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Abstract 

Background:  Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants 
which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of 
non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing 
data.

Methods:  Here, we examine the landscape of splicing variants in whole-genome sequencing data from 38,688 
individuals in the 100,000 Genomes Project and assess the contribution of non-canonical splicing variants to rare 
genetic diseases. We use a variant-level constraint metric (the mutability-adjusted proportion of singletons) to identify 
constrained functional variant classes near exon–intron junctions and at putative splicing branchpoints. To identify 
new diagnoses for individuals with unsolved rare diseases in the 100,000 Genomes Project, we identified individuals 
with de novo single-nucleotide variants near exon–intron boundaries and at putative splicing branchpoints in known 
disease genes. We identified candidate diagnostic variants through manual phenotype matching and confirmed new 
molecular diagnoses through clinical variant interpretation and functional RNA studies.

Results:  We show that near-splice positions and splicing branchpoints are highly constrained by purifying selec-
tion and harbour potentially damaging non-coding variants which are amenable to systematic analysis in sequenc-
ing data. From 258 de novo splicing variants in known rare disease genes, we identify 35 new likely diagnoses in 
probands with an unsolved rare disease. To date, we have confirmed a new diagnosis for six individuals, including four 
in whom RNA studies were performed.

Conclusions:  Overall, we demonstrate the clinical value of examining non-canonical splicing variants in individuals 
with unsolved rare diseases.
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Background
Improved diagnosis of rare genetic diseases remains a 
significant clinical and research challenge [1]. Diagnostic 
yields in individuals with rare diseases remain below 50%, 
despite extensive investigations including whole-genome 
sequencing [2]. The accurate interpretation of genomic 

Open Access

†Diana Baralle and Jenny Lord are joint senior authors.

*Correspondence:  jenny.lord@soton.ac.uk

1 Faculty of Medicine, Human Development and Health, University 
of Southampton, Southampton, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0539-9343
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-022-01087-x&domain=pdf


Page 2 of 11Blakes et al. Genome Medicine           (2022) 14:79 

variants in existing sequencing data presents an impor-
tant opportunity to narrow the diagnostic gap [3].

Splicing is the process by which introns are removed 
from a pre-mRNA primary transcript. Almost all human 
protein-coding genes are spliced, and disruption of splic-
ing is a major cause of rare genetic diseases [4]. The 
improved interpretation of splicing variants is therefore a 
major opportunity to improve clinical outcomes for indi-
viduals with undiagnosed rare disease [5].

Already, “canonical splice site” (CSS) variants within 
2  bp of an exon–intron junction are widely annotated 
as “loss of function” (LoF) variants and are known to be 
strong diagnostic candidates in “loss of function” dis-
orders [6]. The contribution of non-canonical splicing 
variants to rare diseases is also becoming increasingly 
recognised [7]. Up to 27% of pathogenic de novo splic-
ing variants in exome-sequencing data are found in 
non-canonical positions [8]. Several studies [7–9] have 
developed the concept of a “near-splice” region, usually 
tens of base pairs around an exon–intron junction, which 
contains many conserved splicing motifs.

However, near-splice variants are under-reported in 
clinical databases [8], and no standards exist for their 
interpretation. Furthermore, variants distal to the near-
splice region, including putative branchpoint variants 
and deep intronic variants (further than 100 bp from an 
exon–intron junction [10]), can also disrupt splicing, and 
their overall contribution to  rare diseases is unknown. 
Individual instances of pathogenic branchpoint variants 
have been previously described [11, 12], but they have 
not been systematically characterised in a large rare dis-
ease cohort.

Recently, large population genomic datasets have pro-
vided the statistical power necessary to measure con-
straints on genetic variation within human populations. 
One powerful metric which uses this approach is the 
mutability-adjusted proportion of singletons (MAPS) 
[13], which identifies classes of variation which are sub-
ject to purifying selection, and are therefore likely to 
be deleterious. MAPS has previously been calculated 
in many contexts, including for near-splice positions 
in the Exome Aggregation Consortium (ExAC) [8], and 
for upstream start-codon-creating variants in Genome 
Aggregation Database (gnomAD) [14].

Recent advances in computation and artificial intelli-
gence have led to the development of numerous in silico 
predictors for the prioritisation of splicing variants [15]. 
For example, SpliceAI is a machine learning tool which 
robustly predicts splice sites and splice-disrupting vari-
ants [16] and outperforms other algorithms in predicting 
splicing consequences from sequence data [17]. How-
ever, in clinical variant interpretation, well-validated 
functional assays have greater weight than in silico 

predictions of variant effect [6], and functional valida-
tion of most predicted splice-disrupting variants is still 
required to confirm a molecular diagnosis.

Here, we perform a systematic analysis of potential 
splicing variants in whole-genome sequencing data from 
38,688 individuals in the Rare Disease arm of the 100,000 
Genomes Project (100KGP) [18]. We evaluate the con-
tribution of variants at or near canonical splice sites, 
and at predicted branchpoints, to rare genetic diseases 
in this cohort. We show that predicted splicing branch-
points harbour deleterious non-coding variants which 
are amenable to systematic analysis in WGS data. We 
used a gene-agnostic approach to prioritise 258 de novo 
variants which potentially disrupt splicing in families 
affected by a rare genetic disorder. Of these, at least 84 
were already considered to be diagnostic, and we identi-
fied an additional 35 variants which are likely to be diag-
nostic given the available molecular, phenotypic, and in 
silico data. We confirmed a new molecular diagnosis for 
six participants, including four out of five participants 
for whom RNA studies were performed. Ultimately, we 
demonstrate the clinical and diagnostic value of examin-
ing both canonical and non-canonical splicing variants in 
unsolved rare diseases.

