Trecarichi EM, Tumbarello M. Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence. 2017;8:470–84. https://doi.org/10.1080/21505594.2017.1292196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis. 2015;2. https://doi.org/10.1093/ofid/ofv050.
Sheu C-C, Chang Y-T, Lin S-Y, Chen Y-H, Hsueh P-R. Infections caused by carbapenem-resistant: an update on therapeutic options. Front Microbiol. 2019;10:80. https://doi.org/10.3389/fmicb.2019.00080.
Article
PubMed
PubMed Central
Google Scholar
Brennan-Krohn T, Pironti A, Kirby JE. Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62. https://doi.org/10.1128/AAC.00873-18.
Doi Y. Treatment options for carbapenem-resistant Gram-negative bacterial infections. Clin Infect Dis. 2019;69:S565–75. https://doi.org/10.1093/cid/ciz830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin A, Fahrbach K, Zhao Q, Lodise T. Association between carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: results of a systematic literature review and meta-analysis. Open Forum Infect Dis. 2018;5. https://doi.org/10.1093/ofid/ofy150.
Chitnis AS, Caruthers PS, Rao AK, Lamb J, Lurvey R, De Rochars VB, et al. Outbreak of carbapenem-resistant Enterobacteriaceae at a long-term acute care hospital: sustained reductions in transmission through active surveillance and targeted interventions. Infect Control Hosp Epidemiol. 2012;33:984–92.
Article
PubMed
Google Scholar
Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30:972–6. https://doi.org/10.1086/605922.
Article
PubMed
Google Scholar
World Health Organization. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. 2019. https://apps.who.int/iris/bitstream/handle/10665/330420/9789240000193-eng.pdf.
Google Scholar
World Health Organization. Antibacterial agents in preclinical development: an open access database. 2019. https://apps.who.int/iris/bitstream/handle/10665/330290/WHO-EMP-IAU-2019.12-eng.pdf.
Google Scholar
Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities. WHO Guidelines Approved by the Guidelines Review Committee; 2017. https://apps.who.int/iris/handle/10665/259462. Accessed 8 June 2020.
Centers for Disease Control and Prevention (CDC). Facility guidance for control of carbapenem-resistant Enterobacteriaceae (CRE)—November 2015 update CRE toolkit. Obtenido de: https://www.Cdc.Gov/hai/pdfs/cre/cre-Guidance-508.Pdf. Acceso Día 2016;30.
Snitkin ES, Zelazny AM, Thomas PJ, Stock F, NISC Comparative Sequencing Program Group, Henderson DK, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4:148ra116. https://doi.org/10.1126/scitranslmed.3004129.
Article
PubMed
PubMed Central
Google Scholar
Roberts LW, Harris PNA, Forde BM, Ben Zakour NL, Catchpoole E, Stanton-Cook M, et al. Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei. Nat Commun. 2020;11:466. https://doi.org/10.1038/s41467-019-14139-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsh JW, Mustapha MM, Griffith MP, Evans DR, Ezeonwuka C, Pasculle AW, et al. Evolution of outbreak-causing carbapenem-resistant Klebsiella pneumoniae ST258 at a tertiary care hospital over 8 years. MBio. 2019;10. https://doi.org/10.1128/mBio.01945-19.
Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, et al. A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob Agents Chemother. 2018;62(12):e01689–18. https://doi.org/10.1128/AAC.01689-18.
Article
PubMed
PubMed Central
Google Scholar
Otter JA, Burgess P, Davies F, Mookerjee S, Singleton J, Gilchrist M, et al. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: an economic evaluation from a hospital perspective. Clin Microbiol Infect. 2017;23:188–96. https://doi.org/10.1016/j.cmi.2016.10.005.
Article
CAS
PubMed
Google Scholar
Bartsch SM, McKinnell JA, Mueller LE, Miller LG, Gohil SK, Huang SS, et al. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin Microbiol Infect. 2017;23:48.e9–48.e16. https://doi.org/10.1016/j.cmi.2016.09.003.
Article
CAS
Google Scholar
Adeyi OO, Baris E, Jonas OB, Irwin A, Berthe FCJ, Le Gall FG, et al. Drug-resistant infections: a threat to our economic future. Washington, DC: World Bank Group; 2017.
Google Scholar
Surveillance of antimicrobial resistance in Europe 2018. European Centre for Disease Prevention and Control; 2019. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018. Accessed 22 May 2020.
Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013;62:165–70 https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6209a3.htm.
Google Scholar
Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215:S28–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2019: Centers for Disease Control and Prevention (U.S.); 2019. https://stacks.cdc.gov/view/cdc/82532
Book
Google Scholar
Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE Network. Antimicrob Agents Chemother. 2018;62. https://doi.org/10.1128/AAC.01882-17.
