Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21.
Article
CAS
Google Scholar
Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, et al. Deterministic Evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell. 2018;173(3):595–610.e11.
Article
CAS
Google Scholar
Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer [Internet]. Cell. 2018;173:1755–69.e22. Available from:. https://doi.org/10.1016/j.cell.2018.03.073.
Article
CAS
Google Scholar
Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.
Article
CAS
Google Scholar
Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of 21 breast cancers [Internet]. Cell. 2012;149:994–1007. Available from:. https://doi.org/10.1016/j.cell.2012.04.023.
Article
CAS
Google Scholar
Gerstung M, PCAWG Evolution & Heterogeneity Working Group, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, et al. The evolutionary history of 2,658 cancers [Internet]. Nature. 2020;578:122–8. Available from:. https://doi.org/10.1038/s41586-019-1907-7.
Article
CAS
Google Scholar
Christensen DS, Ahrenfeldt J, Sokač M, Kisistók J, Thomsen MK, Maretty L, et al. Treatment represents a key driver of metastatic cancer evolution. Cancer Res. 2022;82(16):2918–27.
Article
CAS
Google Scholar
Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity [Internet]. Nat Rev Cancer. 2012;12:307–13. Available from:. https://doi.org/10.1038/nrc3246.
Article
CAS
Google Scholar
Huang X, Zhang G, Tang T, Liang T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol Cancer. 2021;20(1):44.
Article
CAS
Google Scholar
Dubrot J, Du PP, Lane-Reticker SK, Kessler EA, Muscato AJ, Mehta A, et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat Immunol. 2022; Available from. https://doi.org/10.1038/s41590-022-01315-x.
Garrido F, Schirrmacher V, Festenstein H. H–2-like specificities of foreign haplotypes appearing on a mouse sarcoma after vaccinia virus infection. Nature. 1976;259(5540):228–30.
Article
CAS
Google Scholar
Pyke RM, Mellacheruvu D, Dea S, Abbott CW, McDaniel L, Bhave DP, et al. A machine learning algorithm with subclonal sensitivity reveals widespread pan-cancer human leukocyte antigen loss of heterozygosity. Nat Commun. 2022;13(1):1925.
Article
CAS
Google Scholar
McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171(6):1259–71.e11.
Article
CAS
Google Scholar
Martínez-Jiménez F, Priestley P, Shale C, Baber J, Rozemuller E, Cuppen E. Genetic immune escape landscape in primary and metastatic cancer [Internet]; 2022. Available from:. https://doi.org/10.1101/2022.02.23.481444.
Book
Google Scholar
Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136.
Article
Google Scholar
Ozcan M, Janikovits J, von Knebel DM, Kloor M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology. 2018;7(7):e1445453.
Article
Google Scholar
Sers C, Kuner R, Falk CS, Lund P, Sueltmann H, Braun M, et al. Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int J Cancer. 2009;125(7):1626–39.
Article
CAS
Google Scholar
Zhou Y, Bastian IN, Long MD, Dow M, Li W, Liu T, et al. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc Natl Acad Sci U S A. 2021;118(8) Available from. https://doi.org/10.1073/pnas.2025840118.
Rosenthal R, The TRACERx consortium, Cadieux EL, Salgado R, Al Bakir M, Moore DA, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479–85. Available from:. https://doi.org/10.1038/s41586-019-1032-7.
Article
CAS
Google Scholar
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer [Internet], vol. 348: Science; 2015. p. 124–8. Available from:. https://doi.org/10.1126/science.aaa1348.
Book
Google Scholar
McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.
Article
CAS
Google Scholar
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition [Internet]. Cell. 2021;184:596–614.e14. Available from:. https://doi.org/10.1016/j.cell.2021.01.002.
Article
CAS
Google Scholar
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101.
Article
CAS
Google Scholar
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.
Article
Google Scholar
Sabarinathan R, Pich O, Martincorena I, Rubio-Perez C, Juul M, Wala J, et al. The whole-genome panorama of cancer drivers [Internet]. bioRxiv. 2017:190330 [cited 2022 Oct 7]. Available from: https://www.biorxiv.org/content/biorxiv/early/2017/12/23/190330.
Guo Q, Lakatos E, Bakir IA, Curtius K, Graham TA, Mustonen V. The mutational signatures of formalin fixation on the human genome. Nat Commun. 2022;13(1):4487.