Methods
Cohort, sequencing, and tiering
This analysis was performed on whole-genome sequenc-
ing data from 38,688 participants in the Rare Disease arm 
of the 100,000 Genomes Project [19]. These comprised 
26,660 unaffected parents of rare disease probands, and 
12,028 participants (offspring) for whom trio WGS data 
was available. Only participants for whom WGS data was 
aligned to GRCh38 were included in this study. Parents 
affected by a rare genetic disease were excluded from 
the analysis of variant constraint (see below). Otherwise, 
participants were not selected or stratified by any other 
criterion. The sequencing and bioinformatic pipelines, 
as well as the “tiering” framework for variant prioritisa-
tion, have been previously described [18]. Briefly, vari-
ants meeting filtering criteria and falling within applied 
virtual gene panels were annotated as tier 1 (loss of func-
tion or de novo protein-altering variants), tier 2 (other 
variant types, e.g. missense, with correct mode of inherit-
ance), or tier 3 (all other filtered variants). For example, 
CSS variants in an appropriate gene panel are annotated 
as tier 1.

Defining coding sequences and near‑splice positions
The code used to perform this and subsequent analyses 
are available online [20] (see the “Availability of data and 
materials” section).
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We identified coding sequences (CDS) in high-confi-
dence protein-coding transcripts from the GENCODE 
v29 annotation [21] (GRCh38, Content = "Comprehensive 
gene annotation", Region = "CHR") using the following 
filtering criteria: feature type = "CDS", gene_type = "pro-
tein_coding", transcript_type = "protein_coding", level 
! = "level 3", and tag = "CCDS", "appris_principal_1", 
"appris_candidate_longest", "appris_candidate", or "exp_
conf". 401,314 CDS features (207,548 unique) met these 
criteria. Only autosomal CDS were included in the sub-
sequent analyses. UTR and other non-coding exons were 
not included in this analysis.

For each CDS feature, we annotated individual genomic 
positions with their positions relative to a splice donor or 
acceptor site, excluding any sites with conflicting anno-
tations. We defined the near-splice region around the 
acceptor site as 25 bp of intronic sequence (acceptor − 25 
to acceptor − 1) and 11 bp of exonic sequence (acceptor 
0 to acceptor + 10). Around the donor site, we included 
11  bp of exonic sequence (donor − 10 to donor 0) and 
10  bp of intronic sequence (donor + 1 to donor + 10). 
A total of 9,588,491 distinct near-splice positions were 
identified.

phyloP
We annotated each near-splice position with phyloP 
scores from multiple alignments of 99 vertebrate species 
to the human genome (phyloP 100-way) [22] with pyBig-
Wig, an open-source Python package [23], using Big-
Wig files downloaded from the UCSC Genome Browser 
(hg38) [24, 25].

SpliceAI
For every possible near-splice SNV in our positions of 
interest (i.e. all three possible single base changes at 
each of the 9,588,491 positions), we annotated the pre-
dicted effect on splicing with SpliceAI [16]. We anno-
tated variants with pre-computed genome-wide SpliceAI 
v1.3 scores (distance parameter = 50  bp, “masked” data, 
available via https://​github.​com/​Illum​ina/​Splic​eAI) using 
BCFtools v1.9 [26]. A SpliceAI annotation was avail-
able for 28,265,193 variants (98.2% of 28,765,473 possible 
variants).

Aggregate SpliceAI scores for each near-splice posi-
tion were calculated as the mean probability that any 
variant at this position disrupts splicing. The probability 
that a given variant disrupts splicing was calculated as 
the probability (P) of any one of the SpliceAI-predicted 
splicing events occurring, (i.e. 1-probability of no events 
occurring). SpliceAI gives the probabilities of individual 
splicing events as a delta score (DS) for each of acceptor 
gain (AG), acceptor loss (AL), donor gain (DG), or donor 
loss (DL), giving:

Mutability‑adjusted proportion of singletons
In addition to the near-splice SNVs identified above, we 
also determined the set of all possible coding SNVs in our 
exons of interest. These were annotated with the refer-
ence base for each position (GRCh38, GenBank assem-
bly accession GCA_000001405.15) and its immediate 
sequence context (1 bp either side) with bedtools version 
2.27.1 [27].

We annotated every possible coding SNV within our 
exons of interest with the Variant Effect Predictor (VEP) 
version 99 [28]. In order to assign one unambiguous 
annotation to each variant, only the consequence in one 
transcript (typically the canonical transcript, as deter-
mined by VEP’s “–pick” flag) was used. Only synony-
mous, missense, and nonsense variants were included in 
the subsequent analysis. Synonymous variants within 
a near-splice region were classed as near-splice vari-
ants for the MAPS calculation and were excluded from 
the synonymous variant set. Missense variants within a 
near-splice region were excluded from the analysis alto-
gether. Nonsense variants within a near-splice region 
were classed as nonsense variants and excluded from the 
near-splice variant set.

We interrogated whole-genome sequencing data from 
26,660 unaffected parents in the Genomics England 
(GEL) Rare Disease cohort for SNVs overlapping the 
near-splice and coding positions defined above using 
BCFtools v1.9 [26]. Only variants passing all filters (see 
https://​resea​rch-​help.​genom​icsen​gland.​co.​uk/​displ​
ay/​GERE/​aggV2+​Detai​ls) within the GEL aggregated 
multi-sample VCF were included. We identified 915,024 
synonymous, 1,965,441 missense, 53,825 nonsense, and 
672,528 near-splice variants and calculated allele counts 
across the 26,660 unaffected parents for each variant.