Tacconelli E, Magrini N, Kahlmeter G, Singh N. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: World Health Organization; 2017. p. 27.
Woodworth KR, Walters MS, Weiner LM, Edwards J, Brown AC, Huang JY, et al. Vital signs: containment of novel multidrug-resistant organisms and resistance mechanisms - United States, 2006-2017. MMWR Morb Mortal Wkly Rep. 2018;67:396–401. https://doi.org/10.15585/mmwr.mm6713e1.
Article
PubMed
PubMed Central
Google Scholar
Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, et al. Multidrug-resistant bacterial infections in US hospitalized patients, 2012--2017. N Engl J Med. 2020;382:1309–19.
Article
CAS
PubMed
Google Scholar
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682–707. https://doi.org/10.1128/CMR.05035-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4:1919–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP, Feldgarden M, et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci U S A. 2017;114:1135–40. https://doi.org/10.1073/pnas.1616248114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, et al. Nested Russian Doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob Agents Chemother. 2016;60:3767–78. https://doi.org/10.1128/AAC.00464-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschoal RP, Campana EH, Corrêa LL, Montezzi LF, Barrueto LRL, da Silva IR, et al. Concentration and variety of carbapenemase producers in recreational coastal waters showing distinct levels of pollution. Antimicrob Agents Chemother. 2017;61. https://doi.org/10.1128/AAC.01963-17.
Marathe NP, Janzon A, Kotsakis SD, Flach C-F, Razavi M, Berglund F, et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ Int. 2018;112:279–86. https://doi.org/10.1016/j.envint.2017.12.036.
Article
CAS
PubMed
Google Scholar
Gomi R, Matsuda T, Yamamoto M, Chou P-H, Tanaka M, Ichiyama S, et al. Characteristics of carbapenemase-producing Enterobacteriaceae in wastewater revealed by genomic analysis. Antimicrob Agents Chemother. 2018;62. https://doi.org/10.1128/AAC.02501-17.
Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ Int. 2018;117:132–8. https://doi.org/10.1016/j.envint.2018.04.041.
Article
PubMed
Google Scholar
Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis. 2017;65:208–15. https://doi.org/10.1093/cid/cix270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly AM, Mathema B, Larson EL. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents. 2017;50:127–34. https://doi.org/10.1016/j.ijantimicag.2017.03.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Loon K, Voor in ‘t holt AF, Vos MC. A systematic review and meta-analyses of the clinical epidemiology of carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;62:1791–18.
Google Scholar
Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, et al. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. mBio. 2018;9. https://doi.org/10.1128/mbio.02011-17.
Chng KR, Li C, Bertrand D, Ng AHQ, Kwah JS, Low HM, et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat Med. 2020;26:941–51. https://doi.org/10.1038/s41591-020-0894-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6:254ra126. https://doi.org/10.1126/scitranslmed.3009845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathers AJ, Peirano G, Pitout JDD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28:565–91. https://doi.org/10.1128/CMR.00116-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snitkin ES, Won S, Pirani A, Lapp Z, Weinstein RA, Lolans K, et al. Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aan0093.
Han JH, Lapp Z, Bushman F, Lautenbach E, Goldstein EJC, Mattei L, et al. Whole-genome sequencing to identify drivers of carbapenem-resistant Klebsiella pneumoniae transmission within and between regional long-term acute-care hospitals. Antimicrob Agents Chemother. 2019;63:e01622–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheppard AE, Stoesser N, German-Mesner I, Vegesana K, Sarah Walker A, Crook DW, et al. TETyper: a bioinformatic pipeline for classifying variation and genetic contexts of transposable elements from short-read whole-genome sequencing data. Microb Genom. 2018;4. https://doi.org/10.1099/mgen.0.000232.
Göttig S, Gruber TM, Stecher B, Wichelhaus TA, Kempf VAJ. In vivo horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial outbreak. Clin Infect Dis. 2015;60:1808–15. https://doi.org/10.1093/cid/civ191.
Article
PubMed
Google Scholar
Mulvey MR, Haraoui L-P, Longtin Y. Multiple variants of Klebsiella pneumoniae producing carbapenemase in one patient. N Engl J Med. 2016;375:2408–10. https://doi.org/10.1056/NEJMc1511360.
Article
PubMed
Google Scholar
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158. https://doi.org/10.3389/fmicb.2011.00158.
Article
PubMed
PubMed Central
Google Scholar
Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: a meta-analysis. Plasmid. 2020;108:102489. https://doi.org/10.1016/j.plasmid.2020.102489.
