Wahl B, O’Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Health. 2018;6:E744–57.
Article
Google Scholar
Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo S, Weiser JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019;29:304–16.
Article
CAS
Google Scholar
Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338–46.
Article
Google Scholar
Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 2014;5:5471 Nature Publishing Group.
Article
Google Scholar
Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, et al. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol. 2007;189:8186 LP–8195 Available from: http://jb.asm.org/content/189/22/8186.abstract.
Article
Google Scholar
Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. Streptococcus pneumoniae, le transformiste. Trends Microbiol. 2014;22:113–9.
Article
CAS
Google Scholar
Apagyi KJ, Fraser C, Croucher NJ. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol Biol Evol. 2018;35:575–81.
Article
CAS
Google Scholar
Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 2016;14:e1002394 Barton NH, editor.
Article
Google Scholar
Hu FZ, Eutsey R, Ahmed A, Frazao N, Powell E, Hiller NL, et al. In vivo capsular switch in Streptococcus pneumoniae - analysis by whole genome sequencing. PLoS One. 2012;7:e47983 Available from: https://pubmed.ncbi.nlm.nih.gov/23144841.
Article
CAS
Google Scholar
Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2006;2:e31.
Article
Google Scholar
Ganaie F, Saad JS, McGee L, van Tonder AJ, Bentley SD, Lo SW, et al. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral streptococcus. MBio. 2020;11:e00937–20.
Article
Google Scholar
Pimenta F, Moiane B, Gertz REJ, Chochua S, Snippes Vagnone PM, Lynfield R, et al. New Pneumococcal Serotype 15D. J Clin Microbiol. 2021;59:e00329–1.
Article
CAS
Google Scholar
Lees JA, Croucher NJ, Goldblatt D, Nosten F, Parkhill J, Turner C, et al. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. Elife. 2017;6:e26255.
Article
Google Scholar
Løchen A, Truscott JE, Croucher NJ. Analysing pneumococcal invasiveness using Bayesian models of pathogen progression rates. PLoS Comput Biol. 2022;18:e1009389. https://doi.org/10.1371/journal.pcbi.1009389 Public Library of Science.
Article
CAS
Google Scholar
Cartee RT, Forsee WT, Yother J. Initiation and synthesis of the Streptococcus pneumoniae type 3 capsule on a phosphatidylglycerol membrane anchor. J Bacteriol. 2005;187:4470–9.
Article
CAS
Google Scholar
Luck JN, Tettelin H, Orihuela CJ. Sugar-coated killer: serotype 3 pneumococcal disease. Front Cell Infect Microbiol. 2020;10:613287 Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2020.613287.
Article
Google Scholar
Croucher NJ, Løchen A, Bentley SD. Pneumococcal vaccines: host interactions, population dynamics, and design principles. Annu Rev Microbiol. 2018;72:521–49.
Article
CAS
Google Scholar
Rijkers GT, Sanders EAM, Breukels MA, Zegers BJM. Infant B cell responses to polysaccharide determinants. Vaccine. 1998;16:1396–400 Available from: https://www.sciencedirect.com/science/article/pii/S0264410X9800098X.
Article
CAS
Google Scholar
Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins : V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III pneumococcus with foreign protein. J Exp Med. 1931;54:437–47.
Article
CAS
Google Scholar
IVAC. VIEW-hub Available from: https://view-hub.org/map/?set=current-vaccine-intro-status&group=vaccine-introduction&category=pcvx§x. [cited 10 Jul 2022].
Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ, Lambertsen L, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med. 2009;6:e1000081.
Article
Google Scholar
Løchen A, Croucher NJ, Anderson RM. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci Rep. 2020;10:18977.
Article
Google Scholar
Kandasamy R, Voysey M, Collins S, Berbers G, Robinson H, Noel I, et al. Persistent circulation of vaccine serotypes and serotype replacement after 5 years of infant immunization with 13-valent pneumococcal conjugate vaccine in the United Kingdom. J Infect Dis. 2020;221:1361–70. https://doi.org/10.1093/infdis/jiz178.
Article
CAS
Google Scholar
Andrews NJ, Waight PA, Burbidge P, Pearce E, Roalfe L, Zancolli M, et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect Dis. 2014;14:839–46.