We calculated MAPS with custom Python scripts, 
adapting code written by Short et al. [29] (https://​github.​
com/​pjsho​rt/​dddMA​PS). We used the mutation rate of a 
given trinucleotide context calculated by Samocha et al. 
[30]. The proportion of singletons for each position was 
adjusted for the mutability of the immediate sequence 
context using a linear model trained on synonymous vari-
ants within the same exons. As in previous studies [8, 13], 
the set of synonymous variants used for the MAPS model 
was not filtered by any other criterion (e.g. SpliceAI 
score). Our data are therefore directly comparable with 
these previous studies. Unselected synonymous variants 
are a useful baseline for comparison because they capture 
potential unknown impacts of coding variation, including 
impacts on splicing or translation efficiency. This is also 

P =1 − ((1 − (DS_AG)) ∗ (1 − (DS_AL)) ∗ (1 − (DS_DG))

∗ (1 − (DS_DL))

https://github.com/Illumina/SpliceAI
https://research-help.genomicsengland.co.uk/display/GERE/aggV2+Details
https://research-help.genomicsengland.co.uk/display/GERE/aggV2+Details
https://github.com/pjshort/dddMAPS
https://github.com/pjshort/dddMAPS
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a more conservative approach, because the inclusion of 
potentially functional variants in the synonymous base-
line would only weaken any apparent constraint signals in 
other functional variant classes.

Branchpoints
Splicing branchpoint positions were identified by LaBran-
choR, a machine-learning tool trained on experimentally 
validated branchpoints, which accurately identifies at least 
one branchpoint for the majority of introns genome-wide 
[31]. Although several branchpoint prediction tools are 
available [32], we favoured LaBranchoR because it accu-
rately predicts branchpoints at well-annotated 3′ splice 
sites, which were the main focus of this analysis. Pre-com-
puted LaBranchoR scores are publicly available for every 
position 1–70  bp upstream of a splice acceptor (GEN-
CODE v19, hg19) either for download or through the 
UCSC Genome Browser [31]. For each intron, the highest 
scoring position was annotated as the branchpoint (BP), 
totalling 195,863 putative branchpoints.

We converted each branchpoint to hg38 coordi-
nates using the UCSC Liftover tool [24]. We annotated 
five positions upstream (− 5 to − 1) and five positions 
downstream (+ 1 to + 5) of each branchpoint, as well 
as every possible SNV at each of these positions using 
custom Python scripts. phyloP scores for each position, 
and SpliceAI scores for each variant, were determined 
as above. We calculated the MAPS statistic for these 
branchpoint positions in the same cohort of participants 
as described above. Comparison of MAPS scores in 
branchpoint positions was made to the same set of cod-
ing variants as described above.

De novo variants
De novo variants (DNVs) overlapping near-splice posi-
tions were identified from a set of 1,004,599 high con-
fidence de novo calls in 13,949 trios from 12,609 rare 
disease families. The annotation pipeline used to identify 
these variants is publicly available [33]. Briefly, a multi-
sample VCF for each trio was annotated for putative 
DNVs using custom scripts. Putative DNVs were then fil-
tered by a series of “Global”, “Base”, and “Stringent” filters 
(see reference [33]). Unless otherwise stated, our analyses 
were performed on DNVs aligned to GRCh38 (870,559 
DNVs in 12,028 trios).

At the outset of this project this dataset was not avail-
able. Preliminary work to identify candidate diagnos-
tic de novo variants was undertaken in a smaller set of 
402,464 variants identified through a custom filtering 
strategy by Patrick J. Short (Wellcome Sanger Institute, 
personal correspondence). These variants were identi-
fied by applying post-processing filters to DNVs in 4967 
trios identified by the Platypus variant caller [34] in GEL 

and aligned to GRCh38. They were filtered according to 
the following criteria: genotype heterozygous in offspring 
and homozygous reference in both parents, no more than 
one alternate allele read in either parent, variant allele 
frequency in the offspring between 0.3 and 0.7, greater 
than 20 sequencing reads in the offspring and both par-
ents, fewer than 98 sequencing reads in the offspring, no 
overlap with locus control regions, no overlap with hg38 
“patch regions”, no other DNV within 20 bp in the same 
individual. Some candidate variants identified in this 
preliminary dataset are not present in the larger de novo 
set, owing to differences in the filtering pipeline. Unless 
explicitly stated, the data presented here are from the 
larger DNV set, above.

Candidate diagnostic variants
To identify candidate diagnostic near-splice and branch-
point variants, we annotated all GRCh38 autosomal de 
novo SNVs passing the “stringent” filters (above) with 
VEP (version 99). For each variant, to maximise our sen-
sitivity to identify variants in known developmental dis-
order genes, the consequence in one transcript per gene 
(determined by VEP’s “–per_gene” flag) was determined. 
We annotated these variants with SpliceAI as described 
above, although SpliceAI was not used to prioritise these 
variants and no SpliceAI score cut-off was applied. We 
filtered for variants overlapping our branchpoint or near-
splice positions of interest (adjacent to coding exons 
only), finding 3672 such variants. Where a variant had 
both a branchpoint and a near-splice annotation, only 
the near-splice annotation was kept. We then filtered for 
variants overlapping any known monoallelic rare disease 
gene with a loss of function mechanism using the G2P 
DD, G2P Eye, and G2P Skin gene lists [35] (accessed 
27/10/2021, confirmed and probable genes only). In total, 
we identified 258 candidate splicing DNVs (238 near-
splice, 20 branchpoint) in 255 participants, adjacent to 
coding exons in 137 genes.

To identify new diagnoses in the cohort, we annotated 
these variants with tiering data, phenotype data, and 
participant outcome data from the GEL bioinformatics 
pipeline [36]. For each participant and DNV, the similar-
ity between the HPO terms recorded at recruitment and 
the phenotype expected for a loss-of-function variant in 
that gene from the G2P [35] and OMIM [37] databases 
were manually compared by a Paediatrician and a Con-
sultant Clinical Geneticist. Plausible phenotype matches 
were confirmed or refuted through literature search and 
through detailed clinical review by the recruiting clini-
cian. Excluding any participants whose case was already 
solved through 100KGP, we identified 35 new likely diag-
nostic variants with at least a plausible phenotype match. 
In each instance, we placed a clinical collaboration 
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request with Genomics England to recruit the participant 
to the Splicing and Disease Study for functional charac-
terisation of the variant.