Article
CAS
PubMed
Google Scholar
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65:34–44. https://doi.org/10.1139/cjm-2018-0275.
Article
CAS
PubMed
Google Scholar
David S, Cohen V, Reuter S, Sheppard AE, Giani T, Parkhill J, et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci. 2020;117:25043–54. https://doi.org/10.1073/pnas.2003407117.
Article
CAS
PubMed
PubMed Central
Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 2020.
Google Scholar
Smith KP, Kirby JE. Verification of an automated, digital dispensing platform for at-will broth microdilution-based antimicrobial susceptibility testing. J Clin Microbiol. 2016;54:2288–93. https://doi.org/10.1128/JCM.00932-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Earl AM, Onderdonk AB, Kirby J, Ferraro MJ, Huang S, Spencer M, et al. Sequencing of carbapenem resistant bacteria genome sequencing: BioProject PRJNA271899, NCBI Sequence Read Archive; 2015. https://www.ncbi.nlm.nih.gov/sra/PRJNA271899
Google Scholar
Wick RR, Judd LM, Holt KE. Deepbinner: demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput Biol. 2018;14:e1006583. https://doi.org/10.1371/journal.pcbi.1006583.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wick R. Porechop: adapter trimmer for Oxford Nanopore reads: GitHub; 2017. https://github.com/rrwick/Porechop
Google Scholar
Krueger F. TrimGalore: a wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data: GitHub; 2017. https://github.com/FelixKrueger/TrimGalore
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100. https://doi.org/10.1093/bioinformatics/bty191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. https://doi.org/10.1371/journal.pone.0112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Earl A. GAEMR: genome assembly evaluation, metrics and reporting: GitHub; 2018. https://github.com/broadinstitute/GAEMR
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4. https://doi.org/10.1093/jac/dks261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020;48:D9–16. https://doi.org/10.1093/nar/gkz899.
Article
CAS
PubMed
Google Scholar
Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14:933–51, table of contents. https://doi.org/10.1128/CMR.14.4.933-951.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. https://doi.org/10.1186/gb-2004-5-2-r12.
Article
PubMed
PubMed Central
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6. https://doi.org/10.1093/nar/gkj014.
Article
CAS
PubMed
Google Scholar
Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3:e000131. https://doi.org/10.1099/mgen.0.000131.
Article
PubMed
PubMed Central
Google Scholar
Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom. 2018;4. https://doi.org/10.1099/mgen.0.000206.
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132. https://doi.org/10.1186/s13059-016-0997-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carattoli A, Zankari E, Garcìa-Fernandez A, Larsen MV, Lund O, Villa L, et al. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother. 2014. https://doi.org/10.1128/AAC.02412-14.
Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 2011;7:e1002222. https://doi.org/10.1371/journal.pgen.1002222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Georgescu CH, Manson AL, Griggs AD, Desjardins CA, Pironti A, Wapinski I, et al. SynerClust: a highly scalable, synteny-aware orthologue clustering tool. Microb Genom. 2018;4. https://doi.org/10.1099/mgen.0.000231.
Felsenstein J. Inferring phylogenies, vol. 2. Sunderland: Sinauer Associates; 2004.
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
PubMed
Google Scholar
R Core Team. R: the R project for statistical computing. 2020. https://www.r-project.org/. Accessed 17 Jan 2020.
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodcroft E. PareTree 1.0: remove sequences, bootstraps, and branch lengths from your trees! http://emmahodcroft.com/PareTree.html. Accessed 23 Nov 2020.
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA--DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.
Article
CAS
PubMed
Google Scholar
Broad Institute. Picard Toolkit: GitHub; 2014. https://github.com/broadinstitute/picard
Google Scholar
Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11:e1004041. https://doi.org/10.1371/journal.pcbi.1004041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. https://doi.org/10.12688/wellcomeopenres.14826.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salamzade R, Manson A, Earl A. ConSequences: suite to delineate contiguous and conserved sequences from assemblies and search for their presence in raw sequencing data: GitHub; 2020. https://github.com/broadinstitute/ConSequences
Google Scholar
Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One. 2014;9:e87924. https://doi.org/10.1371/journal.pone.0087924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kothari A, Wu Y-W, Chandonia J-M, Charrier M, Rajeev L, Rocha AM, et al. Large circular plasmids from groundwater Plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. MBio. 2019;10. https://doi.org/10.1128/mBio.02899-18.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2. https://doi.org/10.1093/bioinformatics/bts565.
Article
CAS
PubMed
PubMed Central
Google Scholar
NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2014;42:D7–17. https://doi.org/10.1093/nar/gkt1146.
