 
Molecular Pathologists guidelines on variant classifica-
tion [17], and subsequently the UK Association for Clini-
cal Genomic Science (ACGS) Best Practice Guidelines 
for Variant Classification in Rare Disease [18]. As a result 
of this work, we present here a generic, evidence-based 
strategy for incorporating protein structural analysis 
into a diagnostic workflow for genomic medicine, and 
describe a number of examples in which analysis at both 
the structural and sequence level has been key to under-
standing the impact of novel variants on protein function 
and the likely mechanism of pathogenicity.

Methods
Variant identification and preliminary classification
All variants were identified in patients referred to the 
Exeter Genomics Laboratory (Royal Devon University 
Healthcare NHS Foundation Trust) from 2016 to 2020 
for genetic testing in a variety of conditions. Informed 
consent for genetic testing was provided by patients or 
their parents in accordance with the requirements for 
clinical diagnostic testing provided through the NHS. 
All testing was conducted in accordance with the Dec-
laration of Helsinki. Variants were detected by targeted 
next generation sequencing either of whole exomes or of 
custom gene panels. For cases referred to the laboratory 
for panel analysis, a clinical summary was reviewed by a 
healthcare scientist prior to panel selection to ensure that 
the referral was appropriate and adhered to any relevant 
best-practice guidelines. For cases referred to the labora-
tory for exome sequencing, the case was reviewed by a 
registered clinical scientist prior to testing to select cases 
with a likely monogenic disease aetiology. Following test-
ing, all results were discussed with the referring clinician 
before a report was issued. Probes for in-solution capture 
and enrichment of target sequences were supplied either 
by Agilent Technologies (Santa Clara, CA, USA) or Twist 
Bioscience (South San Francisco, CA, USA) and used 
according to the manufacturer’s instructions. Sequenc-
ing was carried out on an Illumina NextSeq500 or 550 
instrument using 150-bp paired end reads (Illumina, San 
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Diego, CA, USA). Variants were called in human genome 
build GRCh37 and annotated using Alamut Batch soft-
ware (Interactive Software, Rouen, France). Following 
evaluation by clinical scientists, variants received a pre-
liminary classification based on the available evidence 
according to current ACMG/ACGS guidelines. In cases 
where variants were classified as VUS, we then employed 
the option of referral for further in-house analysis of pro-
tein structure to gain insight into the likely impact of the 
variant. All variants reported in this manuscript have 
been deposited in the DECIPHER database [19].

Protein structure data and analysis
For most of the period covered by this analysis, the avail-
ability of structural data was queried via the Universal 
Protein Knowledgebase (UniProtKB) [20] (https://​www.​
unipr​ot.​org) entry for the protein in question, which pro-
vided links either to experimental data for the protein 
itself in the PDB database [3], or to high quality pre-cal-
culated homology models in the SWISS-MODEL Reposi-
tory [21] (https://​swiss​model.​expasy.​org/​repos​itory). 
Where no experimental or pre-calculated models were 
available, protein sequence data was submitted to one or 
more of the protein modelling servers, SWISS-MODEL 
[22] (https://​swiss​model.​expasy.​org), Phyre2 [23] (http://​
www.​sbg.​bio.​ic.​ac.​uk/​phyre2) and I-TASSER [24] 
(https://​zhang​group.​org/I-​TASSER), for identification of 
suitable templates for comparative modelling and subse-
quent construction of predicted models. For comparative 
single-templated modelling using the SWISS-MODEL 
server, models were normally constructed using the tem-
plate yielding the highest overall quality score (GMQE) 
over the residue of interest and meeting general require-
ments for reliable prediction (> 30% sequence identity 
of target and template over modelled region; length of 
region modelled > 30 residues). For models generated 
by multi-templated modelling, only residues predicted 
with ≥ 90% confidence were used in further analyses. In 
all cases, protein structures were downloaded as PDB 
files, and the structural context of the residue(s) affected 
by the variant investigated in detail using Swiss-Pdb-
Viewer [25] and/or PyMOL (PyMOL Molecular Graph-
ics System, Version 2.0, Schrödinger LLC; New York, 
NY, USA). Specific variants were introduced into PDB 
files by in silico mutagenesis. Initially, variant sequences 
were uploaded to the SWISS-MODEL server for re-
modelling on the appropriate structure of the native pro-
tein. During the course of this work, we also introduced 
routine use of the FoldX modelling suite [26] for in sil-
ico mutagenesis, which provides both a PDB file for the 
variant protein structure and a quantitative prediction 
of the impact of the variant on thermodynamic stabil-
ity of protein structure. In all cases, input PDB files were 

repaired using the FoldX RepairPDB command prior to 
mutagenesis. The thermodynamic impact of variants was 
interpreted according to generally accepted thresholds 
[27, 28], whereby a change in free energy of the variant 
structure compared to that of the native or input struc-
ture (ΔΔG) > 3 kcal/mol was regarded as severely desta-
bilising, 1–3 kcal/mol as destabilising and < 1 kcal/mol as 
neutral or benign.