Article
CAS
Google Scholar
Dagan R, Patterson S, Juergens C, Greenberg D, Givon-Lavi N, Porat N, et al. Comparative immunogenicity and efficacy of 13-valent and 7-valent pneumococcal conjugate vaccines in reducing nasopharyngeal colonization: a randomized double-blind trial. Clin Infect Dis. 2013;57:952–62. https://doi.org/10.1093/cid/cit428.
Article
CAS
Google Scholar
Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E, Kaliskova E, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 2006;367:740–8 Available from: https://www.sciencedirect.com/science/article/pii/S0140673606683049.
Article
CAS
Google Scholar
Choi EH, Zhang F, Lu Y-J, Malley R. Capsular polysaccharide (CPS) release by serotype 3 pneumococcal strains reduces the protective effect of anti-type 3 CPS antibodies. Clin Vaccine Immunol. 2016;23:162–7.
Article
CAS
Google Scholar
Centre for Genomic Pathogen Surveillance. Pathogenwatch. Available from: https://pathogen.watch/genomes/all?genusId=1301&serotype=03&speciesId=1313. [cited 10 Jul 2022].
Croucher NJ, Mitchell AM, Gould KA, Inverarity D, Barquist L, Feltwell T, et al. Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet. 2013;9:e1003868.
Article
Google Scholar
Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A, Pollard AJ, et al. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog. 2018;14:e1007438. https://doi.org/10.1371/journal.ppat.1007438 Public Library of Science.
Article
CAS
Google Scholar
Groves N, Sheppard CL, Litt D, Rose S, Silva A, Njoku N, et al. Evolution of Streptococcus pneumoniae serotype 3 in England and Wales: a major vaccine evader. Genes (Basel). 2019;10(11):845.
Article
CAS
Google Scholar
Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, et al. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol. 2009;191:4854–62. https://doi.org/10.1128/JB.01272-08 American Society for Microbiology.
Article
CAS
Google Scholar
Mostowy R, Croucher NJ, Hanage WP, Harris SR, Bentley S, Fraser C. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet. 2014;10:e1004300.
Article
Google Scholar
Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M, de Lencastre H, et al. Variable recombination dynamics during the emergence, transmission and “disarming” of a multidrug-resistant pneumococcal clone. BMC Biol. 2014;12:49.
Article
Google Scholar
D’Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song J-H, et al. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. Elife. 2021;10:e67113. https://doi.org/10.7554/eLife.67113.
Article
Google Scholar
Gladstone RA, Lo SW, Goater R, Yeats C, Taylor B, Hadfield J, et al. Visualizing variation within Global Pneumococcal Sequence Clusters (GPSCs) and country population snapshots to contextualize pneumococcal isolates. Microb Genomics. 2020;6:e000357 Available from: https://pubmed.ncbi.nlm.nih.gov/32375991. Microbiology Society.
Article
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
Article
CAS
Google Scholar
Wellcome Sanger Institute. Assembly-stats. 2022. Available from: https://github.com/sanger-pathogens/assembly-stats [cited 11 Jul 2022].
Harris SR. SKA: Split Kmer Analysis Toolkit for bacterial genomic epidemiology. bioRxiv. 2018. https://doi.org/10.1101/453142.
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15.
Article
Google Scholar
Simonsen M, Mailund T, Pedersen CN. Rapid neighbour joining, Proc 8th Work Algorithms Bioinforma; 2008. p. 113–22.
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
Google Scholar
Chaguza C, Tonkin-Hill G, Lo SW, Hadfield J, Croucher NJ, Harris SR, et al. RCandy: an R package for visualising homologous recombinations in bacterial genomes. Bioinformatics. 2021;38:1450–1.
Article
Google Scholar
Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021;49:D192–200.
Article
CAS
Google Scholar
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–5. https://doi.org/10.1093/bioinformatics/btt509.
Article
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Article
Google Scholar
Rambaut A. FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/. [cited 11 Jul 2022].
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.
Article
Google Scholar
Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–48.
Article
CAS
Google Scholar
University of Vienna. RNAfold WebServer. 2022. Available from: http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi [cited 11 Jul 2022].
Google Scholar
Bida JP, Maher LJ 3rd. Improved prediction of RNA tertiary structure with insights into native state dynamics. RNA. 2012;18:385–93.