Article
CAS
Google Scholar
Esmukov K, et al. geopy: geocoding library for Python: GitHub; 2014. https://github.com/geopy/geopy
Google Scholar
Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat Biotechnol. 2019;37:152–9. https://doi.org/10.1038/s41587-018-0010-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toribio AL, Alako B, Amid C, Cerdeño-Tarrága A, Clarke L, Cleland I, et al. European Nucleotide Archive in 2016. Nucleic Acids Res. 2017;45:D32–6. https://doi.org/10.1093/nar/gkw1106.
Article
CAS
PubMed
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70. https://doi.org/10.1093/bioinformatics/btr011.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45. https://doi.org/10.1093/nar/gkv1189.
Article
CAS
PubMed
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–30. https://doi.org/10.1093/nar/gkt1223.
Article
CAS
PubMed
Google Scholar
Reis-Cunha JL, Bartholomeu DC, Manson AL, Earl AM, Cerqueira GC. ProphET, prophage estimation tool: a stand-alone prophage sequence prediction tool with self-updating reference database. PLoS One. 2019;14:e0223364. https://doi.org/10.1371/journal.pone.0223364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saier MH Jr, Reddy VS, Tamang DG, Västermark A. The transporter classification database. Nucleic Acids Res. 2014;42:D251–8. https://doi.org/10.1093/nar/gkt1097.
Article
CAS
PubMed
Google Scholar
Thomas CM, Thomson NR, Cerdeño-Tárraga AM, Brown CJ, Top EM, Frost LS. Annotation of plasmid genes. Plasmid. 2017;91:61–7. https://doi.org/10.1016/j.plasmid.2017.03.006.
Article
CAS
PubMed
Google Scholar
Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One. 2014;9:e110726. https://doi.org/10.1371/journal.pone.0110726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6:23080. https://doi.org/10.1038/srep23080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cury J, Abby SS, Doppelt-Azeroual O, Néron B, Rocha EPC. Identifying conjugative plasmids and integrative conjugative elements with CONJscan. Methods Mol Biol. 2020;2075:265–83. https://doi.org/10.1007/978-1-4939-9877-7_19.
Article
CAS
PubMed
Google Scholar
Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science. 2003;301:1496–9. https://doi.org/10.1126/science.1088157.
Article
CAS
PubMed
Google Scholar
Nekrasov SV, Agafonova OV, Belogurova NG, Delver EP, Belogurov AA. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J Mol Biol. 2007;365:284–97. https://doi.org/10.1016/j.jmb.2006.09.087.
Article
CAS
PubMed
Google Scholar
Belogurov AA, Delver EP, Rodzevich OV. Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J Bacteriol. 1993;175:4843–50. https://doi.org/10.1128/jb.175.15.4843-4850.1993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akarsu H, Bordes P, Mansour M, Bigot D-J, Genevaux P, Falquet L. TASmania: a bacterial Toxin-Antitoxin Systems database. PLoS Comput Biol. 2019;15:e1006946. https://doi.org/10.1371/journal.pcbi.1006946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3. https://doi.org/10.1093/bioinformatics/btp163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, et al. Finished bacterial genomes from shotgun sequence data. Genome Res. 2012;22:2270–7. https://doi.org/10.1101/gr.141515.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoesser N, Phan HTT, Seale AC, Aiken Z, Thomas S, Smith M, et al. Genomic epidemiology of complex, multispecies, plasmid-borne blaKPC carbapenemase in Enterobacterales in the United Kingdom from 2009 to 2014. Antimicrob Agents Chemother. 2020;64. https://doi.org/10.1128/AAC.02244-19.
Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A, Yeh AJ, et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother. 2015;59:1656–63. https://doi.org/10.1128/AAC.04292-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect. 2018;24:350–4. https://doi.org/10.1016/j.cmi.2017.12.016.
Article
CAS
PubMed
Google Scholar
Poulou A, Voulgari E, Vrioni G, Koumaki V, Xidopoulos G, Chatzipantazi V, et al. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae sequence type 101 clone carrying an OmpK36 porin variant. J Clin Microbiol. 2013;51:3176–82. https://doi.org/10.1128/JCM.01244-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol. 2017;43:709–30. https://doi.org/10.1080/1040841X.2017.1303661.
Article
CAS
PubMed
Google Scholar
Ernst CM, Braxton JR, Rodriguez-Osorio CA, Zagieboylo AP, Li L, Pironti A, et al. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat Med. 2020;26:705–11. https://doi.org/10.1038/s41591-020-0825-4.