Article
CAS
Google Scholar
Tamborero D, Rubio-Perez C, Muiños F, Sabarinathan R, Piulats JM, Muntasell A, et al. A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res. 2018;24(15):3717–28.
Article
CAS
Google Scholar
Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, Duurland CL, van Unen V, et al. The anatomical location shapes the immune infiltrate in tumors of same etiology and affects survival. Clin Cancer Res. 2019;25(1):240–52.
Article
CAS
Google Scholar
Cubillos-Ruiz JR, Mohamed E, Rodriguez PC. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J Immunother Cancer. 2017;5:5.
Article
Google Scholar
Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.
Article
CAS
Google Scholar
Ebot EM, Duncan DL, Tolba K, Fabrizio D, Frampton GM, Comment LA, et al. Deletions on 9p21 are associated with worse outcomes after anti-PD-1/PD-L1 monotherapy but not chemoimmunotherapy. NPJ Precis Oncol. 2022;6(1):44.
Article
CAS
Google Scholar
William WN Jr, Zhao X, Bianchi JJ, Lin HY, Cheng P, Lee JJ, et al. Immune evasion in HPV- head and neck precancer-cancer transition is driven by an aneuploid switch involving chromosome 9p loss. Proc Natl Acad Sci U S A [Internet]. 2021;118(19) Available from:. https://doi.org/10.1073/pnas.2022655118.
Barriga FM, Tsanov KM, Ho YJ, Sohail N, Zhang A, Baslan T, et al. Chromosome 9p21.3 coordinates cell intrinsic and extrinsic tumor suppression [Internet]. bioRxiv. 2022:2022.08.22.504793 [cited 2022 Oct 10]. Available from: https://www.biorxiv.org/content/early/2022/08/23/2022.08.22.504793.
Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, et al. Tumor evasion of the immune system by converting CD4 CD25−T cells into CD4 CD25 T regulatory cells: role of tumor-derived TGF-β [Internet]. J Immunol. 2007;178:2883–92. Available from. https://doi.org/10.4049/jimmunol.178.5.2883.
Article
CAS
Google Scholar
Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer [Internet]. J Immunol. 2009;182:1746–55. Available from:. https://doi.org/10.4049/jimmunol.182.3.1746.
Article
CAS
Google Scholar
Zhao X, Ding L, Lu Z, Huang X, Jing Y, Yang Y, et al. Diminished CD68 cancer-associated fibroblast subset induces regulatory T-cell (Treg) infiltration and predicts poor prognosis of oral squamous cell carcinoma patients [Internet]. Am J Pathol. 2020;190:886–99. Available from:. https://doi.org/10.1016/j.ajpath.2019.12.007.
Article
CAS
Google Scholar
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer [Internet]. Cancer Cell. 2018;33:463–79.e10. Available from. https://doi.org/10.1016/j.ccell.2018.01.011.
Article
CAS
Google Scholar
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656–73.e7.
Article
CAS
Google Scholar
Failmezger H, Muralidhar S, Rullan A, de Andrea CE, Sahai E, Yuan Y. Topological tumor graphs: a graph-based spatial model to infer stromal recruitment for immunosuppression in melanoma histology [Internet]. Cancer Res. 2020;80:1199–209. Available from:. https://doi.org/10.1158/0008-5472.can-19-2268.
Article
CAS
Google Scholar
AbdulJabbar K, TRACERx Consortium, Ahmed Raza SE, Rosenthal R, Jamal-Hanjani M, Veeriah S, et al. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma [Internet]. Nat Med. 2020;26:1054–62. Available from:. https://doi.org/10.1038/s41591-020-0900-x.
Article
CAS
Google Scholar
Camus M, Tosolini M, Mlecnik B, Pagès F, Kirilovsky A, Berger A, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69(6):2685–93.
Article
CAS
Google Scholar
Watermann C, Pasternack H, Idel C, Ribbat-Idel J, Brägelmann J, Kuppler P, et al. Recurrent HNSCC harbor an immunosuppressive tumor immune microenvironment suggesting successful tumor immune evasion. Clin Cancer Res. 2021;27(2):632–44.
Article
CAS
Google Scholar
Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184(2):404–21.e16.
Article
CAS
Google Scholar
Sridharan V, Margalit DN, Lynch SA, Severgnini M, Zhou J, Chau NG, et al. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer. Br J Cancer. 2016;115(2):252–60.