Genomics England does not allow re-identification of 
participants outside of a secure research environment. 
In order to protect participant identities, the HPO terms 
given here are “abstracted” by moving up one level in 
the HPO hierarchy. For example “Tetralogy of Fallot” 
becomes “Conotruncal defect”.

Functional validation
Samples from five participants underwent functional 
characterisation through the Splicing and Disease study 
at The University of Southampton. Blood was collected 
in PAXgene Blood RNA tubes, with the PAXgene Blood 
RNA kit (PreAnalytix, Switzerland) used to extract RNA. 
Random hexamer primers were used to synthesise com-
plementary DNA (cDNA) by reverse transcription using 
the High-Capacity cDNA Reverse Transcription kit 
(Thermo Fisher Scientific).

Reverse transcription polymerase chain reaction (RT-
PCR) was used to test for splicing alterations. Prim-
ers were designed for each variant to include at least 
two exons up- and downstream of the target (primer 
sequences available upon request). Agarose gel electro-
phoresis was used to assess participant vs control PCR 
products, and purified PCR products were analysed by 
Sanger sequencing.

Statistics
The null hypotheses that near-splice and branchpoint 
MAPS scores did not significantly differ from synony-
mous variants were tested with two-sided chi-squared 
tests of the observed vs the expected number of single-
tons in each variant class. In order that the synonymous 
MAPS did not equal zero, all MAPS scores were first 
corrected by the addition of the synonymous unad-
justed proportion of singletons. For each variant class, 
the “observed” proportion of singletons was taken as 
the number of alleles multiplied by the corrected MAPS 
score for that variant class. The “expected” number of 
singletons was taken as the number of alleles multiplied 
by the corrected MAPS score for synonymous variants. 
Multiple testing was accounted for by Bonferroni correc-
tion: 79 tests at alpha = 0.05 gave a significance threshold 
of < 6.3 × 10−4.

Results
Signals of constraint at near‑splice positions are replicated 
in a large healthy cohort
To estimate the deleteriousness of variation in near-splice 
positions, we calculated aggregate measures of evolu-
tionary conservation, selective constraint, and predicted 

splicing disruption for nucleotides within near-splice 
regions genome-wide.

Evolutionary conservation was measured by base-wise 
phyloP score. The CSSs are very highly conserved (mean 
phyloP = 6.34) (Fig.  1). Other intronic splicing posi-
tions with high phyloP scores include the D + 5 (3.44), 
D + 4 (2.39), D + 3 (1.97), A-3 (1.70), and D + 6 (1.29) 
sites. Notably, the A-4 position is very weakly conserved 
(0.076). Coding positions are generally more highly 
conserved than intronic sequences. The redundancy of 
third codon positions and bias for in-phase exons [38] is 
reflected in lower phyloP scores at every third position, 
except for the donor 0 position (mean phyloP = 5.01), 
which is more highly conserved than any other coding 
position.

To measure selective constraint at near-splice posi-
tions, we calculated the degree of purifying selection 
acting at near-splice positions using MAPS [13]. MAPS 
was calculated across near splice positions genome-wide, 
using every observed synonymous, missense, nonsense, 
and near-splice SNV in 207,548 distinct CDS exons for 
26,660 unaffected parents in the 100KGP Rare Disease 
cohort. The most significant signals of purifying selec-
tion are at the CSS, with MAPS scores of 0.089–0.146 
(p < 1.2 ×  × 10−43), approaching those of nonsense vari-
ants (0.16) (Fig.  1). The non-canonical positions with a 
MAPS score significantly above the synonymous base-
line after Bonferroni correction include the D-2, D0, 
D + 3, D + 4, D + 5, D + 6, A-3, and A + 1 positions 
(p < 6.3 × 10−4). The MAPS scores at D0 and D + 5 vari-
ants (MAPS = 0.057 and 0.067, respectively) are compa-
rable to that at missense variants (0.052). These results 
are highly concordant with previous near-splice MAPS 
calculations in the Deciphering Developmental Disorders 
study (DDD) and ExAC datasets [8].

A subset of splicing branchpoints are highly constrained
Having replicated earlier findings [8] in our cohort, we 
expanded our analysis to examine splicing branchpoints, 
which have not been previously characterised using 
MAPS.

We repeated our analysis of conservation, constraint, 
and SpliceAI predicted splicing disruption using a set of 
195,863 putative branchpoints predicted by LaBranchoR 
[31], a deep-learning tool trained on experimentally vali-
dated branchpoints.

Annotating each position with base-wise phyloP 
scores, we found modest conservation of BP0 (0.62) and 
BP-2 (0.87), consistent with previous results [31, 39, 40] 
(Fig. 1).

Next, we calculated the MAPS statistic for these 
branchpoint positions in the same cohort described 
above. When all putative branchpoints were considered, 
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only the BP-2 position has a significantly higher MAPS 
score than the synonymous baseline (MAPS = 0.017, 
p = 1.3 × 10−4) (Fig.  1). However, when only the most 
confident branchpoints are considered (LaBranchoR 
score > 0.85, n = 57,342), the BP0 (MAPS = 0.044, 
p = 7.6 × 10−9) and BP-3 (0.024, p = 3.7 × 10−4) are also 
significantly constrained, with nominal constraint at BP-2 
(MAPS = 0.031, p = 1.0 × 10−3). We further stratified the 
MAPS analysis by reference allele at the BP-1 and BP-3 
positions but were generally underpowered to detect 
motif-specific constraints (Additional file  1: Fig. S1). 
These data suggest that LaBranchoR-predicted branch-
points are functionally important and that variants near 
branchpoints may be a significant cause of rare disease.