Later in the period covered by this analysis, additional 
online tools became available that have been designed 
to integrate and streamline parts of the above work-
flow. These include PDBe-KB [29] (https://​www.​ebi.​ac.​
uk/​pdbe/​pdbe-​kb/​prote​in), which provides integrated 
annotation of experimental structural data for a protein; 
VarSite [30] (https://​www.​ebi.​ac.​uk/​thorn​ton-​srv/​datab​
ases/​VarSi​te) and VarMap [31] (https://​www.​ebi.​ac.​uk/​
thorn​ton-​srv/​datab​ases/​VarMap), which provide data on 
structural conservation and homology-based annotation 
of residue function; and Missense3D [4] (http://​misse​
nse3d.​bc.​ic.​ac.​uk/​misse​nse3d), which performs in silico 
mutagenesis, either from a user-specified PDB file (which 
may be either an experimental or predicted structure) or 
from generation of a comparative model using the Phyre2 
server, and then evaluates the effect of missense variants 
on protein structure by a number of criteria. These tools 
are now routinely used as part of our structural analysis 
workflow.

Results
Protein structural analysis provides clinical utility 
for variant classification
From cases referred to the Exeter Genomic Laboratory 
for genetic diagnosis (~ 28,500 tests conducted during 
the period covered in this report), we identified a total 
of 99 unique rare or novel variants (93 missense, three 
in-frame deletions, two in-frame insertions and one 
in-frame deletion/insertion variant) for which protein 
structural analysis was performed. In all cases, these 
were variants for which there was support for patho-
genicity from one or more other strands of evidence 
(e.g. inheritance status, co-segregation in family mem-
bers, conservation and variation in healthy and affected 
populations, clinical fit with gene-specific phenotype, 
genetic heterogeneity of condition) but which remained 
as VUS following preliminary classification (Additional 
file 1). Where structural evidence was used in the final 
classification, this was applied in all but two cases 
through the ACMG/ACGS moderate evidence of path-
ogenicity PM1 criterion, which is applicable when a 
variant is located within a critical and well-established 
functional domain [18, 19]; two cases (both variants in 
ARSL) in which evidence was applied under the PP3 
criterion remained as VUS. Using 3-dimensional (3D) 
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protein modelling within PM1 enables precise position-
ing of a variant within the functional region of a pro-
tein and may also offer mechanistic insights about how 
a variant alters domain function. We incorporated the 
use of FoldX into our routine analysis pathway in Feb-
ruary 2017, in order to assess the impact of variants on 
the thermodynamic stability of protein structure in 80 
of the cases listed; this tool was used to analyse 80 vari-
ants, and reported ΔΔG values are included in Addi-
tional file  1. Of the 19 variants where FoldX was not 
used, 12 pre-dated our use of this tool, and two were 
of in-frame indels which cannot be analysed directly 
by FoldX; in the remaining cases, variants occurred 
in molecular contexts such as extended, unstructured 
loops or lipid-facing surfaces of transmembrane heli-
ces, where FoldX has limited reliability or predictive 
value.

Evidence from structural analysis was used in the final 
classification of 64 variants. Of these, 47 were reclassi-
fied as pathogenic or likely pathogenic, with the struc-
tural data being applied under PM1 as either moderate 
(13) or supporting (34) based on professional judgement, 
while 17 cases remained classified as VUS. No variants 
were reclassified as benign or likely benign following 
structural analysis. This was largely due to ascertainment 
bias in the cohort of variants for which structural analy-
sis was requested, all of which had some existing evi-
dence in support of pathogenicity. However, due to the 
intrinsic limitations of comparative modelling, whereby 
an apparent lack of structural damage in silico does not 
necessarily constitute positive evidence against the pos-
sibility of such an effect in vivo, we exercised a conserva-
tive approach when applying modelling data to variant 
classification to minimise misclassification. A summary 
of evidence from structural analysis of each variant, and 
whether this was or was not used in the final classifica-
tion, is included in Additional file 1.

Novel variants are by definition unique and uncharac-
terised, so their analysis is inevitably highly context-spe-
cific and can require a high degree of manual intervention 
and curation. We therefore developed a standardised, 
evidence-based workflow for the systematic analysis 
of structural and sequence data as an aid to diagnostic 
classification of genetic variants (Fig. 1). Although some 
newer databases and online tools have both expanded the 
capacity for such analysis as well as streamlining parts 
of the process, the approach and underlying principles 
remain the same. The workflow proceeds via a series of 
yes/no questions according to the level of evidence avail-
able for the protein structure and sequence and makes 
use of a range of freely available software according to the 
pathway followed. The utility of this approach is demon-
strated by four case studies described below.

Case study 1: Aiding variant interpretation by prediction 
of loss‑of‑function through reduced protein stability
Loss-of-function is a common mechanism of disease, but 
in contrast to protein-truncating variants that result in 
nonsense-mediated decay, it can be difficult to evaluate 
whether missense or in-frame deletion/insertion vari-
ants will result in impaired protein function. However, 
thermodynamic destabilisation is a generic mechanism 
through which missense changes can cause misfolding 
and/or degradation of a folded protein domain [27, 28], 
which can be assessed in silico using FoldX or similar 
tools.

