World Health Organization. Global Tuberculosis Report 2015. Geneva: World Health Organization; 2015.
Google Scholar
Zignol M, Dean AS, Falzon D, van Gemert W, Wright A, van Deun A, et al. Twenty years of global surveillance of antituberculosis-drug resistance. N Engl J Med. 2016;375:1081–9.
Article
PubMed
Google Scholar
Dheda K, Gumbo T, Gandhi NR, Murray M, Theron G, Udwadia Z, et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respir Med. 2014;2:321–38.
Article
PubMed
Google Scholar
Pietersen E, Peter J, Streicher E, Sirgel F, Rockwood N, Mastrapa B, et al. High frequency of resistance, lack of clinical benefit, and poor outcomes in capreomycin treated South African patients with extensively drug-resistant tuberculosis. PLoS One. 2015;10:e0123655.
Article
PubMed
PubMed Central
Google Scholar
Coll F, McNerney R, Preston M, Guerra-Assunção JA, Warry A, Hill-Cawthorn G, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med. 2015;5:51.
Article
Google Scholar
Witney AA, Gould KA, Arnold A, Coleman D, Delgado R, Dhillon J, et al. Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases. J Clin Microbiol. 2015;53:1473–83.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet. 2013;45:1255–60.
Article
CAS
PubMed
Google Scholar
Clark TG, Mallard K, Coll F, Preston M, Assefa S, Harris D, et al. Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing. PLoS One. 2013;8:e83012.
Article
PubMed
PubMed Central
Google Scholar
Farhat MR, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, et al. Genetic determinants of drug resistance in mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med. 2016. doi:10.1164/rccm.201510-2091OC.
Phelan J, Coll F, McNerney R, Ascher DB, DE Pires V, Furnham N, et al. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med. 2016;14:31.
Article
PubMed
PubMed Central
Google Scholar
Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZM, et al. Rapid Whole Genome Sequencing of M. tuberculosis directly from clinical samples. J Clin Microbiol. 2015. doi:10.1128/JCM.00486-15.
Cambau E, Viveiros M, Machado D, Raskine L, Ritter C, Tortoli E, et al. Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study. J Antimicrob Chemother. 2015;70:686–96.
Article
CAS
PubMed
Google Scholar
Springer B, Lucke K, Calligaris-Maibach R, Ritter C, Bottger EC. Quantitative drug susceptibility testing of Mycobacterium tuberculosis by use of MGIT 960 and EpiCenter instrumentation. J Clin Microbiol. 2009;47:1773–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs WR, Larsen MH. Genetic manipulation of Mycobacterium tuberculosis. Curr Protoc Microbiol. 2007;8:10A.2.1.
Google Scholar
Benavente ED, Coll F, Furnham N, McNerney R, Glynn JR, Campino S, et al. PhyTB: Phylogenetic tree visualisation and sample positioning for M tuberculosis. BMC Bioinformatics. 2015;16:155.
Article
PubMed
PubMed Central
Google Scholar
Coll F, Preston M, Guerra-Assunção JA, Hill-Cawthorn G, Harris D, Perdigão J, et al. PolyTB: a genomic variation map for Mycobacterium tuberculosis. Tuberculosis (Edinb). 2014;94:346–54.
Article
CAS
Google Scholar
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Preston MD, Campino S, Assefa SA, Echeverry DF, Ocholla H, Amambua-Ngwa A, et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun. 2014. doi:10.1038/ncomms5052.
Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, et al. Fast computation and applications of genome mappability. PLoS One. 2012;7:e30377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun. 2015;6:10063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
Phelan JE, Coll F, Bergval I, Anthony RM, Warren R, Sampson SL, et al. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics. 2015;17:151.
Article
Google Scholar
Moradigaravand D, Grandjean L, Martinez E, Li H, Zheng J, Coronel J, et al. dfrA thyA Double deletion in para-aminosalicylic acid-resistant Mycobacterium tuberculosis Beijing strains. Antimicrob Agents Chemother. 2016;60:3864–7.
Article
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyler AD, Christianson S, Knox NC, Mabon P, Wolfe J, Van Domselaar G, et al. Comparison of sample preparation methods used for the next-generation sequencing of Mycobacterium tuberculosis. PLoS One. 2016;11:e0148676.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Han S, Wang Z, Gelernter J, Yang B-Z, Nielsen R, et al. Variant callers for next-generation sequencing data: a comparison study. PLoS One. 2013;8:e75619.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. WHO treatment guidelines for drug-resistant tuberculosis. 2016. http://www.who.int/tb/areas-of-work/drug-resistant-tb/treatment/resources/en/. Accessed 10 Oct 2016.
Domínguez J, Boettger EC, Cirillo D, Cobelens F, Eisenach KD, Gagneux S, et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int J Tuberc Lung Dis. 2016;20:24–42.
Article
PubMed
Google Scholar
Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM, Nikolayevskyy V. Whole genome sequencing of M. tuberculosis for detection of drug resistance: a systematic review. Clin Microbiol Infect. 2016. doi:10.1016/j.cmi.2016.09.008.