Next, we calculated SpliceAI scores for every possible 
SNV around each branchpoint. Again, variants at BP0 
(mean SpliceAI = 0.15) and BP-2 (mean SpliceAI = 0.14) 
are nominally more likely to disrupt splicing than syn-
onymous coding variants (Fig.  1). This trend is more 
pronounced when only the most confident branchpoints 

(LaBranchoR score > 0.85, n = 57,342) are considered 
(mean SpliceAI BP0 = 0.22, BP-2 = 0.19).

New diagnostic candidates among near‑splice de novo 
variants
Having described three orthogonal metrics which inde-
pendently suggest that certain near-splice and branch-
point variants may be deleterious, we sought to identify 
new candidate diagnostic variants at these positions.

We interrogated a set of 870,559 DNVs in 12,028 trios 
for potentially diagnostic splicing variants. We identified 
258 de novo SNVs overlapping near-splice or branchpoint 
regions of coding exons in known monoallelic “loss of 
function” rare disease genes in 255 individuals (Additional 
file 2: Table S1). Of these, 238 were in near-splice positions 
(spanning intronic and exonic positions), and 20 were 
within 5 bp of a putative branchpoint (Fig. 2) (12 variants 
had both a splice acceptor and a branchpoint annotation; 
in these cases, only the splice acceptor annotation (e.g. 
A-25) was kept). To maximise our sensitivity to identify 
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Fig. 1  Conservation, predicted splice disruption, and constraint at near-splice and branchpoint positions across 207,548 CDS features in 
protein-coding genes. A Sequence logos and schematic indicating the position of conserved splicing motifs relative to exon/intron boundaries. 
Positional weight matrices were derived from the human reference sequence at our positions of interest (defined in the “Methods” section). B The 
mean phyloP 100-way scores at splicing positions. Error bars indicate 95% confidence intervals. C SpliceAI scores for all possible near splice SNVs. 
Scores represent the mean probability that any variant at this position disrupts splicing, as predicted by SpliceAI (see the “Methods” section). Error 
bars represent the 95% confidence interval. D Mutability-adjusted proportion of singletons (MAPS) for both coding and near-splice SNVs. Error 
bars indicate 95% confidence intervals. Positions with a significantly higher MAPS than synonymous variants are indicated with open circles (see 
the “Methods” section). For branchpoint positions, dark blue points represent all putative branchpoints, whereas light blue points represent the 
branchpoints with a LaBranchoR score > 0.85
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new candidate diagnoses, variants were prioritised only by 
their near-splice location, without additional filtering by, 
for example, SpliceAI score.

Reviewing tiering data from the 100KGP bioinformat-
ics pipeline, we found that of these 258 variants, 83 (32%) 
were “tier 1”, 46 (18%) were “tier 3”, and 129 (50%) were 
not tiered (Additional file  1: Fig. S2). Of 59 CSS vari-
ants, 36 (61%) were “tier 1”, nine (15%) were “tier 3”, and 
14 (24%) were not tiered. Of ten donor + 5 variants, four 
were “tier 1”, two were “tier 3”, and four were not tiered 
(Additional file  1: Fig. S2). Annotation of these variants 
with SpliceAI generally highlighted variants at positions 
with high MAPS scores (Additional file 1: Fig. S3).

A total of 212 participants with a near-splice DNV had 
outcome data in the form of “exit questionnaires” from 
their referring Genomic Medicine Centre. In 84/111 
(76%) of solved cases, the diagnostic variant matched 
our near-splice finding (Fig. 2). This result gives us confi-
dence in our approach to candidate variant identification. 
Nevertheless, a significant proportion of participants 
with completed exit questionnaires had unsolved cases 
(101/212, 48%). These included nine with a DNV in the 
CSS of a known rare disease gene, one with a donor 0 
variant, and four with donor + 5 variants, which have 
previously been estimated to have a 90% positive predic-
tive value in rare disease diagnosis [8] (Fig. 2).

For each participant and DNV, we manually reviewed 
the similarity between the HPO terms recorded at 
recruitment and the phenotype expected for a loss-of-
function variant in that gene. Excluding any participants 
whose case was already solved through 100KGP, we iden-
tified 35 new likely diagnostic variants with at least a 
plausible phenotype match (Additional file  3: Table  S2). 
We placed a clinical collaboration request with Genom-
ics England in each case, to recruit the participant for 

functional characterisation of the variant with RNA 
studies.

New diagnoses among the cohort
Whole blood RNA samples were obtained for five par-
ticipants with near splice DNVs. RT-PCR was used to 
characterise the splicing impact of each variant (Addi-
tional file 1: Fig. S4). Abnormal splicing events (all exon 
skipping) were detected in four participants (participants 
74 (ARID1A, A-3), 249 (USP7, D + 5), 259 (TLK2, D + 5), 
261 (KAT6B, D + 5)). In the remaining participant (par-
ticipant 32 (PPP1R12A, A-21)), no disruption to splicing 
was observed (Table  1, Additional file  1: Fig. S4). Nota-
bly, these functional outcomes are consistent with the 
SpliceAI score for the variant in each case (Table 1). For 
two additional participants where the candidate variant 
fell in a canonical splice site (participants 83 (TAOK1, 
A-2) and 94 (PHIP, A-2)), a new diagnosis was reached 
without the need for functional work based on ACMG 
criteria with a PVS1 classification for these variants 
(Table 1, Additional file 1: Fig. S4).

In summary, we demonstrate a functional splicing 
defect in four out of five participants recruited to our 
study, and we have identified a new molecular diagnosis 
for six individuals to date.