Article
CAS
Google Scholar
Lee MS, Morrison DA. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol. 1999;181:5004–16. https://doi.org/10.1128/JB.181.16.5004-5016.1999 American Society for Microbiology.
Article
CAS
Google Scholar
Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res. 2017;45:W435–9. https://doi.org/10.1093/nar/gkx279.
Article
CAS
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
Google Scholar
Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science (80- ). 2001;293:498–506.
Article
CAS
Google Scholar
Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 2018;46(22):e134.
Article
Google Scholar
Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios. Mol Biol Evol. 2019;36:2069–85. https://doi.org/10.1093/molbev/msz131.
Article
CAS
Google Scholar
Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, et al. Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol. 2007;189:38–51.
Article
CAS
Google Scholar
Halfmann A, Kovács M, Hakenbeck R, Brückner R. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: Five out of 15 promoters drive expression of small non-coding RNAs. Mol Microbiol. 2007;66:110–26.
Article
CAS
Google Scholar
Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics. 2008;24:2672–6.
Article
CAS
Google Scholar
Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26:2334–5. https://doi.org/10.1093/bioinformatics/btq413.
Article
CAS
Google Scholar
Kwun MJ, Ion AV, Oggioni MR, Bentley SD, Croucher NJ. Moonlighting proteins activate transformation in epigenetically-differentiated phase variants of multidrug-resistant Streptococcus pneumoniae. bioRxiv. 2022:2022.03.07.483185 Available from: http://biorxiv.org/content/early/2022/04/04/2022.03.07.483185.abstract.
Kwun MJ, Oggioni MR, De Ste Croix M, Bentley SD, Croucher NJ. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res. 2018;46:11438–53.
CAS
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Article
CAS
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. https://doi.org/10.1038/nbt.3519.
Article
CAS
Google Scholar
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90. https://doi.org/10.1038/nmeth.4324.
Article
CAS
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2. https://doi.org/10.1093/bioinformatics/btu393.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
Google Scholar
Sung CK, Li H, Claverys JP, Morrison DA. An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol. 2001;67:5190–6.
Article
CAS
Google Scholar
Gurung I, Berry J-L, Hall AMJ, Pelicic V. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology. Nucleic Acids Res. 2017;45:e40.
Article
Google Scholar
Petit R. dragonflye. 2022 Available from: https://github.com/rpetit3/dragonflye [cited 18 Jul 2022].
Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6. https://doi.org/10.1038/s41587-019-0072-8.
Article
CAS
Google Scholar
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46 Available from: http://genome.cshlp.org/content/27/5/737.abstract.
Article
CAS
Google Scholar
Harris RS. Improved pairwise alignment of genomic DNA. Pennsylvania: The Pennsylvania State University; 2007.
Google Scholar
Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004;14:708–15 Available from: http://genome.cshlp.org/content/14/4/708.abstract.
Article
CAS
Google Scholar
Furi L, Crawford LA, Rangel-Pineros G, Manso AS, De Ste CM, Haigh RD, et al. Methylation warfare: interaction of pneumococcal bacteriophages with their host. J Bacteriol. 2019;201(19):e00370–19 Available from: http://jb.asm.org/content/early/2019/07/03/JB.00370-19.abstract.
Article
CAS
Google Scholar
Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 1944;79:137–58.
Article
CAS
Google Scholar
Swoboda JG, Campbell J, Meredith TC, Walker S. Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem. 2010;11:35–45.
Article
CAS
Google Scholar
Eichner H, Karlsson J, Loh E. The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol. 2022;30:959–72 Available from: https://www.sciencedirect.com/science/article/pii/S0966842X22000695.
Article
CAS
Google Scholar
Håvarstein LS, Coomaraswamy G, Morrison DA. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci. 1995;92:11140 LP–11144 Available from: http://www.pnas.org/content/92/24/11140.abstract.
Article
Google Scholar
Laux A, Sexauer A, Sivaselvarajah D, Kaysen A, Brückner R. Control of competence by related non-coding csRNAs in Streptococcus pneumoniae R6. Front Genet. 2015;6:246.
Article
Google Scholar
Schnorpfeil A, Kranz M, Kovács M, Kirsch C, Gartmann J, Brunner I, et al. Target evaluation of the non-coding csRNAs reveals a link of the two-component regulatory system CiaRH to competence control in Streptococcus pneumoniae R6. Mol Microbiol. 2013;89:334–49.
