Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, et al. Molecular characterization of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet. 2003;40(8):575–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simenson K, Oiglane-Shlik E, Teek R, Kuuse K, Ounap KA, et al. A patient with the classic features of Phelan-McDermid syndrome and a high immunoglobulin E level caused by a cryptic interstitial 0.72-Mb deletion in the 22q13.2 region. Am J Med Genet A. 2014;164A(3):806–9.
Article
PubMed
Google Scholar
Thummler S, Giuliano F, Karmous-Benailly H, Richelme C, Fernandez A, De Georges C, et al. Neurodevelopmental and immunological features in a child presenting 22q13.2 microdeletion. Am J Med Genet A. 2016;170(3):792–4.
Article
PubMed
Google Scholar
Naoufal R, Legendre M, Couet D, Gilbert-Dussardier B, Kitzis A, Bilan F, Harbuz R. Association of structural and numerical anomalies of chromosome 22 in a patient with syndromic intellectual disability. Eur J Med Genet. 2016;59(9):483–7.
Article
PubMed
Google Scholar
Mitz AR, Philyaw TJ, Boccuto L, Shcheglovitov A, Sarasua SM, Kaufmann WE, et al. Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. Eur J Hum Genet. 2018;26(3):293–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babbs C, Lloyd D, Pagnamenta AT, Twigg SR, Green J, McGowan SJ, et al. De novo and rare inherited mutations implicate the transcriptional coregulator TCF20/SPBPin autism spectrum disorder. J Med Genet. 2014;51(11):737–47.
Article
CAS
PubMed
Google Scholar
Rekdal C, Sjøttem E, Johansen T. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators. J Biol Chem. 2000;275(51):402288–300.
Article
Google Scholar
Sanz L, Moscat J, Diaz-Meco MT. Molecular characterization of a novel transcription factor that controls stromelysin expression. Mol Cell Biol. 1995;15(6):3164–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darvekar S, Rekdal C, Johansen T, Sjottem E. A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules. PLoS One. 2013;8(10):e78907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elvenes J, Thomassen EI, Johnsen SS, Kaino K, Sjottem E, Johansen T. Pax6 represses androgen receptor-mediated transactivation by inhibiting recruitment of the coactivator SPBP. PLoS One. 2011;6(9):e24659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gburcik V, Bot N, Maggiolini M, Picard D. SPBP is a phosphoserine-specific repressor of estrogen receptor alpha. Mol Cell Biol. 2005;25(9):3421–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science. 2004;306(5705):2255–7.
Article
CAS
PubMed
Google Scholar
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76.
Article
CAS
PubMed
Google Scholar
Schafgen J, Crème K, Becker J, Wieland T, Zink AM, Kim S, et al. De novo nonsense and frameshift variants of TCF20in individuals with intellectual disability and postnatal overgrowth. Eur J Hum Genet. 2016;24(12):1739–45.
Article
PubMed
PubMed Central
Google Scholar
Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19(9):1194–6.
Article
CAS
PubMed
Google Scholar
Disorders DD. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–8.
Article
Google Scholar
Greenberg F, Guzzetta V, Montes de Oca-Luna R, Magenis RE, Smith AC, Richter SF, et al. Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p11.2). Am J Hum Genet. 1991;49(6):1207–18.
CAS
PubMed Central
PubMed
Google Scholar
Liu P, Lacaria M, Zhang F, Withers M, Hastings PJ, Lupski JR. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet. 2011;89(4):580–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slager RE, Newton TL, Vlangos CN, Finucane B, Elsea SH. Mutations in RAI1associated with Smith-Magenis syndrome. Nat Genet. 2003;33(4):466–8.
Article
CAS
PubMed
Google Scholar
Bi W, Yan J, Shi X, Yuva-Paylor LA, Antalffy BA, Goldman A, Yoo JW, et al. Rai1 deficiency in mice causes learning impairment and motor dysfunction, whereas Rai1heterozygous mice display minimal behavioral phenotypes. Hum Mol Genet. 2007;16(15):1802–13.
Article
CAS
PubMed
Google Scholar
Bi W, Saifi MG, Shaw CJ, Walz K, Fonseca P, Wilson M, et al. Mutations of RAI1, a PHD-containing protein, in nondeletion patients with Smith-Magenis syndrome. Hum Genet. 2004;115:515–24.
Article
CAS
PubMed
Google Scholar
Potocki L, Bi W, Treadwell-Deering D, Carvalho CM, Eifert A, Friedman EM, et al. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet. 2017;80(4):633–49.
Article
Google Scholar
Zhang F, Potocki L, Sampson JB, Liu P, Sanchez-Valle A, Robbins-Furman P, et al. Identification of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS. Am J Hum Genet. 2010;86(3):462–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Muzny DM, Xia F, Niu Z, Person R, Dinr Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312(18):1870–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lalani SR, Liu P, Rosenfeld JA, Watkin LB, Chiang T, Leduc MS, et al. Recurrent muscle weakness with rhabdomyolysis, metabolic crises, and cardiac arrhythmia due to bi-allelic TANGO2mutations. Am J Hum Genet. 2016;98(2):347–57.
Article
CAS
PubMed
Google Scholar
Normand EA, Braxton A, Nassef S, Ward PA, Vetrini F, He W, et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018;10(1):74.
Ta-Shma A, Zhang K, Salimova E, Zernecke A, Sieiro-Mosti D, Stegner D, et al. Congenital valvular defects associated with deleterious mutations in the PLD1 gene. J Med Genet. 2017;54(4):278-86.
Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med. 2015;17(7):578–86.
Article
CAS
PubMed
Google Scholar
Boone PM, Bacino CM, Shaw CA, Eng PA, Hixson PM, Pursley AN, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326–42.
Article
PubMed
PubMed Central
Google Scholar
Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN, et al. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014;22:79–87.
Article
CAS
PubMed
Google Scholar
Gambin T, Yuan B, Bi W, Liu P, Rosenfeld JA, Coban-Akdemir Z, et al. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med. 2017;9:83.
Article
PubMed
PubMed Central
Google Scholar
Gropman AL, Duncan WC, Smith AC. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr Neurol. 2006;34(5):337–50.
Article
PubMed
Google Scholar
Sarimski K. Communicative competence and behavioural phenotype in children with Smith-Magenis syndrome. Genet Couns. 2004;15(3):347–55.
CAS
PubMed
Google Scholar
Boudreau EA, Johnson KP, Jackman AR, Blancato J, Huizing M, Bendavid C, et al. Review of disrupted sleep patterns in Smith-Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion. Am J Med Genet A. 2009;149A(7):1382–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Munnik SA, Garcia-Minaur S, Hoischen A, van Bon BW, Boycott KM, Schoots J, et al. A de novo non-sense mutation in ZBTB18in a patient with features of the 1q43q44 microdeletion syndrome. Eur J Hum Genet. 2014;22(6):844–6.
Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–3.
Article
CAS
PubMed
Google Scholar
Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, Gambin T, et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet. 2018;103(2):171–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmona-Mora P, Canales CP, Cao L, Perez IC, Srivastava AK, Young JI, et al. RAI1 transcription factor activity is impaired in mutants associated with Smith-Magenis syndrome. PLoS One. 2012;7(9):e45155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmona-Mora P, Walz K. Retinoic acid induced 1, RAI1: a dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Curr Genomics. 2010;11(8):607–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walz K, Paylor R, Yan J, Bi W, Lupski JR. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2). J Clin Invest. 2006;116(11):3035–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soler-Alfonso C, Motil KC, Turk CL, Robbins-Furman P, Friedman EM, Zhang F, et al. Potocki-Lupski syndrome: a microduplication syndrome associated with oropharyngeal dysphagia and failure to thrive. J Pediatr. 2011;158(4):655–9 e652.
Article
PubMed
Google Scholar
Darvekar S, Johnsen SS, Eriksen AB, Johansen T, Sjottem E. Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP. Biochem J. 2012;42(1):65–75.
Article
Google Scholar
Vilboux T, Ciccone C, Blancato JK, Cox GF, Deshpande C, Introne WJ, et al. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion. PLoS One. 2011;6(8):e22861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Model Z, Butler MP, LeSauter J, Rae S. Suprachiasmatic nucleus as the site of androgen action on circadian rhythms. Horm Behav. 2015;73:1–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mong JA, Baker FC, Mahoney MM, Paul KN, Schwartz MD, Semba K, Silver R. Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones. J Neurosci. 2011;31(45):16107–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Freeman SR, Sathish V, Thompson MA, Pabelick CM, Prakash YS. Sex steroids influence brain-derived neurotropic factor secretion from human airway smooth muscle cells. J Cell Physiol. 2016;231(7):1586–92.
Article
CAS
PubMed
Google Scholar
Carbone DL, RJ Handa RJ. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor. Neuroscience. 2013;239:295–303.
Article
CAS
PubMed
Google Scholar
Chen L, Mullegama S, Alaimo JT, Elsea SH. Smith-Magenis syndrome and its circadian influence on development, behavior, and obesity-own experience. Develop Per Med. 2015;19(2):149-56.
Burns B, Schmidt K, Williams SR, Kim S, Girirajan S, Elsea SH. Rai1haploinsufficiency causes reduced Bdnf expression resulting in hyperphagia, obesity and altered fat distribution in mice and humans with no evidence of metabolic syndrome. Hum Mol Genet. 2010;19(20):4026–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alaimo JT, Hahn NH, Mullegama SV, Elsea SH. Dietary regimens modify early onset of obesity in mice haploinsufficient for Rai1. PLoS One. 2014;9(8):e105077.4.
Article
Google Scholar
Lyngsø C, Bouteiller G, Damgaard CK, Ryom D, Sanchez-Muñoz S, Nørby PL, et al. Interaction between the transcription factor SPBPand the positive cofactor RNF4. An interplay between protein binding zinc fingers. J Biol Chem. 2005;275:26144–9.
MacArthur DG, Tyler-Smith C. Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet. 2011;19(R2):R125–30.
Article
Google Scholar
Ricard G, Molina J, Chrast J, Gu W, Gheldof N, Pradervand S, et al. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol. 2010;8(11):e1000543.
Article
PubMed
PubMed Central
Google Scholar
Girirajan S, Patel N, Slager RE, Tokarz ME, Bucan N, Wiley JL, et al. How much is too much? Phenotypic consequences of Rai1overexpression in mice. Eur J of Hum Genet. 2014;16:941–54.
Article
CAS
PubMed
Google Scholar
Yuan B, Neira J, Pehlivan D, Santiago-Sim T, Song X, Rosenfeld J, et al. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med. 2018. https://doi.org/10.1038/s41436-018-0085-6.
Article
PubMed
PubMed Central
Google Scholar