Discussion
We examined WGS data from 38,688 individuals in the 
Rare Disease arm of the 100KGP to evaluate the contri-
bution of splicing variants to rare genetic diseases. Using 
a population-based metric of constraint, MAPS, we 
showed that certain near-splice and branchpoint posi-
tions are under strong purifying selection, consistent 
with previous work [8, 40, 41]. We identified 258 de novo 
near-splice and branchpoint variants in known disease 

Fig. 2  Participant outcomes for rare disease probands with de novo splicing variants in known monoallelic loss-of-function rare disease genes. 
Each point represents a DNV in a rare disease proband. Points are coloured by the clinical outcome for that individual. Crosses indicate variants 
which were identified as likely new diagnoses in this study. Where a variant overlaps both a branchpoint and a splice acceptor position, only the 
splice acceptor annotation is given
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genes in these families. We identified 35 likely diagnostic 
variants which had previously been missed through the 
100KGP, and we have confirmed a new molecular diag-
nosis for six participants to date. Overall, we demonstrate 
the clinical value of examining both canonical and non-
canonical splicing variants in unsolved rare diseases.

Non‑canonical splicing positions harbour deleterious 
splicing variants
We used three orthogonal approaches to estimate the 
deleteriousness of near-splice and branchpoint vari-
ants: between-species conservation, within-species 
constraint, and predicted splicing disruption. The Phy-
loP, MAPS, and SpliceAI scores at splicing positions 
consistently highlight those non-canonical splicing 
positions (especially D0 and D + 5) which are likely to 
harbour damaging variants. Indeed, three out of three 
D + 5 variants in which we performed RNA studies 
caused exon skipping. Importantly, although we use a 
cohort of unaffected parents as a proxy for a normal 
population, the MAPS data we present is highly con-
cordant with the strong signals of negative selection at 
which have been previously described in the ExAC and 
DDD datasets [8].

Extending this analysis to splicing branchpoints, we 
find strong signals of negative selection at a subset of 
branchpoint positions. These results are consistent with 
other measures of constraint previously described at 
bovine and human branchpoints [41]. We also identified 
candidate diagnostic variants at these positions, includ-
ing several overlapping experimentally validated branch-
point positions (Additional file  4: Table  S3), and we are 
awaiting RNA samples to functionally characterise these 
variants. The disruption of splicing branchpoints may 
therefore make an important contribution to rare dis-
ease [11, 12]. A systematic analysis of de novo variation at 
putative branchpoints and a comparison of the utility of 
different branchpoint prediction tools in a clinical setting 
are exciting future research opportunities.

The ACMG variant interpretation guidelines give special 
status to CSS variants as “very strong” diagnostic candi-
dates in disorders where LoF is a known disease mecha-
nism [6]. This remains the case in more detailed guidance 
for the interpretation of LoF variants which has recently 
been introduced [42]. However, the deleteriousness of 
splicing variants is not binary, but on a continuum, and 
can be quantitatively compared to other variant classes. 
Previous estimates suggest that 46% of non-canonical near-
splice DNVs in dominant rare disease genes may be patho-
genic, rising to 71% for pyrimidine to purine transversions 
in the polypyrimidine tract, and 90% for D + 5 variants [8]. 
The deleteriousness of individual variants is contingent on 

many factors, such as local sequence context, the alternate 
nucleotide, exon frame, exon length, and intron length [9]. 
For this reason, the systematic classification of near-splice 
variants remains challenging, and clinical interpretation 
of these variants is still dependent on expert phenotype 
matching and functional validation of candidate variants.

The functional characterisation of splicing variants 
can be challenging and requires adequate amounts of 
good-quality RNA. Our study is limited by the use of 
blood as a proxy for the most clinically relevant tissue, 
although we affirm the utility of blood RNA analysis 
by identifying splicing defects in four out of five sam-
ples tested. Whereas RT-PCR is a bespoke and low-
throughput approach, going forward, RNA-sequencing 
(RNA-seq) offers an unbiased and high-throughput 
alternative to simultaneously detect and functionally 
characterise splicing variants. A whole-transcriptome 
RNA-seq pilot study has recently been proposed for 
100KGP, and the use of RNA-seq in routine clinical 
practice could offer a much-needed means to system-
atically and objectively interpret splicing variants [43].

New rare disease diagnoses
We identified 258 de novo SNVs overlapping near-
splice or branchpoint regions of known monoallelic 
“loss of function” rare disease genes in 255 individuals. 
Of these, at least 84 were already considered to be diag-
nostic through 100KGP, and we identified an additional 
35 variants which are likely to be diagnostic given the 
available molecular, phenotypic, and in silico data. We 
confirmed a new molecular diagnosis for six partici-
pants, including four participants for whom RNA stud-
ies were performed.

Surprisingly, several strong diagnostic candidates 
were apparently overlooked in the standard variant 
interpretation pipeline, including at least nine CSS vari-
ants and four D + 5 variants, all in known rare disease 
genes. Of ten de novo D + 5 variants, none were pre-
viously labelled as pathogenic, despite their high prior 
probability of being diagnostic in this context [8].

Clearly, many new diagnoses remain to be found. A recent 
analysis of 100KGP data in the context of craniosynostosis 
found that expert-led review more than doubled diagnostic 
yields compared to the standard pipeline [3]. An important 
factor is that the “virtual panels” applied to variant calls are 
outdated and do not include recently discovered disease 
genes. Notably, the majority of new likely diagnostic vari-
ants we identify are intronic (26/35), likely because these 
variants are excluded from the 100KGP tiering and prior-
itisation pipeline and are therefore not subjected to detailed 
clinical interpretation. Our phenotype-matching work sug-
gests that the clinical impact of near-splice variants has been 
under-ascertained in this cohort, and we are continuing to 
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recruit participants for functional assessment of these vari-
ants. Additionally, the analysis of more distal variants over-
lapping exonic splicing enhancers and silencers or cryptic 
splice sites in deep-intronic regions offers an important 
future research opportunity.

One obstacle to increasing the number of researcher-
identified diagnoses in this context is the difficulty of 
recontacting de-identified participants and clinicians 
through secure research environments. The confidenti-
ality of all participants in research is rightly a priority, 
and new pathways must be developed to streamline the 
clinical-research interface in medical genomics.