An example of the value of this analysis was CASR 
variant NM_000388.3:c.488C > G, p.(Pro163Arg), which 
was identified in a patient referred for genetic test-
ing for Familial Hypocalciuric Hypercalcaemia (FHH). 
The proband presented with hypercalcaemia and no 
evidence of parathyroid adenoma or hyperplasia. A 
calcium infusion test strongly supported a diagno-
sis of a calcium-sensing receptor disorder rather than 
primary hyperparathyroidism [32]. The heterozygous 
p.(Pro163Arg) variant was initially classified as a VUS 
using the ACMG/ACGS criteria. Subsequent discussions 
with colleagues in another UK NHS genomics laboratory 
revealed that this variant had been identified in several 
individuals and shown to co-segregate with hypercalcae-
mia in three families. The variant was referred for protein 
structural analysis to investigate the likely mechanism by 
which it might alter the domain function. CASR encodes 
the calcium-sensing receptor CaSR, a G protein-coupled 
transmembrane receptor which senses and regulates 
the level of extracellular calcium. Inactivating variants 
in CASR cause numerous hypercalcaemic disorders of 
differing severity, including FHH and neonatal severe 
hyperparathyroidism, through a loss-of-function mecha-
nism. Conversely, specific activating missense variants 
cause the opposite phenotype, hypocalcaemia (Bartter 
syndrome type V) through a gain-of-function mecha-
nism [33]. Experimentally derived protein structures 
were available for the entire extracellular region in active 
(calcium bound) and inactive forms (PDB 5k5s and 5k5t 
respectively) [34]. Inspection of the native structure 
showed that Pro163 lies in a loop, forming part of a dis-
continuous calcium binding region in the extracellular 
region of the protein, with the sidechain buried and sur-
rounded by non-polar amino acids (Fig. 2A). Substitution 
of the native proline residue by arginine was predicted 
to result in steric clashes with neighbouring sidechains, 
while placing the charged, polar sidechain of arginine 
in the hydrophobic protein core (Fig.  2B). FoldX pre-
dicted the ΔΔG values for the variant as ~ 13  kcal/mol 
in both the active and inactive forms, i.e. an extremely 
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destabilising change [28]. This result was supported by 
the Missense3D tool, which has previously been shown to 
have a low false-positive rate for the identification of var-
iants that are deleterious to protein structure [4]. Despite 
not directly interacting with calcium, the variant was 
therefore considered highly likely to result in structural 
destabilisation of the calcium binding region and thus 
loss-of-function of CaSR, consistent with the hypercal-
caemia phenotype. Evidence from the structural analysis 
was applied as PM1 Moderate under the ACMG/ACGS 
guidelines, and in combination with co-segregation data 
allowed the variant to be classified as pathogenic.

Case study 2: Aiding variant interpretation by prediction 
of loss‑of‑function through disrupted ligand binding
Another potential mechanism by which missense vari-
ants can cause loss-of-function is through disruption 
of ligand binding, which can most easily be determined 

through evaluation of the protein structure. One exam-
ple of this mechanism was a novel heterozygous variant, 
GNAO1 NM_020988.2:c.980C > A, p.(Thr327Lys), identi-
fied in a child referred for exome sequencing with global 
developmental delay, central axial hypotonia and hyper-
mobility. GNAO1 encodes a 354-residue member of the 
Gα family of guanine nucleotide-binding proteins, and 
Thr327 is annotated as lying in the last of five guanine-
nucleotide binding motifs, or G-boxes. Although its pre-
cise function is unclear, pathogenic variants in GNAO1 
are known to cause early infantile epileptic encephalopa-
thy type 17 (EIEE17) [35]. Testing of parental samples 
showed that the variant had arisen de novo but, under 
ACMG/ACGS guidelines, was initially classified as a VUS 
and referred for protein structural analysis to investigate 
the location and likely impact of the variant. None of the 
existing experimental models for human GNAO1 pro-
vided coverage of the entire nucleotide binding domain 

Fig. 1  Evidence-based workflow for structural and sequence analysis of missense variants. The generic workflow used for analysis of missense 
variants proceeds through a short series of questions. Following the initial question (“Is there an experimental structure for the human protein or 
domain?”), the analysis pathway is then determined by the level of evidence available for each variant, and may differ on a case-by-case basis
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or included the bound ligand. Therefore, to ensure that 
these features were included in the analysis, compara-
tive models were built using two different templates: 
PDB 3c7k, the structure of mouse GNAO1 (97.7% iden-
tity to the human orthologue) in complex with regula-
tory protein RGS16 [36], and PDB 6crk, the structure 
of human GNAi1 (73.8% identity to human GNAO1), in 
complex with the Gβ-γ heterodimer [37]. Modelling of 
the native sequence on both templates revealed that the 
bound guanine nucleotide interacts directly with Thr327 

(Fig.  3A), and that the novel and long lysine sidechain 
would occlude the ligand binding pocket, thus prevent-
ing nucleotide binding (Fig. 3B). The structural data thus 
provided evidence that the variant was likely to result in 
loss-of-function and thus fits with the known gene-dis-
ease mechanism consistent with the observed phenotype. 
The result was therefore applied as PM1 Supporting, 
allowing a final classification of likely pathogenic. It is 
notable in this case that FoldX predicted no change in 
stability as a result of the p.(Thr327Lys) variant as FoldX 