Article
CAS
Google Scholar
Wilkins A, Fontana E, Nyamundanda G, Ragulan C, Patil Y, Mansfield D, et al. Differential and longitudinal immune gene patterns associated with reprogrammed microenvironment and viral mimicry in response to neoadjuvant radiotherapy in rectal cancer [Internet]. J Immuno Ther Cancer. 2021;9:e001717. Available from. https://doi.org/10.1136/jitc-2020-001717.
Article
Google Scholar
Jiménez-Sánchez A, Cybulska P, Mager KL, Koplev S, Cast O, Couturier DL, et al. Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy [Internet]. Nat Genet. 2020;52:582–93. Available from:. https://doi.org/10.1038/s41588-020-0630-5.
Article
CAS
Google Scholar
Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, et al. Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood. 1994;84(7):2221–8.
Article
CAS
Google Scholar
Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 2011;13(3):324–33.
Article
CAS
Google Scholar
Hart LL, Ferrarotto R, Andric ZG, Thaddeus Beck J, Subramanian J, Radosavljevic DZ, et al. Myelopreservation with trilaciclib in patients receiving topotecan for small cell lung cancer: results from a randomized, double-blind, placebo-controlled phase II study [Internet]. Adv Ther. 2021;38:350–65. Available from:. https://doi.org/10.1007/s12325-020-01538-0.
Article
CAS
Google Scholar
Homma Y, Taniguchi K, Nakazawa M, Matsuyama R, Mori R, Takeda K, et al. Changes in the immune cell population and cell proliferation in peripheral blood after gemcitabine-based chemotherapy for pancreatic cancer. Clin Transl Oncol. 2014;16(3):330–5.
Article
CAS
Google Scholar
Szikriszt B, Póti Á, Pipek O, Krzystanek M, Kanu N, Molnár J, et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol. 2016;17:99.
Article
Google Scholar
O’Donnell T, Christie EL, Ahuja A, Buros J, Arman Aksoy B, Bowtell DDL, et al. Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer [Internet]. BMC Cancer. 2018;18Available from:. https://doi.org/10.1186/s12885-017-3825-0.
Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366(6472):1473–80.
Article
CAS
Google Scholar
Cipponi A, Goode DL, Bedo J, McCabe MJ, Pajic M, Croucher DR, et al. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science. 2020;368(6495):1127–31.
Article
CAS
Google Scholar
Meng RD, Shelton CC, Li YM, Qin LX, Notterman D, Paty PB, et al. gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69(2):573–82.
Article
CAS
Google Scholar
Liu S, Breit S, Danckwardt S, Muckenthaler MU, Kulozik AE. Downregulation of Notch signaling by γ-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol. 2009;88(7):613–21.
Article
CAS
Google Scholar
Charbonnier LM, Wang S, Georgiev P, Sefik E, Chatila TA. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol. 2015;16(11):1162–73.
Article
CAS
Google Scholar
Müller WU, Bauch T, Stüben G, Sack H, Streffer C. Radiation sensitivity of lymphocytes from healthy individuals and cancer patients as measured by the comet assay. Radiat Environ Biophys. 2001;40(1):83–9.
Article
Google Scholar
Lorimore SA, Coates PJ, Scobie GE, Milne G, Wright EG. Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene. 2001;20(48):7085–95.
Article
CAS
Google Scholar
Chow J, Hoffend NC, Abrams SI, Schwaab T, Singh AK, Muhitch JB. Radiation induces dynamic changes to the T cell repertoire in renal cell carcinoma patients [Internet]. Proc Natl Acad Sci. 2020;117:23721–9. Available from:. https://doi.org/10.1073/pnas.2001933117.
Article
CAS
Google Scholar
Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012;189(2):558–66.
Article
CAS
Google Scholar
Lhuillier C, Rudqvist NP, Yamazaki T, Zhang T, Charpentier M, Galluzzi L, et al. Radiotherapy-exposed CD8 and CD4 neoantigens enhance tumor control [Internet]. J Clin Invest. 2021;131. Available from:. https://doi.org/10.1172/jci138740.
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy [Internet]. J Experiment Med. 2006;203:1259–71. Available from:. https://doi.org/10.1084/jem.20052494.
Article
CAS
Google Scholar
Kocakavuk E, Anderson KJ, Varn FS, Johnson KC, Amin SB, Sulman EP, et al. Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer. Nat Genet. 2021;53(7):1088–96.
Article
CAS
Google Scholar
Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL, et al. Mutational signatures of ionizing radiation in second malignancies. Nat Commun. 2016;7:12605.
