Hampel H, Prvilovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, Riepe MW, Dodel R, Leyhe L, Bertam L, Hoffmann W, Faltraco F: The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol. 2011, 95: 718-728. 10.1016/j.pneurobio.2011.11.008.
Article
Google Scholar
Blennow K, Hampel H, Weiner M, Zetterberg H: Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010, 6: 131-144. 10.1038/nrneurol.2010.4.
Article
CAS
Google Scholar
The Alzheimer association., [http://www.alz.org/research/science/earlier_alzheimers_diagnosis.asp]
Hampel H, Frank R, Broich K, Teipel S, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K: Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010, 9: 560-574. 10.1038/nrd3115.
Article
CAS
Google Scholar
Lehmann S, Delaby C, Touchon J, Hirtz C, Gabelle A: Biomarkers of Alzheimer’s disease: The present and the future. Rev Neurol. 2013, 169: 719-723. 10.1016/j.neurol.2013.07.012.
Article
CAS
Google Scholar
Moghekar A, Goh J, Li J, Albert M, O’Brien RJ: Cerebrospinal fluid Aβ and tau level fluctuation in an older clinical cohort. Arch Neurol. 2012, 69: 246-250. 10.1001/archneurol.2011.732.
Article
Google Scholar
Herrup K, Varrilo MC, Schenk D, Cacace A, DeSanti S, Fremeau R, Bhat R, Glicksman M, May P, Swerdlow R, Van Eldik L, Bain LJ, Budd S: Beyond amyloid: Getting real about nonamyloid targets in Alzheimer’s disease. Alzheimers Dement. 2013, 9: 452-458. 10.1016/j.jalz.2013.01.017.
Article
Google Scholar
Greco I, Day N, Contreras JR, Reed J, Soininen H, Kloszewska I, Tsolaki M, Vellas B, Spenger C, Mecocci P, Wahlund L, Simmons A, Barnes J, Lovestone S: Alzheimer’s disease biomarker discovery using in silico literature mining and clinical validation. J Transl Med. 2012, 10: 217-10.1186/1479-5876-10-217.
Article
Google Scholar
Malhotra A, Younesi E, Gurulingappa H, Hofmann-Apitius M: ‘HypothesisFinder’:A strategy for the detection of speculative statements in scientific text. PLoS Comput Biol. 2013, 9: e1003117-10.1371/journal.pcbi.1003117.
Article
CAS
Google Scholar
Younesi E, Hofmann-Apitius M: From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J. 2013, 4: 23-10.1186/1878-5085-4-23.
Article
Google Scholar
Malhotra A, Younesi E, Gündel M, Müller B, Heneka MT, Hofmann-Apitius M: ADO: A disease ontology representing the domain knowledge specific to Alzheimer’s disease. Alzheimers Dement. 2014, 10: 238-246. 10.1016/j.jalz.2013.02.009.
Article
Google Scholar
SCAIView tool., [www.scaiview.com]
Hofmann-Apitius M, Fluck J, Furlong L, Fornes O, Kolářik C, Hanser S, Boecker M, Schultz S, Sanz F, Klinger R, Mevissen T, Gatterneyer T, Oliva B, Friedrich C: Knowledge environments representing molecular entities for the virtual physiological human. Philos Transact A Math Phys Eng Sci. 2008, 366: 3091-3110. 10.1098/rsta.2008.0099.
Article
CAS
Google Scholar
Gurulingappa H, Müller B, Klinger R, Mevissen T, Hofmann-Apitius M, Fluck J, Friedrich C: Patent Retrieval in Chemistry based on semantically tagged Named Entities. The Eighteenth Text RETrieval Conference (TREC 2009) Proceedings. 2009, National Institute of Standards and Technology, Gaithersburg, MD
Google Scholar
Gurulingappa H, Mueller B, Hofmann-Apitius M, Fluck J: A Semantic Platform for Information Retrieval for E-Health Records. Notebook Proceeding of Twentieth Text Retrieval Conference Medical Records Track, Gaithersburg, USA. 2011, National Institute of Standards and Technology, Gaithersburg, MD
Google Scholar
Younesi E, Toldo L, Müller B, Friedrich CM, Novac N, Scheer A, Fluck J: Mining biomarker information in biomedical literature. BMC Med Inform Decis Mak. 2012, 12: 148-10.1186/1472-6947-12-148.
Article
Google Scholar
Bobić T, Klinger R, Thomas P, Hofmann-Apitius M: Improving Distantly Supervised Extraction of Drug-Drug and Protein-Protein Interactions. Proceedings of the Joint Workshop on Unsupervised and Semi-Supervised Learning in NLP. 2012, Association for Computational Linguistics, Avignon, 35-43.
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13: 2498-2504. 10.1101/gr.1239303.