Fig. 2  CASR NM_000388.3:c.488C > G, p.(Pro163Arg). A Structure of the inactive form of CaSR (PDB 5k5t) around Pro163. Protein ribbon is coloured 
from N-terminal, blue, to C-terminal, red, except for Pro163 (carbon atoms coloured magenta); sidechain atoms of Pro163 and near neighbours are 
shown in stick format; the grey sphere shows a bound calcium ion. B As A, but showing the predicted structure of the p.(Pro163Arg) variant

Fig. 3  GNAO1 NM_020988.3:c.980C > A p.(Thr327Lys). A Predicted structure of GNAO1 residues 3–347, modelled on template 6crk chain A; the 
protein is coloured grey by default, with residues of the five nucleotide binding G boxes blue; the view shows both the protein ribbon and surface, 
sliced through to demonstrate the interior of the binding pocket; the Thr327 sidechain and guanosine diphosphate (GDP) ligand are shown as 
space-filling spheres, with carbon atoms of Thr327 coloured orange. B As A, but showing the predicted structure of the p.(Thr327Lys) variant; note 
that the novel lysine sidechain is predicted to occlude the binding pocket, with ligand absent from the predicted structure. Models obtained using 
PDB 3c7k as template were essentially identical to those shown here for 6crk-based modelling



Page 7 of 16Caswell et al. Genome Medicine           (2022) 14:77 	

was unable to model the nucleotide ligand, so the larger 
lysine sidechain appeared to extend into an empty ligand 
binding pocket.

Case study 3: Aiding variant interpretation by prediction 
of gain‑of‑function through de‑repression resulting 
in activation
In many cases, the benefit of protein structure model-
ling in variant classification—above and beyond assess-
ing pathogenicity—is to provide evidence supporting a 
mechanism of pathogenicity for the variant that is con-
sistent with the known mechanism of that disease. Unlike 
loss-of-function, however, variants that cause gain-of-
function are often hard to interpret as their effects on 
structure are likely to be more variable, potentially more 
subtle, and may require retention of the active form and 
structure of a protein. Moreover, there is some evidence 
that pathogenicity predictors generally perform worse 
for non-loss-of-function mechanisms [38, 39], so protein 
structural analysis may provide greater benefits. In the 
context of proteins which exist in multiple conforma-
tions, preferential destabilisation of the inactive form (or 
stabilisation of the active form) can shift the normal bal-
ance between the two forms favouring increased activity.

One example where limited destabilisation can lead 
to gain-of-function was that of a novel heterozygous 
missense variant, MAP2K1 NM_002755.4:c.149  T > C 
p.(Leu50Pro), which was identified as a de novo vari-
ant in an infant presenting with facial dysmorphism 
(including hypertelorism, down slanted palpebral fis-
sures, prominent forehead and small chin), skin abnor-
malities, joint hypermobility, macrocephaly and global 
developmental delay. Variants in MAP2K1 are known to 
cause cardiofaciocutaneous syndrome 3 (CFC3; MIM 
#615,279) [40], in which the above features are typically 
observed, although our patient had none of the car-
diac anomalies which usually occur in this condition. 
MAPK1 encodes MAP/ERK kinase 1 (MEK1), which 

is activated in response to a variety of extracellular sig-
nals, and mutagenesis experiments have demonstrated 
the importance of a short region in the N-terminal 
of the protein, lying outside the catalytic domain, in 
maintaining the kinase in an inactive basal state [41, 
42]. This region, termed the negative regulatory region 
(NRR), is the site of one of the previously reported 
pathogenic variants in MAP2K1, namely p.(Phe53Ser) 
[40]. The crystal structure of MEK1 revealed that the 
NRR forms an α-helix which lies across the periphery of 
the kinase domain, locking it in the inactive state prior 
to activation by tyrosine phosphorylation (Fig. 4A), and 
leading to the hypothesis that activating variants in the 
NRR disrupt the inhibitory interaction with the kinase 
domain [43]. Residue Leu50 lies on the inner surface of 
the NRR helix, in contact with Asn122 and Pro124 in 
the kinase domain. Substitution of leucine by proline at 
this position would be expected to destabilise the helix, 
while also resulting in loss of contact with Asn122 and 
Pro124 (Fig.  4B, C); consistent with this, FoldX analy-
sis returned a ΔΔG value of 4.4  kcal/mol, predicting 
the variant to be severely destabilising to this region of 
the protein. A value of 2.7  kcal/mol was predicted for 
the nearby CFC3-associated variant, p.(Phe53Ser) vari-
ant, indicating that the p.(Leu50Pro) variant likely has 
a similar effect in vivo, consistent with disease mecha-
nism and the observed phenotype. Furthermore, an 
analysis of all variants reported in the Human Gene 
Mutation Database (HGMD) [44] showed that mis-
sense variants that were predicted to cause significant 
structural destabilisation were confined either to the 
NRR itself or to residues in the kinase domain which 
interact with the NRR, consistent with a gain-of-func-
tion mechanism whereby pathogenic variants cause 
local destabilisation within the NRR but not in the core 
kinase domain (Fig. 4D). The protein structural analysis 
was applied under PM1 Supporting and the variant was 
subsequently classified as likely pathogenic.