Article
CAS
Google Scholar
Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017;18(8):1009–21.
Article
CAS
Google Scholar
Basler L, Kowalczyk A, Heidenreich R, Fotin-Mleczek M, Tsitsekidis S, Zips D, et al. Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model [Internet]. Cancer Immunol Immunother. 2018;67:653–62. Available from:. https://doi.org/10.1007/s00262-018-2117-0.
Article
CAS
Google Scholar
Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11 [Internet]. Cancer Discov. 2019;9:1673–85. Available from. https://doi.org/10.1158/2159-8290.cd-19-0338.
Article
CAS
Google Scholar
Ji D, Song C, Li Y, Xia J, Wu Y, Jia J, et al. Combination of radiotherapy and suppression of Tregs enhances abscopal antitumor effect and inhibits metastasis in rectal cancer. J Immunother Cancer. 2020;8(2) Available from. https://doi.org/10.1136/jitc-2020-000826.
Pilones KA, Charpentier M, Garcia-Martinez E, Daviaud C, Kraynak J, Aryankalayil J, et al. Radiotherapy cooperates with IL15 to induce antitumor immune responses. Cancer Immunol Res. 2020;8(8):1054–63.
Article
CAS
Google Scholar
Montaseri G, Alfonso JCL, Hatzikirou H, Meyer-Hermann M. A minimal modeling framework of radiation and immune system synergy to assist radiotherapy planning [Internet]. J Theoretical Biol. 2020;486:110099. Available from:. https://doi.org/10.1016/j.jtbi.2019.110099.
Article
CAS
Google Scholar
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.
Article
CAS
Google Scholar
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80.
Article
CAS
Google Scholar
Angka L, Martel AB, Kilgour M, Jeong A, Sadiq M, de Souza CT, et al. Natural killer cell IFNγ secretion is profoundly suppressed following colorectal cancer surgery. Ann Surg Oncol. 2018;25(12):3747–54.
Article
Google Scholar
Krall JA, Reinhardt F, Mercury OA, Pattabiraman DR, Brooks MW, Dougan M, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci Transl Med. 2018;10(436) Available from. https://doi.org/10.1126/scitranslmed.aan3464.
Saddawi-Konefka R, O’Farrell A, Faraji F, Clubb L, Allevato MM, Jensen SM, et al. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat Commun. 2022;13(1):4298.
Article
CAS
Google Scholar
Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood. 2007;109(3):1010–7.
Article
CAS
Google Scholar
Burger ML, Cruz AM, Crossland GE, Gaglia G, Ritch CC, Blatt SE, et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell. 2021;184(19):4996–5014.e26.
Article
CAS
Google Scholar
White MG, Szczepaniak Sloane R, Witt RG, Reuben A, Gaudreau PO, Andrews MC, et al. Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma. Oncoimmunology. 2021;10(1):1992880.
Article
Google Scholar
Haas L, Elewaut A, Gerard CL, Umkehrer C, Leiendecker L, Pedersen M, et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma [Internet]. Nat Cancer. 2021;2:693–708. Available from:. https://doi.org/10.1038/s43018-021-00221-9.
Article
CAS
Google Scholar
Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36(4):385–401.e8.
Article
CAS
Google Scholar
Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2017;169(2):361.
Article
CAS
Google Scholar
Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N, Yen RWC, et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell. 2017;171(6):1284–300.e21.
Article
CAS
Google Scholar
Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 2017;170(1):142–57.e19.
Article
CAS
Google Scholar
Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23(15):4242–50.
Article
CAS
Google Scholar
Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by Anti-PD-1/PD-L1. Clin Cancer Res. 2017;23(8):1920–8.
Article
CAS
Google Scholar
Tay SH, Toh MMX, Thian YL, Vellayappan BA, Fairhurst AM, Chan YH, et al. Cytokine release syndrome in cancer patients receiving immune checkpoint inhibitors: a case series of 25 patients and review of the literature. Front Immunol. 2022;13:807050.
Article
CAS
Google Scholar
Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade [Internet]. New Engl J Med. 2018;378:158–68. Available from:. https://doi.org/10.1056/nejmra1703481.
Article
CAS
Google Scholar
Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7(3):746–56.
Article
CAS
Google Scholar
Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33(5):843–52.e4.
Article
CAS
Google Scholar
Blank CU, Haanen JB, Ribas A, Schumacher TN. The “cancer immunogram”, vol. 352: Science; 2016. p. 658–60. Available from:. https://doi.org/10.1126/science.aaf2834.