Article
CAS
PubMed
Google Scholar
Denamur E, Matic I. Evolution of mutation rates in bacteria. Mol Microbiol. 2006;60:820–7. https://doi.org/10.1111/j.1365-2958.2006.05150.x.
Article
CAS
PubMed
Google Scholar
Brandt C, Viehweger A, Singh A, Pletz MW, Wibberg D, Kalinowski J, et al. Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. Sci Rep. 2019;9:11223. https://doi.org/10.1038/s41598-019-47758-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56:559–62. https://doi.org/10.1128/AAC.05289-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun. 2018;9:1179. https://doi.org/10.1038/s41467-018-03205-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI, Mustapha MM, et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. Elife. 2020;9. https://doi.org/10.7554/eLife.53886.
Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev. 1998;62:725–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grainge I, Jayaram M. The integrase family of recombinase: organization and function of the active site. Mol Microbiol. 1999;33:449–56. https://doi.org/10.1046/j.1365-2958.1999.01493.x.
Article
CAS
PubMed
Google Scholar
Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist. 2010;16:91–104. https://doi.org/10.1089/mdr.2009.0120.
Article
CAS
PubMed
Google Scholar
Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153(Suppl 1):S347–57. https://doi.org/10.1038/sj.bjp.0707607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:2227–38. https://doi.org/10.1128/AAC.01707-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K, Munoz-Aguayo J, et al. Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence type 131. mSphere. 2016;1. https://doi.org/10.1128/mSphere.00121-16.
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015;16:964. https://doi.org/10.1186/s12864-015-2153-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L-G, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 2017;11:651–62. https://doi.org/10.1038/ismej.2016.155.
Article
CAS
PubMed
Google Scholar
Popowska M, Krawczyk-Balska A. Broad-host-range IncP-1 plasmids and their resistance potential. Front Microbiol. 2013;4:44. https://doi.org/10.3389/fmicb.2013.00044.
Article
PubMed
PubMed Central
Google Scholar
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73:1121–37. https://doi.org/10.1093/jac/dkx488.
Article
CAS
PubMed
Google Scholar
Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature. 2005;435:1197–202. https://doi.org/10.1038/nature03692.
Article
CAS
PubMed
Google Scholar
He S, Hickman AB, Varani AM, Siguier P, Chandler M, Dekker JP, et al. Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition. MBio. 2015;6:e00762. https://doi.org/10.1128/mBio.00762-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novais A, Rodrigues C, Branquinho R, Antunes P, Grosso F, Boaventura L, et al. Spread of an OmpK36-modified ST15 Klebsiella pneumoniae variant during an outbreak involving multiple carbapenem-resistant Enterobacteriaceae species and clones. Eur J Clin Microbiol Infect Dis. 2012;31:3057–63. https://doi.org/10.1007/s10096-012-1665-z.
Article
CAS
PubMed
Google Scholar
Knopp M, Andersson DI. Amelioration of the fitness costs of antibiotic resistance due to reduced outer membrane permeability by upregulation of alternative porins. Mol Biol Evol. 2015;32:3252–63. https://doi.org/10.1093/molbev/msv195.
Article
CAS
PubMed
Google Scholar
Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S, Naismith JH, et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Microbiol. 2020;18:164–76. https://doi.org/10.1038/s41579-019-0294-2.
Article
CAS
PubMed
Google Scholar
Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother. 2011;55:5370–3. https://doi.org/10.1128/AAC.05202-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naas T, Cuzon G, Villegas M-V, Lartigue M-F, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother. 2008;52:1257–63. https://doi.org/10.1128/AAC.01451-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci U S A. 2016;113:8260–5. https://doi.org/10.1073/pnas.1600974113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun. 2017;8:1689. https://doi.org/10.1038/s41467-017-01532-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gama JA, Zilhão R, Dionisio F. Co-resident plasmids travel together. Plasmid. 2017;93:24–9. https://doi.org/10.1016/j.plasmid.2017.08.004.
Article
CAS
PubMed
Google Scholar
Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid. 2017;93:6–16. https://doi.org/10.1016/j.plasmid.2017.08.003.
Article
CAS
PubMed
Google Scholar
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29–36. https://doi.org/10.1016/j.plasmid.2019.01.003.
Article
CAS
PubMed
Google Scholar
Lee BY, Bartsch SM, Wong KF, Kim DS, Cao C, Mueller LE, et al. Tracking the spread of carbapenem-resistant Enterobacteriaceae (CRE) through clinical cultures alone underestimates the spread of CRE even more than anticipated. Infect Control Hosp Epidemiol. 2019;40:731–4. https://doi.org/10.1017/ice.2019.61.
Article
PubMed
PubMed Central
Google Scholar