Fig. 4  MAP2K1 NM_002755.4:c.149 T > C p.(Leu50Pro). A Structure of MEK1 residues 39–381 in complex with an adenosine triphosphate (ATP) 
analogue and an inhibitor compound (PDB 3eqc); default colouring is grey, with residues of the NRR (44–58) and kinase domain (68–361) coloured 
light green or cyan, respectively; additionally, Leu50 is coloured magenta, with the sidechain shown in stick format, while positions of missense 
variants reported as pathogenic in HGMD (class DM) are coloured red. B As A, but magnified to show detail around Leu50, for which all atoms 
are shown as space-filling spheres; spheres are also shown for sidechains atoms of Asn122 (carbon atoms cyan) and Pro124 (carbon atoms red), 
which lie in van der Waals contact with Leu50. C As B, but showing the predicted structure of the p.(Leu50Pro) variant. D The upper part shows 
the schematic organisation of MEK1; the grey bar indicates a region of predicted disorder (residues 1–27), while green and cyan bars show the 
NRR and protein kinase domains, respectively; triangles below show the location of variants reported in HGMD (red, pathogenic/class DM; orange, 
possibly pathogenic/class DM?), while the site of the p.(Leu50Pro) variant is shown by a magenta triangle. The lower part shows the predicted 
thermodynamic effect of the VUS p.(Leu50Pro) (magenta fill) and all HGMD missense variants (red fill, class DM; orange fill, class DM?) on MEK1 
stability calculated in PDB 3uqc, and is aligned to the upper schematic; the light green-shaded region in the graph shows the extent of the NRR 
(green shading), while cyan-shaded regions show residues of the kinase domain which lie in contact with the NRR (NRRI: NRR-interacting); note that 
the most destabilising variants, including p.(Leu50Pro), all occur in the NRR or NRRI regions; these include three variants at Pro124, which interacts 
directly with Leu50 (vertical broken lines)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 9 of 16Caswell et al. Genome Medicine           (2022) 14:77 	

Case study 4: Aiding variant interpretation by prediction 
of gain‑of‑function through escape from proteasomal 
degradation
A gain-of-function can also occur because of an 
increased level of active protein, either through 
increased protein production or reduced protein degra-
dation. An example of this mechanism was that of a novel 
variant in the WNK1 gene, NM_018979.3:c.1903G > A, 
p.(Asp635Asn), which was identified in a patient with a 
family history of hyperkalaemia and a suspected clini-
cal diagnosis of Gordon’s syndrome. WNK1 encodes a 
serine/threonine kinase that plays an important role in 
the regulation of electrolyte homeostasis, cell signal-
ling, survival and proliferation, and specific missense 
variants can cause pseudohypoaldosteronism type IIC 
(PHA2, also known as Gordon’s syndrome), character-
ised by hypertension and hyperkalaemia, though with 
normal renal function, and metabolic acidosis [45, 46]. 
At the time of analysis, HGMD contained only a single 
WNK1 missense variant reported in association with 
PHA2, namely p.(Glu630Lys) [47], and no structure was 
available for the protein. Furthermore, both Glu630 and 
Asp635 lie in a region of predicted disorder spanning 
residues 573–779, for which there were no experimental 
or high-quality predicted models. Regions of disordered 
protein may form weak interactions with each other, 
forming condensates or membraneless micro-orga-
nelles that are involved in macromolecular partitioning 
and other cellular processes [48–51]. Many intrinsi-
cally disordered regions also contain short linear motifs 
(SLiMs) that may act as target sites for protein–protein 
interactions or post-translational modifications [52, 
53]. Importantly, it is becoming increasingly clear that 
changes to the properties of disordered regions arising 
from genetic variants play a role in human disease [48, 
54–57]. With this information in mind, native and vari-
ant WNK1 sequences were scanned using the Eukary-
otic Linear Motif resource (ELM) [58] and ScanSite 4.0 
[59] to search for potential functional sites within this 
region. This analysis identified a Kelch-binding degron 
motif in the native sequence, which was ablated by the 
p.(Asp635Asn) variant (Fig.  5). The degron is an acidic 
motif which mediates interaction with Kelch-like pro-
tein KLHL3, allowing degron-containing proteins such 
as WNK1 and the related protein WNK4 to be targeted 
for proteasomal degradation via KLHL3-Cullin com-
plexes [60]. Variants in the motif thus allow the protein 
to escape degradation, resulting in accumulation and 
raised activity of the target protein. Notably, a number of 
such variants in the degron of WNK4 (residues 557–566, 
as annotated by ELM), which cause a related form of 
PHA2, have been shown to exhibit decreased interaction 

with KLHL3 [61–63], while the previously-reported 
p.(Glu630Lys) variant in WNK1 also affects the degron 
motif, suggesting a common mechanism of action of 
these variants. Moreover, around the time of our anal-
ysis, a series of pathogenic variants within the degron 
(or acidic motif ) of WNK1 were reported in a cohort of 
patients with inherited hyperkalaemic hyperchloremic 
acidosis [64], which included the same p.(Asp635Asn) 
variant observed in our patient. This report, together 
with our elucidation of a molecular mechanism for dis-
ease, allowed the variant to be classed as likely patho-
genic under PM1 of the ACMG/ACGS guidelines, in this 
case without any 3D protein structural data.