Book
Google Scholar
Nabet BY, Esfahani MS, Moding EJ, Hamilton EG, Chabon JJ, Rizvi H, et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell. 2020;183(2):363–76.e13.
Article
CAS
Google Scholar
Chowell D, Yoo SK, Valero C, Pastore A, Krishna C, Lee M, et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat Biotechnol. 2022;40(4):499–506.
Article
CAS
Google Scholar
Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.
Article
CAS
Google Scholar
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade [Internet]. J Clin Invest. 2017;127:2930–40. Available from:. https://doi.org/10.1172/jci91190.
Article
Google Scholar
Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy [Internet]. Science. 2018. Available from:;362. https://doi.org/10.1126/science.aar3593.
Westcott PMK, Muyas F, Smith O, Hauck H, Sacks NJ, Ely ZA, et al. Mismatch repair deficiency is not sufficient to increase tumor immunogenicity [Internet]. bioRxiv. 2021:2021.08.24.457572. [cited 2022 Jun 9]. Available from. https://doi.org/10.1101/2021.08.24.457572v1.
Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K, et al. UVB-induced tumor heterogeneity diminishes immune response in melanoma [Internet]. Cell. 2019;179:219–35.e21. Available from:. https://doi.org/10.1016/j.cell.2019.08.032.
Article
CAS
Google Scholar
Germano G, Lamba S, Rospo G, Barault L, Magrì A, Maione F, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth [Internet]. Nature. 2017;552:116–20. Available from. https://doi.org/10.1038/nature24673.
Article
CAS
Google Scholar
Lee WC, Diao L, Wang J, Zhang J, Roarty EB, Varghese S, et al. Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer. Mod Pathol. 2018;31(6):947–55.
Article
CAS
Google Scholar
Hong L, Negrao MV, Dibaj SS, Chen R, Reuben A, Bohac JM, et al. Programmed death-ligand 1 heterogeneity and its impact on benefit from immune checkpoint inhibitors in NSCLC. J Thorac Oncol. 2020;15(9):1449–59.
Article
CAS
Google Scholar
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.
Article
Google Scholar
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.
Article
CAS
Google Scholar
Bradley, Chen, Melendez, Talukder. BRAFV600E Co-opts a conserved MHC class I internalization pathway to diminish antigen presentation and CD8+ T-cell recognition of MelanomaBRAFV600E …. Cancer Immunol Immunother [Internet]. Available from: https://aacrjournals.org/cancerimmunolres/article-abstract/3/6/602/467768
Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature. 2021;595(7866):309–14.
Article
CAS
Google Scholar
Zakharova VV, Magnitov MD, Del-Maestro L, Ulianov SV, Glentis A, Ulyanik B, et al. SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. bioRxiv. 2021; Available from:. https://doi.org/10.1101/2021.09.06.459062.
Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018;359(6377):801–6.
Article
CAS
Google Scholar
Pan D, Kobayashi A, Jiang P, de Andrade LF, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing [Internet], vol. 359: Science; 2018. p. 770–5. Available from:. https://doi.org/10.1126/science.aao1710.
Book
Google Scholar
Davila ML, Brentjens RJ. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2016;14(10):802–8.
Google Scholar
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.
Article
CAS
Google Scholar
Rosenthal J, Naqvi AS, Luo M, Wertheim G, Paessler M, Thomas-Tikhonenko A, et al. Heterogeneity of surface CD19 and CD22 expression in B lymphoblastic leukemia. Am J Hematol. 2018;93(11):E352–5.
Article
Google Scholar
Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95. https://doi.org/10.1158/2159-8290.CD-15-1020.
Article
CAS
Google Scholar
Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B, Qin H, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320.
Bentham R, Litchfield K, Watkins TBK, Lim EL, Rosenthal R, Martínez-Ruiz C, et al. Using DNA sequencing data to quantify T cell fraction and therapy response. Nature. 2021;597(7877):555–60.
Castle JC, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination [Internet], vol. 72: Cancer Res; 2012. p. 1081–91. Available from:. https://doi.org/10.1158/0008-5472.can-11-3722.
Book
Google Scholar
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma [Internet]. Nature. 2017;547:217–21. Available from. https://doi.org/10.1038/nature22991.
Article
CAS
Google Scholar
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial [Internet]. Nature. 2019;565:234–9. Available from. https://doi.org/10.1038/s41586-018-0792-9.