Conclusions
In conclusion, the disruption of splicing is an impor-
tant cause of rare diseases among 100KGP participants, 
but the contribution of non-canonical variants is still 
under-recognised. Splicing branchpoints are another 
non-canonical and non-coding source of damaging splic-
ing variants which are amenable to systematic analysis 
in WGS data. The improved interpretation of splicing 
variants is an area of great promise to genomic medicine 
and, above all, to individuals with rare diseases and their 
families.
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were generated in R 3.5.2 using RStudio 1.1.463. All code is available online at 
https://​github.​com/​alexb​lakes/​100KGP_​splic​ing20.

Declarations

Ethics approvals and consent to participate
The 100,000 Genomes Project Protocol has ethical approval from the HRA 
Committee East of England – Cambridge South (REC Ref 14/EE/1112). This 
study was registered with Genomics England under Research Registry Projects 
143, 165, and 166. The Splicing and Disease study has ethical approval from 
the Health Research Authority (IRAS Project ID 49685, REC 11/SC/0269) and 
The University of Southampton (ERGO ID 23056), with informed consent 
given for splicing studies in a research context. This research conformed to the 
principles of the Helsinki Declaration.

Consent for publication
Not applicable. We present only de-identified data.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculty of Medicine, Human Development and Health, University of South-
ampton, Southampton, UK. 2 Faculty of Medicine, National Heart and Lung 
Institute, Imperial College London, London, UK. 3 Cancer Sciences, Faculty 
of Medicine, University of Southampton, Southampton, UK. 4 Wessex Clinical 
Genetics Service, Princess Anne Hospital, Southampton, UK. 5 Wessex Regional 
Genetics Laboratory, Salisbury District Hospital, Salisbury, UK. 6 Faculty 
of Medicine, University of Southampton, Southampton, UK. 7 Department 
of Paediatric Endocrinology and Diabetes, University Hospitals Bristol and Wes-
ton NHS Foundation Trust, Bristol, UK. 8 Bristol Medical School, Department 

https://doi.org/10.1186/s13073-022-01087-x
https://doi.org/10.1186/s13073-022-01087-x
https://www.genomicsengland.co.uk/about-gecip/for-gecip-members/data-and-data-access/
https://www.genomicsengland.co.uk/about-gecip/for-gecip-members/data-and-data-access/
https://github.com/alexblakes/100KGP_splicing20


Page 11 of 11Blakes et al. Genome Medicine           (2022) 14:79 	

of Translational Health Sciences, University of Bristol, Bristol, UK. 9 Liverpool 
Centre for Genomic Medicine, Crown Street, Liverpool, UK. 10 North East 
Thames Regional Genomics Service, Great Ormond Street Hospital, London, 
UK. 11 Department of Clinical Genetics, University Hospitals Bristol and Weston 
Foundation Trust, Bristol, UK. 12 Genomics England, Dawson Hall, Charterhouse 
Square, London, UK. 13 Cambridge University Hospitals NHS Foundation Trust, 
Cambridge Biomedical Campus, Hills Road, Cambridge, UK. 14 Oxford Centre 
for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, 
Oxford, UK. 15 Wellcome Centre for Human Genetics, University of Oxford, 
Oxford, UK. 

Received: 2 February 2022   Accepted: 13 July 2022

References
	1.	 International Rare Diseases Research Consortium. Policies and guidelines. 

(2013). Available at: https://​irdirc.​org/​about-​us/​polic​ies-​guide​lines/.
	2.	 Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare 

disease in children. Nat Rev Genet. 2018;19:253–68.
	3.	 Hyder, Z. et al. Evaluating the performance of a clinical genome sequenc-

ing program for diagnosis of rare genetic disease, seen through the lens 
of craniosynostosis. (2021). https://​doi.​org/​10.​1038/​s41436-​021-​01297-5

	4.	 Sanders SJ, Schwartz GB, Farh KKH. Clinical impact of splicing in neurode-
velopmental disorders. Genome Med. 2020;12:1–5.

	5.	 Wai H, Douglas AGL, Baralle D. RNA splicing analysis in genomic medi-
cine. Int J Biochem Cell Biol. 2019;108:61–71.

	6.	 Richards S, et al. Standards and guidelines for the interpretation of 
sequence variants: a joint consensus recommendation of the Ameri-
can college of medical genetics and genomics and the association for 
molecular pathology. Genet Med. 2015;17:405–24.

	7.	 Rivas MA, et al. Effect of predicted protein-truncating genetic variants on 
the human transcriptome. Science. 2015;348:666–9.

	8.	 Lord J, et al. Pathogenicity and selective constraint on variation near 
splice sites. Genome Res. 2019;29:159–70.

	9.	 Zhang S, et al. Base-specific mutational intolerance near splice sites 
clarifies the role of nonessential splice nucleotides. Genome Res. 
2018;28:968–74.

	10.	 Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and 
human disease. Hum Genet. 2017;136:1093–111.

	11.	 Kapoor RR, et al. Persistent hyperinsulinemic hypoglycemia and maturity-
onset diabetes of the young due to heterozygous HNF4A mutations. 
Diabetes. 2008;57:1659–63.

	12.	 Fadaie Z, et al. BBS1 branchpoint variant is associated with non-syndro-
mic retinitis pigmentosa. J Med Genet. 2021. https://​doi.​org/​10.​1136/​
jmedg​enet-​2020-​107626.

	13.	 Lek M, et al. Analysis of protein-coding genetic variation in 60,706 
humans. Nature. 2016;536:285–91.

	14.	 Whiffin N, et al. Characterising the loss-of-function impact of 5’ untrans-
lated region variants in 15,708 individuals. Nat Commun. 2020;11:1–12.

	15	 Rowlands CF, Baralle D. Machine learning approaches for the prior-
itization of genomic variants impacting pre-mRNA splicing. Cells. 
2019;8(12):1513.