Article
CAS
Google Scholar
Hör J, Garriss G, Di Giorgio S, Hack L-M, Vanselow JT, Förstner KU, et al. Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control. EMBO J. 2020;39:e103852 Available from: https://doi.org/10.15252/embj.2019103852. John Wiley & Sons, Ltd.
Article
Google Scholar
Chaguza C, Cornick JE, Harris SR, Andam CP, Bricio-Moreno L, Yang M, et al. Understanding pneumococcal serotype 1 biology through population genomic analysis. BMC Infect Dis. 2016;16:649. https://doi.org/10.1186/s12879-016-1987-z.
Article
Google Scholar
Williams TM, Loman NJ, Ebruke C, Musher DM, Adegbola RA, Pallen MJ, et al. Genome analysis of a highly virulent serotype 1 strain of Streptococcus pneumoniae from West Africa. PLoS One. 2012;7:e26742. https://doi.org/10.1371/journal.pone.0026742 Public Library of Science.
Article
CAS
Google Scholar
Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK, Bason NC, et al. Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol. 2009;191:1480–9.
Article
CAS
Google Scholar
Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal evolution in response to clinical interventions. Science (80- ). 2011;331:430–4.
Article
CAS
Google Scholar
Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L, van der Linden M, et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol Evol. 2014;6:1589–602 Oxford University Press.
Article
Google Scholar
Hermisson J, Pennings PS. Soft Sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169:2335–52. https://doi.org/10.1534/genetics.104.036947.
Article
CAS
Google Scholar
Sheppard CL, Groves N, Andrews N, Litt DJ, Fry NK, Southern J, et al. The genomics of Streptococcus pneumoniae carriage isolates from UK children and their household contacts, Pre-PCV7 to post-PCV13. Genes (Basel). 2019;10(9):687.
Article
CAS
Google Scholar
Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol. 2017;1:1950–60.
Article
Google Scholar
Eutsey RA, Powell E, Dordel J, Salter SJ, Clark TA, Korlach J, et al. Genetic stabilization of the drug-resistant PMEN1 pneumococcus lineage by its distinctive DpnIII restriction-modification system. MBio. 2015;6:e00173–15 Available from: http://mbio.asm.org/content/6/3/e00173-15.abstract. Morrison Howard A. DS, editor.
Article
CAS
Google Scholar
Brueggemann AB, Harrold CL, Rezaei Javan R, Van Tonder AJ, McDonnell AJ, Edwards BA. Pneumococcal prophages are diverse, but not without structure or history. Sci Rep. 2017;7:42976.
Article
CAS
Google Scholar
Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P, Nikolaou E, et al. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat Microbiol. 2022;7:1791–804. https://doi.org/10.1038/s41564-022-01238-1.
Article
CAS
Google Scholar
Lehtinen S, Croucher N, Blanquart F, Fraser C. Epidemiological dynamics of bacteriocin competition and antibiotic resistance. Proc R Soc B Biol Sci. 2022;289:20221197. Available from: http://europepmc.org/abstract/PPR/PPR229800.bioRxiv.
Article
Google Scholar
Aggarwal SD, Yesilkaya H, Dawid S, Hiller NL. The pneumococcal social network. PLoS Pathog. 2020;16:e1008931.
Article
CAS
Google Scholar
Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic activity of mobile genetic element defences in Streptococcus pneumoniae. Genes (Basel). 2019;10:707.
Article
CAS
Google Scholar
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms. 2020;8(10):1546.
Article
CAS
Google Scholar
Acebo P, Martin-Galiano AJ, Navarro S, Zaballos A, Amblar M. Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA. 2012;18:530–46.
Article
CAS
Google Scholar
Attaiech L, Boughammoura A, Brochier-Armanet C, Allatif O, Peillard-Fiorente F, Edwards RA, et al. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci. 2016;113:8813–8. https://doi.org/10.1073/pnas.1601626113 Proceedings of the National Academy of Sciences.
Article
CAS
Google Scholar
Durieux I, Ginevra C, Attaiech L, Picq K, Juan P-A, Jarraud S, et al. Diverse conjugative elements silence natural transformation in Legionella species. Proc Natl Acad Sci. 2019;116:18613 LP–8618 Available from: http://www.pnas.org/content/116/37/18613.abstract.
Article
Google Scholar