Discussion
In many cases, a genetic variant can be classified as 
pathogenic/likely pathogenic, or benign/likely benign 
using standard automated or semi-automated pipelines 
or evidence-based algorithms [17, 18] without the need 
for more in-depth analysis, and indeed, this was the case 
for the vast majority of variants that were detected in 
our laboratory during the course of this study. Variants 
that have either been previously reported to cause dis-
ease, or occur in a gene with multiple well-characterised 
pathogenic variants, or give rise to a very specific and 
unequivocal phenotype can be relatively straightforward 
to classify under such procedures due to the weight of 
existing evidence. However, novel missense variants 
remain a challenge and when they are of uncertain sig-
nificance after initial evidence gathering, we have found 
that there is a strong case for using in silico protein struc-
tural analysis as an aid to variant classification applied 
through the ACMG/ACGS PM1 criterion. While the 
number of variants reported here is small compared to 
the total throughput of our laboratory, we have shown 
that this approach is useful in cases where only a few 
pathogenic variants have previously been reported in a 
particular gene, and where missense variants give rise to 
variable phenotypes or different diseases via alternative 
mechanisms.

Protein modelling typically requires a substantial level 
of manual intervention and data curation, and thus, we 
were prompted to develop a systematic and standardised 
framework for the incorporation of data from structural 
analysis into the variant classification pathway (Fig.  1). 
The proposed pathway uses a number of questions to 
assess the level and type of evidence available, and while 
the recent development of new software tools is now 
helping to automate and streamline this process, the 
evidence-based principles remain unchanged. Moreo-
ver, while in some cases these questions may have a sim-
ple yes/no answer, or only limited data availability that 
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suggests an obvious route through the pathway, in many 
cases there may be a number of possible options for fur-
ther analysis which should be considered in order to 
determine the optimal path, as addressed below.

Question 1: Is there an experimental structure 
for the human protein or domain?
Our first step in using structural analysis is to determine 
whether the position of interest is present in an experi-
mental protein structure, as this will normally represent 
the highest quality of data for further analysis (Fig. 1, box 

Question 1). Some variant interpretation platforms such 
as DECIPHER [19] allow users to visualise genetic vari-
ants directly in human protein structures where avail-
able. For more detailed analysis, the UniProtKB database 
provides links to experimental structures, along with 
a summary of the resolution and range of residues cov-
ered. More recently, PDBe-KB [29] provides an inte-
grated graphical database of experimental structures 
of the protein of interest, along with residue-level func-
tional annotation. For detailed analysis, structures of 
highest resolution (i.e. lowest value in Angstroms) will 

Fig. 5  WNK1 NM_018979.3:c.1903G > A, p.(Asp635Asn). The upper part of the figure shows results of ELM analysis (http://​elm.​eu.​org) for residues 
601–700 of native WNK1 (left) and the p.(Asp635Asn) variant (right); upper tracks show predicted sites of phosphorylation (PhosphoELM), conserved 
domains (SMART/Pfam) and underlying structure or disorder (GlobProt, IUPRED, Secondary Structure tracks); below these tracks are lists of matches 
to short linear motifs, ranked by score with red shading indicating high confidence; the top hit (and only high confidence scoring motif ) in the 
native sequence was for the Kelch-binding degron motif, DEG_Kelch_KLHL3_1 (boxed in red); this motif was not identified in the variant sequence 
(upper right panel). The table below shows a detailed description from the ELM server of the DEG_Kelch_KLHL3_1 motif; the right column shows 
the search pattern for this motif, which is shown below in the context of the WNK1 sequence (Asp635 shown in red font)

http://elm.eu.org
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provide the greatest reliability, although in some cases it 
may be more informative to use models of lower resolu-
tion but that provide more information on the context of 
the variant. For example, where variants lie at an inter-
domain interface, it may be more informative to perform 
analysis in a structure of lower resolution spanning mul-
tiple domains than in a high-resolution structure span-
ning a single domain. Similarly, if variants are likely to 
be involved in ligand or protein–protein interactions, 
structures should be selected that provide information 
on these interactions. For proteins which exist in multi-
ple conformations, such as enzymes or ion transporters, 
analysis should be performed in all available conforma-
tions, as this may identify conformation-specific effects 
of variants.

Once identified, protein structures can be downloaded 
(usually in PDB file format) and analysed in 3D molecu-
lar viewers such as PyMOL or Swiss-PdbViewer. Further 
analysis of the effects of variants on protein structure can 
be assessed using tools such as FoldX, although it should 
be noted that FoldX assumes exposed protein surfaces to 
be in contact with water, and therefore particular caution 
should be applied when analysing variants within trans-
membrane regions. Other analysis tools such as Dyna-
Mut2 [65], Venus [66] and Missense3D [4] may also be 
useful in predicting the structural impact of variants, 
with the latter tool being particularly helpful in a diag-
nostic setting as it provides information on the structural 
consequences of a variant without the need for specific 
expertise in structural biology on the part of the user, as 
well as a binary classification of the impact of the variant 
(damaging or not damaging). Moreover, this method has 
recently been used to evaluate a set of nearly four million 
missense variants from gnomAD [67], ClinVar [68] and 
UniProtKB to create the Missense3D-DB [69], thus pro-
viding a valuable online resource for understanding the 
impact of known variants and facilitating the interpre-
tation of novel substitutions. In the case of variants that 
cause loss-of-function through thermodynamic destabili-
sation, the effect should be compared to groups of known 
pathogenic and benign variants over the same region; 
FoldX is particularly useful in this respect as it allows 
large numbers of variants to be analysed from input of a 
single list in text format.