	16.	 Jaganathan K, et al. Predicting splicing from primary sequence with deep 
learning. Cell. 2019;176:535-548.e24.

	17.	 Rowlands C, et al. Comparison of in silico strategies to prioritize rare 
genomic variants impacting RNA splicing for the diagnosis of genomic 
disorders. Sci Rep. 2021;11:20607.

	18.	 Smedley D, et al. 100,000 Genomes Pilot on rare-disease diagnosis in 
health care—preliminary report. N Engl J Med. 2021;385:1868–80.

	19.	 Genomics England. The national genomics research library. (2020). Avail-
able at: https://​figsh​are.​com/​artic​les/​datas​et/​Genom​icEng​landP​rotoc​ol_​
pdf/​45308​93/7.

	20.	 Blakes, A. J. M. 100,000 Genomes Project Splicing. Github Available at: 
https://​github.​com/​alexb​lakes/​100KGP_​splic​ing.

	21.	 Frankish A, et al. GENCODE reference annotation for the human and 
mouse genomes. Nucleic Acids Res. 2019;47:D766–73.

	22.	 Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of non-
neutral substitution rates on mammalian phylogenies. Genome Res. 
2010;20:110–21.

	23.	 Ryan, D. P. pyBigWig. (2015). Available at: https://​github.​com/​deept​ools/​
pyBig​Wig.

	24.	 Kent WJ, et al. The Human Genome Browser at UCSC. Genome Res. 
2002;12:996–1006.

	25.	 Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and 
BigBed: enabling browsing of large distributed datasets. Bioinformatics. 
2010;26:2204–7.

	26.	 Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience. 
2021;10(2):giab008.

	27.	 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26:841–2.

	28.	 McLaren W, et al. The Ensembl variant effect predictor. Genome Biol. 
2016;17:1–14.

	29.	 Short PJ, et al. De novo mutations in regulatory elements in neurodevel-
opmental disorders. Nature. 2018;555:611–6.

	30.	 Samocha KE, et al. A framework for the interpretation of de novo muta-
tion in human disease. Nat Genet. 2014;46:944–50.

	31.	 Paggi JM, Bejerano G. A sequence-based, deep learning model accurately 
predicts RNA splicing branchpoints. RNA. 2018;24:1647–53.

	32.	 Leman R, et al. Assessment of branch point prediction tools to predict 
physiological branch points and their alteration by variants. BMC Genom-
ics. 2020;21:1–12.

	33.	 Genomics England de novo variant research dataset. Available at: https://​
resea​rch-​help.​genom​icsen​gland.​co.​uk/​displ​ay/​GERE/​De+​novo+​varia​
nt+​resea​rch+​datas​et. (Accessed: 23rd Nov 2021)

	34.	 Rimmer A, et al. Integrating mapping-, assembly- and haplotype-based 
approaches for calling variants in clinical sequencing applications. Nat 
Genet. 2014;46:912–8.

	35.	 Thormann A, et al. Flexible and scalable diagnostic filtering of genomic 
variants using G2P with Ensembl VEP. Nat Commun. 2019;10:2373.

	36.	 Genomics England. Rare disease results guide. (2020). Available at: 
https://​resea​rch-​help.​genom​icsen​gland.​co.​uk/​displ​ay/​GERE/​10.+​Furth​
er+​readi​ng+​and+​docum​entat​ion.

	37.	 Online Mendelian Inheritance in Man, OMIM. Available at: https://​omim.​
org/. (Accessed: 27th Oct 2021)

	38.	 Tomita M, Shimizu N, Brutlag DL. Introns and reading frames: correla-
tion between splicing sites and their codon positions. Mol Biol Evol. 
1996;13:1219–23.

	39.	 Signal B, Gloss BS, Dinger ME, Mercer TR. Machine learning annotation of 
human branchpoints. Bioinformatics. 2018;34:920–7.

	40.	 Canson DM, et al. The splicing effect of variants at branchpoint elements 
in cancer genes. Genet Med. 2022;24:398–409.

	41.	 Kadri NK, Mapel XM, Pausch H. The intronic branch point sequence is 
under strong evolutionary constraint in the bovine and human genome. 
Commun Biol. 2021;4:1206.

	42.	 AbouTayoun AN, et al. Recommendations for interpreting the 
loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 
2018;39:1517–24.

	43.	 Cummings BB, et al. Improving genetic diagnosis in Mendelian disease 
with transcriptome sequencing. Sci Transl Med. 2017;9(386):eaal5209.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://irdirc.org/about-us/policies-guidelines/
https://doi.org/10.1038/s41436-021-01297-5
https://doi.org/10.1136/jmedgenet-2020-107626
https://doi.org/10.1136/jmedgenet-2020-107626
https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893/7
https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893/7
https://github.com/alexblakes/100KGP_splicing
https://github.com/deeptools/pyBigWig
https://github.com/deeptools/pyBigWig
https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
https://research-help.genomicsengland.co.uk/display/GERE/10.+Further+reading+and+documentation
https://research-help.genomicsengland.co.uk/display/GERE/10.+Further+reading+and+documentation
https://omim.org/
https://omim.org/

	A systematic analysis of splicing variants identifies new diagnoses in the 100,000 Genomes Project
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Cohort, sequencing, and tiering
	Defining coding sequences and near-splice positions
	phyloP
	SpliceAI
	Mutability-adjusted proportion of singletons
	Branchpoints
	De novo variants
	Candidate diagnostic variants
	Functional validation
	Statistics

	Results
	Signals of constraint at near-splice positions are replicated in a large healthy cohort
	A subset of splicing branchpoints are highly constrained
	New diagnostic candidates among near-splice de novo variants
	New diagnoses among the cohort

	Discussion
	Non-canonical splicing positions harbour deleterious splicing variants
	New rare disease diagnoses

	Conclusions
	Acknowledgements
	References