Article
CAS
Google Scholar
Mouse genome database., [http://www.informatics.jax.org]
Biological expression language., [http://www.openbel.org/]
Cytoscape tool., [https://github.com/OpenBEL/Cytoscape-Plugins]
Gene Expression Omnibus database., [http://www.ncbi.nlm.nih.gov/geo/]
Array express database., [https://www.ebi.ac.uk/arrayexpress/]
Statistical data language R., [http://www.r-project.org]
Irizarry R, Hobbs B, Collin F, Beaze-Barclay Y, Antonellis K, Scherf U, Speed T: Exploration, normalization, and summaries of high density oligoneucleotide array probe level data. Biostatistics. 2003, 4: 249-10.1093/biostatistics/4.2.249.
Article
Google Scholar
Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: 3-
Google Scholar
Medline., [http://www.ncbi.nlm.nih.gov/pubmed]
SCAI downloads., [http://www.scai.fraunhofer.de/de/geschaeftsfelder/bioinformatik/downloads.html]
Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, Langbaum J, Ayutyanont N, Roontiva A, Thiyyagura P, Lee W, Mo H, Lopez L, Moreno S, Baena N, Giraldo M, Garcia G, Reiman R, Huentelman M, Kosik K, Tariot P: Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol. 2012, 11: 1057-1065. 10.1016/S1474-4422(12)70227-2.
Article
CAS
Google Scholar
Sagare AP, Deane R, Zetterberg H, Wallin A, Blennow K, Zlokovic BV: Impaired lipoprotein receptor-mediated peripheral binding of plasma amyloid-β is an early biomarker for mild cognitive impairment preceding Alzheimer’s disease. J Alzheimers Dis. 2011, 24: 25-34.
CAS
Google Scholar
Durakoglugil MS, Chen Y, White C, Kavalali ET, Herz J: Reelin signaling antagonizes β-amyloid at the synapse. Proc Natl Acad Sci. 2009, 106: 15938-15943. 10.1073/pnas.0908176106.
Article
CAS
Google Scholar
Tsai VW, Scott HL, Lewis RJ, Dodd PR: The role of group I metabotropic glutamate receptors in neuronal excitotoxicity in Alzheimer’s disease. Neurotox Res. 2005, 7: 125-141. 10.1007/BF03033782.
Article
CAS
Google Scholar
Lee J-H, Cheon YH, Woo RD, Song DY, Moon C, Baik TK: Evidence of early involvement of apoptosis inducing factor-induced neuronal death in Alzheimer brain. Anatomy Cell Biol. 2012, 45: 26-37. 10.5115/acb.2012.45.1.26.
Article
Google Scholar
Hook V, Funkelstein L, Wegrzyn J, Bark S, Kindy M, Hook G: Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-Proteins Proteomics. 2012, 1824: 89-104. 10.1016/j.bbapap.2011.08.015.
Article
CAS
Google Scholar
Sundelöf J, Sundstrom J, Hansson O, Jonhagen ME, Giedraitis V, Larsson A, Gunnarsson MD, Ingelsson M, Minthon L, Blennow K, Kilander L, Basun H, Lannfelt L: Higher cathepsin B levels in plasma in Alzheimer’s disease compared to healthy controls. J Alzheimers Dis. 2010, 22: 1223-1230.
Google Scholar
Klein DM, Felsenstein KM, Brenneman DE: Cathepsins B and L differentially regulate amyloid precursor protein processing. J Pharmacol Exp Ther. 2009, 328: 813-821. 10.1124/jpet.108.147082.
Article
CAS
Google Scholar
Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM: Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem. 2012, 287: 13959-13971. 10.1074/jbc.M111.288746.
Article
CAS
Google Scholar
Pani A, Dessi S, Diaz G, Colla P, Abete C, Mulas C, Angius F, Cannas M, Orru CD, Cocco PL, Mandas A, Putzu P, Laurenzana A, Cellai C, Costanza AM, Bavazzano A, Mocali A, Paoletti F: Altered cholesterol ester cycle in skin fibroblasts from patients with Alzheimer’s disease. J Alzheimers Dis. 2009, 18: 829-841.
CAS
Google Scholar
Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, Paoletti AC, Kasper TR, Demattos RB, Zlokovic BV, Holtzman DM: Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc Natl Acad Sci. 2012, 109: 15502-15507. 10.1073/pnas.1206446109.
Article
CAS
Google Scholar
Abisambra JF, Fiorelli T, Padmanabhan J, Neame P, Wefes I, Potter H: LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer’s disease. PLoS One. 2010, 5: e8556-10.1371/journal.pone.0008556.
Article
Google Scholar
Braskie MN, Ringman JM, Thompson PM: Neuroimaging measures as endophenotypes in Alzheimer’s disease. Int J Alzheimers Dis. 2011, 2011: 490140-10.4061/2011/490140.
Article
Google Scholar