Question 2: If there is no experimental structure available, 
is there a suitable template or predicted structure 
for comparative modelling?
Where experimental structures do not exist, there 
may be existing predicted models of the human pro-
tein which are of sufficient quality for further analysis 
(Fig.  1, box Question 2). Databases such as the SWISS-
MODEL Repository provide high-quality models based 

on experimental structures of proteins where there is 
sufficient homology between the query sequence and the 
template; often, these will be structures of orthologous 
proteins with close or even complete sequence identity to 
the human protein that can be used directly as proxies for 
variant modelling. For example, our modelling of variants 
in HFN1A and NKX2-1 used structures of mouse or rat 
orthologues respectively, which were 100% identical to 
the human proteins over the residues modelled. In some 
cases, such as that of the GNAO1 p.(Thr327Lys) variant 
described above, even where there are existing structures 
of the human protein, it may be preferable to use struc-
tures of orthologues or other closely related homologues 
for comparative modelling if these provide additional 
context of the impact of the variant. A limitation of these 
model repositories is that they rely on the prior existence 
of suitable individual template structures for comparative 
modelling, whereas the emergence of AlphaFold-2 and 
other machine-learning methods has enabled the propor-
tion of residues in the proteome for which structures can 
reliably be predicted to be increased [7, 70, 71]. DECI-
PHER shows the location of variants in AlphaFold-2 rep-
resentations and the UniProtKB database provides links 
to models in the AlphaFold Protein Structure Database 
(https://​alpha​fold.​ebi.​ac.​uk).

Despite the emergence of the AlphaFold database, 
there may still be some cases for which there is neither 
an experimental nor predicted structure covering the 
residue of interest. As discussed below, this may be due 
to that fact that the protein is intrinsically unstructured 
or disordered in the region of interest, in which case 
meaningful structural prediction will not be possible. 
In addition, the AlphaFold database currently does not 
contain models for proteins of > 2700 residues. In such 
cases, protein sequences can be submitted to modelling 
servers such as SWISS-MODEL, Phyre2 or I-TASSER for 
identification of suitable templates, based on sequence 
similarity and conservation of predicted secondary struc-
ture, with subsequent generation of comparative models. 
Whichever method is used, the quality of modelling is of 
vital importance in making reliable interpretations of the 
impact of missense variants. In single-templated mod-
els, there should generally be a minimum of 30% iden-
tity between query and template sequences (although 
some structural repeats show a high degree of structural 
homology with as little as 22–23% sequence identity), 
with higher levels of identity leading to higher quality 
of modelling. Alignments between template and query 
sequence should also be inspected to ensure that the 
residue of interest is actually modelled directly onto the 
template sequence, rather than being inserted into the 
structure as a loop of low confidence prediction. In the 
case of multi-templated models produced by Phyre2, 

https://alphafold.ebi.ac.uk
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AlphaFold or other methods, modelled sequences are 
annotated with a quality or confidence score, and this 
should always be taken into account when using the mod-
els. In the case of Phyre2 models, we normally exclude 
residues which have been modelled at < 90% confidence, 
while the recommendation for AlphaFold models is to 
exclude residues with a pLDDT score < 70. Moreover, in 
multi-domain proteins, in which individual domains are 
often joined by flexible linkers, there may be consider-
able error in how AlphaFold and other methods predict 
the manner in which these domains interact in 3D space. 
In AlphaFold models, this uncertainty is expressed in the 
‘predicted aligned error’ metric, and should be taken into 
account particularly when assessing the potential impact 
of variants which may lie at inter-domain interfaces.

One potential limitation of models predicted by deep-
learning methods is that they do not include ligands and 
typically provide only a single ‘best’ structure for the 
protein sequence in question. As discussed above, many 
proteins exist in multiple conformations depending 
upon ligand binding, post-translational modifications 
or other processes, and where experimental structures 
occur it may be informative to perform variant model-
ling in these different structural forms to fully under-
stand the impact on the protein and its activity. For 
example, in silico analysis of the hypomorphic ABCC6 
variant p.(Arg391Gly) using structures of multiple con-
formations of the related ABCC1 protein revealed a 
conformation-specific effect of the variant, thus iden-
tifying a molecular basis for a defect in transporter 
function and explaining the variant’s association with 
late-onset pseudoxanthoma elasticum [72]. Another 
current limitation is that deep-learning methods pro-
vide only an isolated model of the protein, and therefore 
lack contextual information on potential protein–pro-
tein interactions; however, recent work describing the 
use of the AlphaFold database in generating models of 
predicted protein–protein complexes [73, 74] shows 
promise in this regard.