Article
CAS
Google Scholar
Ott PA, Hu-Lieskovan S, Chmielowski B, Govindan R, Naing A, Bhardwaj N, et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer [Internet]. Cell. 2020;183:347–62.e24. Available from:. https://doi.org/10.1016/j.cell.2020.08.053.
Article
CAS
Google Scholar
Tondini E, Arakelian T, Oosterhuis K, Camps M, van Duikeren S, Han W, et al. A poly-neoantigen DNA vaccine synergizes with PD-1 blockade to induce T cell-mediated tumor control [Internet]. OncoImmunology. 2019;8:1652539. Available from:. https://doi.org/10.1080/2162402x.2019.1652539.
Article
CAS
Google Scholar
Hu Z, Leet DE, Allesøe RL, Oliveira G, Li S, Luoma AM, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma [Internet]. Nat Med. 2021;27:515–25. Available from:. https://doi.org/10.1038/s41591-020-01206-4.
Article
CAS
Google Scholar
Roudko V, Bozkus CC, Orfanelli T, McClain CB, Carr C, O’Donnell T, et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors [Internet]. Cell. 2020;183:1634–49.e17. Available from:. https://doi.org/10.1016/j.cell.2020.11.004.
Article
CAS
Google Scholar
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma [Internet]. Nature. 2019;565:240–5. Available from:. https://doi.org/10.1038/s41586-018-0810-y.
Article
CAS
Google Scholar
Li L, Zhang X, Wang X, Kim SW, Herndon JM, Becker-Hapak MK, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation. Genome Med. 2021;13(1):56.
Article
CAS
Google Scholar
Li S, Simoni Y, Zhuang S, Gabel A, Ma S, Chee J, et al. Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies. Proc Natl Acad Sci U S A. 2021;118(30) Available from. https://doi.org/10.1073/pnas.2025570118.
Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell. 2018;175(4):984–97.e24.
Article
CAS
Google Scholar
Cabrera T, Lara E, Romero JM, Maleno I, Real LM, Ruiz-Cabello F, et al. HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother. 2007;56(5):709–17.
Article
CAS
Google Scholar
Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9(1):6136.
Article
Google Scholar
Fukumoto T, Fatkhutdinov N, Zundell JA, Tcyganov EN, Nacarelli T, Karakashev S, et al. HDAC6 inhibition synergizes with anti-PD-L1 therapy in ARID1A-inactivated ovarian cancer. Cancer Res. 2019;79(21):5482–9.
Article
CAS
Google Scholar
Lienlaf M, Perez-Villarroel P, Knox T, Pabon M, Sahakian E, Powers J, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma [Internet]. Mole Oncol. 2016;10:735–50. Available from:. https://doi.org/10.1016/j.molonc.2015.12.012.
Article
CAS
Google Scholar
Falcaro M, Castañon A, Ndlela B, Checchi M, Soldan K, Lopez-Bernal J, et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study [Internet]. Lancet. 2021;398:2084–92. Available from:. https://doi.org/10.1016/s0140-6736(21)02178-4.
Article
Google Scholar
Pan J, Zhang Q, Sei S, Shoemaker RH, Lubet RA, Wang Y, et al. Immunoprevention of KRAS-driven lung adenocarcinoma by a multipeptide vaccine [Internet]. Oncotarget. 2017;8:82689–99. Available from:. https://doi.org/10.18632/oncotarget.19831.
Article
Google Scholar
Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature. 2019;574(7779):532–7.
Article
CAS
Google Scholar
Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880–6.
Article
CAS
Google Scholar
Kim PS, Lee PP. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Comput Biol. 2012;8(10):e1002742.
Article
CAS
Google Scholar
Hartmaier RJ, Charo J, Fabrizio D, Goldberg ME, Albacker LA, Pao W, et al. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies [Internet]. Genome Med. 2017. Available from:;9. https://doi.org/10.1186/s13073-017-0408-2.
Howell FC, Clark Howell F, Books. TL. Early man, by F. Clark Howell and the editors of Time-Life Books [Internet]. 1970. Available from: https://doi.org/10.5962/bhl.title.41572
Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer. 2017;1867(2):151–61.
Article
CAS
Google Scholar
Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.
Article
Google Scholar
Malikic S, Jahn K, Kuipers J, Sahinalp SC, Beerenwinkel N. Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat Commun. 2019;10(1):2750.
Article
Google Scholar