Following template selection and homology modelling, 
PDB files can then be analysed in essentially the same 
way as experimental structures. In the case of FoldX, 
while this tool has not been formally validated for use 
on comparative or homology models, it has been shown 
that such models can provide similar utility to experi-
mental structures in the analysis of variant impact [4], 
and that FoldX can reliably be used for structural analy-
sis of AlphaFold models over regions of high confidence 
[8]. Thus the reliability of variant analysis is primarily 
dependent on the quality of the model itself, rather than 
on its source.

Question 3: Can useful data be inferred from the protein 
sequence alone?
Notwithstanding the ever-expanding resources of experi-
mental and predicted structural data for a protein, there 
may still be cases where no high-quality models are avail-
able over the residue(s) of interest. This may occur either 
where the protein sequence shares very little homology 
with proteins or domains of known structure, or where 
there is in fact no stable underlying structure, i.e. the 
protein or region is intrinsically disordered. However, 
this does not necessarily preclude further analysis, as the 
tendency for a protein sequence to adopt either a stable 
secondary structure (α-helices, β-sheets, etc.) or to be 
intrinsically disordered can be predicted with reason-
able accuracy from sequence alone. For the former, tools 
such as PredictProtein [75], PSIPRED [76] and Jpred4 
[77] provide predictions of secondary structure and thus 
can be used to help assess the potential impact of mis-
sense variants. With respect to regions of structural dis-
order, this property can be assessed by online tools such 
as IUPRED3 [78] or GeneSilico MetaDisorder [79] or by 
inspection of the MobiDB database [80] entry for the 
protein. Variants which alter the propensity for disorder 
have been implicated in the progression of occult macu-
lar dystrophy [56] and amyotrophic lateral sclerosis [57]; 
however, the effects of such variants on protein func-
tion will likely be difficult to predict from in silico analy-
sis alone. Conversely, the effects of missense variants on 
SLiMs and sites of post-translational modification within 
regions of disorder can be more readily understood, pro-
viding utility for tools such as ELM, ScanSite 4.0 and 
PhosphoSitePlus [81]. In this context, it should be noted 
that, while in some cases sequence-based analysis might 
be regarded a last resort for understanding the impact of 
some variants, in other cases a simple inspection of the 
UniProtKB entry for the protein may immediately iden-
tify a variant as affecting a position of known functional 
significance, and thus should always be carried out at an 
early stage of analysis for any variant.

Limitations to the use of protein structure analysis
Aside from the availability of relevant structures, there 
are some notable limitations to using a protein structural 
approach in a clinical diagnostic setting. Although many 
missense variants will have only a very minor effect on 
the protein and be insufficiently deleterious to result in 
a phenotype, some variants that appear in silico to have 
little or no deleterious effect on the structure of a fully 
folded mature protein might nevertheless have a major 
impact on protein folding and/or function in vivo. Vari-
ants that lie at the surface of a protein could potentially 
affect protein–protein interactions, but their impact 
is likely only to be fully understood either if there is 
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detailed information about the nature of the interaction, 
or a structure for the relevant protein complex. Search-
ing for such data has recently been greatly facilitated by 
the development of the PDBe-KB server, which collates 
data from all known structures of the protein, including 
sites of ligand and macromolecular interactions, and the 
VarMap and VarSite databases, which provide functional 
annotation based on structural homology. Alternatively, 
surface substitutions may lead to the creation of hydro-
phobic patches which may result in protein aggregation, 
such as in the case of the haemoglobin S variant, HBB 
p.(Glu6Val), which causes sickle cell anaemia. A number 
of bioinformatic tools have been developed to help pre-
dict protein aggregation [82], though as yet few if any 
of these are used routinely in the diagnostic interpreta-
tion of missense variants. For these reasons, while a lack 
of obvious structural damage may be consistent with 
the presence of a benign variant, the absence of such an 
effect does not preclude the possibility that the variant 
may in fact be deleterious. To this end, it has recently 
been reported that using a combination of sequence con-
servation analysis and thermodynamic analysis in silico 
can provide a high degree of discrimination between 
damaging and benign variants [83], and the develop-
ment of such methods should help pave the way towards 
a more integrated use of protein structural data in variant 
classification.

Conclusions
We have shown that 3D structural analysis of proteins 
provides additional clinical utility in the classification of 
missense variants, particularly in cases of poorly stud-
ied genes or those with few known pathogenic variants. 
We identified numerous missense variants that are pre-
dicted to cause complete loss-of-function, either through 
affecting ligand binding or by severely destabilising the 
protein; we also identified missense variants that were 
predicted to cause gain-of-function in critical functional 
areas of a protein domain. Such evidence can be used 
directly in variant classification through PM1 in the exist-
ing ACMG/ACGS guidelines and is particularly impor-
tant for determining whether the predicted variant effect 
is consistent with the known disease-gene mechanism 
and observed phenotype. In the expectation that this 
type of analysis will become more widespread, we have 
outlined some of the most relevant software tools for use 
in a diagnostic context and presented a generic workflow 
for implementation of structural analysis in the diagnos-
tic pathway. We hope this work will catalyse the develop-
ment of a standardised, best practice approach and that 
wider use of protein structural analysis will ultimately 
lead to fewer variants remaining classified as VUS.
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